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Abstract: Urban storm drainage is fundamental for the well-being of the population of cities with
torrential rainfall regimes because it is essential for the rapid and safe disposal of stormwater runoff.
However, it is not uncommon for hydrological studies to determine the design flow of storm drainage
works carried out in the same urban basin using different criteria depending on the experience of
the person performing them. This can represent a problem when integrating and reviewing the
results of hydrological studies carried out by different hydrologists. To address this problem, we
propose a methodology consisting of methods used by various authors to determine the design flow
rate in urban hydrologic studies. We suggest using a novel method to delineate urban basins based
on photogrammetry obtained through flights with unmanned aerial vehicles. Subsequently, the
necessary parameters are obtained to define the intensity–duration–return period curves, the runoff
coefficients, and finally the design flow rate. The contribution of this article is technological. In this
sense, a new methodology is proposed that applies existing knowledge to solve a practical problem
observed in the field of urban hydrology and storm drainage. The case study is a basin with frequent
flooding located in Culiacan, Mexico.

Keywords: urban hydrology; hydrological studies; urban storm drainage; urban basins; photogrammetry

1. Introduction

Flooding problems frequently occur because drainage infrastructures have insufficient
capacity [1]. These structures capture runoff from urban basins whose hydrological analyses
are generally carried out with heterogeneous criteria. This is because they depend on the
experience of those in charge of each urban storm drainage project [2].

The design discharge is usually the main variable for designing storm drainage sys-
tems. However, there is a lack of a single criterion to calculate it [3]. Such criteria may
include factors such as the definition of runoff coefficients, times of concentration, rainfall
intensities, and basin areas, as well as the calculation method itself. In many cases, hydro-
logical studies are conducted without considering the basin as a basic unit [4]. Instead,
the calculations may have a geographic scope that corresponds to the layout of real estate
developments, even though their runoff drains into the same storm drain because they are
in the same urban basin [5]. In addition, basic information is often scarce in cities located
in developing and even developed countries [6]. On the other hand, in general, there is
no measurement of stormwater discharges into the surface or subsurface storm drainage
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network in cities [7]. Therefore, such discharges must be estimated indirectly from rainfall
data registered in one or several stations.

For example, for the case study presented here, there are only two climatological
stations in the city, one in CONAGUA (DGE) and the other in the School of Biology at the
Autonomous University of Sinaloa. This makes it difficult to sectorize precipitation along
the urban territory to simulate the different precipitations that have been observed during
the same day in the city in recent years [8]. In addition, there are areas of cities where
information on the layout of the surface and subsurface drainage network is lacking [9].

The case of the City of Culiacan, Mexico, may be representative of several cities subject
to torrential rainfall regimes [10]. In 2013, Culiacan was affected by tropical storm Manuel,
which caused major damage due to its high winds and flooding. The latter was due to the
intense rainfall that occurred over approximately three days, which included the historical
maximum of 250.3 mm of accumulated rainfall in the city in 24 h [11]. Following this
event, the Culiacan City Council focused its attention on the hydrological studies that were
previously established as a requirement in Art. 274 Bis of the Building Regulations for the
Municipality of Culiacan, Sinaloa [12].

According to these regulations, to approve each real estate development, a hydrolog-
ical study is required. The purpose of this is to ensure that the rainwater generated by
the development planned for construction, as well as the rainwater generated by other
developments that pass through the site, can be quickly and safely drained.

The hydrological basin is a convenient geographic unit for analyzing the surface water
flow pattern in urban areas. This is because the directions of the water currents of the main
urban storm drainage network converge and thus facilitate the understanding of the flow
pattern. However, the division into urban basins may not be officially established, so it
should be generated for each project. Generally, this is achieved based on digital terrain
models obtained from freely available databases that have lower resolutions than those
required for an urban basin [13].

The heterogeneity of criteria used to carry out hydrological studies in different areas
located in an urban basin makes it difficult to analyze the flow pattern over territories
that drain into the same storm drain. This is because each discharge may have been
calculated using different methods and assumptions, which are sometimes not specified in
the calculation report. In addition, it makes it difficult and laborious for researchers and
authorities to understand and review the different studies.

In summary, the main problem that the proposal of this article seeks to solve is the
heterogeneity of criteria to determine the input data for calculating rainfall discharge
in urban areas. Complementarily, the proposal supports the solution to the problem of
inefficiency in the review of hydrological studies of areas located in the same basin and
the scarcity or lack of cartographic information to delineate urban basins, especially in
developing countries.

2. Materials and Methods
2.1. Study Area

The study area is in the municipality of Culiacan, Sinaloa, Mexico, specifically in the
urban area of the city of Culiacan. In general, most of the city is located 50 m above mean
sea level and has two rivers, Humaya River and Tamazula River, which converge to form a
third stream called Culiacan River. The physiography corresponds to the American Pacific
Coastal Plain with predominantly vertosol, phaeozem, and leptosol soils. The dry season is
partially cloudy, and it is very hot throughout the year, with temperatures ranging from
12 ◦C to 36 ◦C that sporadically drop below 9 ◦C or rise above 38 ◦C. The rainy season lasts
approximately three months, from 24 June to 26 September, while the driest season lasts
approximately nine months, from 26 September to 24 June [14]. The average annual rainfall
is 693 mm, with a maximum rainfall of 250 mm [15].

The study area is located in the coordinates 24◦48′0.00′′–24◦48′60.00′′N and 107◦21′30.00′′

–107◦23′0.00′′ W (Figure 1). This specific area is between 40 and 55 m above mean sea level
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and is one of the areas in the city with flooding problems, as noted in the Risk Atlas
of Sinaloa State [16]. During the rainy season, the flow of water drains toward a storm
drainage inlet. This is the key point from which the basin can be delineated. In addition,
due to the concentration of runoff in the surrounding area inlet, frequent flooding occurs
during the rainy season. This suggests that the dimensions of the drainage inlet are not
enough to discharge the extraordinary rainfall floods.
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Figure 1. Location of study area.

Also, it is important to mention that the study area is an endorheic basin [17] because
the surface flow accumulates in a sinkhole that is not connected by surface channels with
other streams in the basin. Instead, the sinkhole is connected to a subsurface storm sewer
pipe (Figure 1) that conducts the flow out of the basin discharging into the Tamazula River
(not shown in Figure 1).

Table 1 shows the maximum 24 h rainfall data from the climatological station of
the Biology Faculty of the Autonomous University of Sinaloa, which was considered
appropriate because it is the closest to the study area [11].

Topographic maps were also obtained by means of a digital elevation model (DEM).
This was generated via photogrammetry performed with images from a high-resolution
camera mounted on a UAV according to Rivera Buelna’s methodology [18].

2.2. Methods
2.2.1. Methodology Overview

The applied methodology included an investigation of the different methods and
criteria applied for conducting hydrological studies [19–23] to select the most appropriate
ones to standardize hydrological studies in Culiacan. Different basin delineation meth-
ods were also investigated such as the delineation of rural basins based on DEM, urban
basin delineation using LIDAR technology, and urban basin delineation based on aerial
photogrammetry and flow directions [22,24,25].
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Table 1. Daily maximum precipitation at the station of the School of Biology [11].

Year DMP (mm) Year DMP (mm)

1995 250.3 2009 69.9
1996 224 2010 69.9
1997 157.7 2011 67
1998 152.8 2012 67
1999 111.3 2013 60.8
2000 103 2014 60.2
2001 101.4 2015 59.5
2002 87.7 2016 58.3
2003 84.3 2017 58.2
2004 84 2018 55.4
2005 80.3 2019 54.5
2006 77.4 2020 51.6
2007 72.9 2021 39.7
2008 71

Figure 2 shows the proposed methodology for the standardization of urban hydrologi-
cal studies using basin division based on aerial photogrammetry.
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2.2.2. Basin Delineation Using GIS

In geographic information systems (GIS), digital elevation models (DEMs) have been
employed more and more frequently for basin delineation since they are tools used for
the extraction of a large number of parameters necessary for a hydrological study [26].
However, in developing countries, urban basin divisions are usually not available [27,28].
In this case study, there is no official delineation of publicly accessible urban basins. The
available delineations present basins of large territorial extensions that do not have the
level of detail for analysis of the surface water flow pattern in cities [29].

The delineation of an urban basin is complex, due to the layout of roads, subsurface,
and surface drainage systems, as well as the modification of the natural terrain whose
slopes are usually modified to adapt them to urban use. These factors make it difficult to
perform a reliable delineation analysis of urban basin boundaries [30].

For this purpose, it is convenient to use the tools for the hydrological analysis of
geospatial information systems (GIS). In this study, we used the methodology proposed by
Sanhouse-Garcia [25] and Rivera-Buelna [18] to delineate urban basins from photogramme-
try. This consisted of determining the highest elevations of the basin and the topographic
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criteria of the study area to visualize the possible hydrological basins. Subsequently, the
basins were delineated semi-automatically based on the digital terrain model (DEM) using
the set of tools in QGIS 3.34.0 ‘Prizren’ software for hydrological analysis. A minimum cell
size was established to obtain the hydrological basins of the area under study. Next, the
configuration of streets and storm drainage works such as ditches, canals, and sewers were
considered. This was carried out to ensure that all surface runoff from each basin had a
single exit point. It is important to point out that, in the watershed under study, stormwater
runoff is conveyed only through the streets to a sinkhole from where it is drained through
a drainage pipe placed under the ground.

A Phantom 4 PRO UAV manufactured by DJI in Shenzhen, China was used to obtain
a highly accurate and reliable digital elevation model (DEM). The UAV was flown at a
height of 100 m with a speed of 15 m/s, a camera angle of 90 degrees, and horizontal and
transverse overlaps of 75% and 70%, respectively. A total of 503 images were captured
using a digital camera with a 20-megapixel resolution, i.e., with images of 2.5 cm spatial
resolution. The flight lines and polygon were established using DJI’s GSP-PRO software
version v2.0. The images obtained from the photogrammetric flight were processed using
Agisoft Metashape Professional software version 1.5.2, following the workflow proposed
by Mora-Felix et al. [31].

A pair of GNSS antennas (base and rover) were used to establish a network of ground
control points (GCPs) in the study area. The base point was processed and adjusted
according to Mexico’s National Active Geodetic Network (RGNA), using the “CULC”
station of the National Institute of Statistics and Geography (INEGI). The GCP network in
the study area was measured using the real-time kinematic (RTK) technique. The GCPs
measured in the field were used to adjust the external orientation of the photographs,
considering the camera model’s parameters. A dense point cloud was generated using a
moderate filter to achieve more accurate results in the elevation coordinates [31]. The main
outputs of the digital photogrammetry process were the orthophotography and DEM.

2.2.3. Basin Morphological Characteristics

There are several methods to determine the geomorphological indices of a basin under
study, such as area, perimeter, slope, length of the main channel, and time of concentration.
This is because urban basins of known regular shapes, such as square, rectangle, triangle,
and circle, can be found. These types of basins can be analyzed with a relatively easy
calculation method. However, it is necessary to work with irregular shapes, that is, with
no known geometric shape, due to the variety that could be present in the municipality of
Culiacan [32]. In this study, the hydrological analysis tools of QGIS 3.34.0 ‘Prizren’ software
were used to calculate the indices of the basic morphological characteristics of the basin
under study. The basin perimeter was calculated using the “watershed basin analysis”
algorithm, which identifies and connects the highest elevation points surrounding the
area’s surface drainage network, generating a polygon that is the basin divide or water
parting. Subsequently, its perimeter in meters and its area in km2 were obtained using the
field calculator, with the results outlined in a polygon attribute table. The length of the
mainstream was obtained by manually tracing polygonal lines along the longest streams in
the basin, consulting their lengths in the attribute table of each line, and selecting the longest
one. The slope of the mainstream was calculated by dividing the difference between the
maximum and minimum elevations by the length of the line. The values of these variables
were obtained using the “profile tool” algorithm.

In turn, the time of concentration is equivalent to the time it takes for water to pass
from the farthest point to the basin outlet [33]. To calculate it, the Kirpich formula was
selected due to its easy application [34].
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2.2.4. Analysis and Processing of Rainfall Records

It can be stated that the magnitude of rainfall is proportional to the magnitude of
surface runoff. This is the reason why drainage studies rely on the study of precipitation to
calculate design flows [35].

The measurement of precipitation is mainly carried out by means of rain pluviometers
and pluviographs that record the amount of rainfall (mm). Due to the large territorial
extensions of modern cities, it is desirable to have several stations in the same urban area.
However, in Culiacan, there is only pluviometric information available from one of the
climatological stations of the National Network of CONAGUA (Culiacan DGE station) and
the climatological station at the Biology Faculty of the UAS. In this case study, the latter
was considered since it is located closer to the basin under study.

2.2.5. Statistical Analysis and Probability in Hydrology

When designing a storm drainage system, as well as other infrastructure systems,
estimations of future events are needed such as the maximum precipitation in a time
interval or the runoff volumes accumulated in a time interval [36].

The estimation of a future phenomenon is linked to a probability of occurrence. This
is determined with a series of criteria, including the lifetime of the structure, the cost of
the structure, possible human occupancy, and material damage in case of failure, among
others [19].

The return period or recurrence interval is measured in years and is estimated depend-
ing on the relevance and risk of the hydraulic structure to be designed and built [33]. For
this estimation, in Mexico, the values recommended by CONAGUA in the Basic Data for
Potable Water and Sewerage Projects Manual are used. Similar recommendations exist in
other countries [37].

When there is a hydrological data sample, such as rainfall, it is convenient to calculate
its statistical parameters, which are representative values of the general characteristics of
the data sample. In turn, they define the characteristics of a population, for which, there
are equations that allow for an evaluation of both the statistical parameters of the sample
and those of the population [21].

For their part, probability distribution functions represent the probability of occurrence
of a random variable in a predefined range. They are of utmost importance because they
enable the estimation of the values of that variable, either as interpolation or extrapolation,
when the associated probability of occurrence is known or vice versa [21]. Essentially, these
types of mathematical models make it possible to reduce a large volume of data to a single
function and its associated parameters, which are derived from the statistical characteristics
of the sample when used in the analysis of hydrological data.

There are several probability distribution functions. In Mexico, guides are available to
identify those that have been most successfully applied in hydrology [20]. For their part,
Flowers-Cano et al. [21] conducted a study to select the best probability distribution in
rainfall analysis, using different climatological stations in Mexico. The distributions that
best fitted the different series were log-Pearson type III and general extreme values (GEVs).

However, in this research, it is recommended to use software to select the distribution
that best fits the statistical data. This is because they allow for testing many probability
functions and not just the traditional ones. In this way, it would be possible to select a
function that best simulates the historical behavior of data from recent changes in the
precipitation regime. Some of the recommended software are AX.exe 14.1 (developed by
CENAPRED), Hidroesta 2.0, StatAssist 5.5, and EasyFit 5.5.

2.2.6. Correction Using Fixed Observation Interval

Weiss [38] showed that when precipitation readings are taken at a single fixed observa-
tion interval, for any duration between 1 h and 24 h, it is necessary to correct these values
by means of a correction factor for a fixed observation interval. This factor represents an
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increase of 13 percent in the values taken in the field [39]. In other words, records created
at fixed intervals underestimate the real precipitation considering the same duration [40].

2.2.7. Runoff Coefficient

The runoff coefficient depends on many basin characteristics, such as vegetation cover,
land use, and basin area, among others. It can be determined from rainfall and runoff
information [19]. However, when this information is not available, it is determined from
the various tables provided by CONAGUA [41].

With the help of the tables and the DEM, a weighted runoff coefficient was calculated
by applying the methodology proposed by García Páez et al. [42].

Intensity–Duration–Return Period (Frequency) (IDF) Curves

According to Maidment [43], the intensity–duration–frequency (IDF) curves allow for
the calculation of the average intensity for a probability of exceedance and duration.

Campos Aranda (1990) suggested a procedure for Mexico with which the IDF curves
can be estimated from rainfall records of 33 stations in different states of the country, by
using the rainfall–duration ratio, which relates the rainfall of 1 h and a return period of
2 years (or any other) with that of 24 h for the same return period. In this research, we
applied the equations of Bell [44] and Chen [45] suggested by this method. Campos Aranda
reported that Bell’s equation is more useful for small periods and return periods of 2 to
10 years, while Chen’s equation has greater functionality for return periods greater than or
equal to 10 years.

2.2.8. Design Flow

Once all the parameters explained above have been calculated, the design flow of the
hydrological basin was established. This flow indicates what the storm sewer should drain.

For this step, there are several methods available [19,32,46], but in this study, the three
most used methods in hydrological studies in Mexico were analyzed which are presented
below.

American rational method: This method allows for the determination of the maximum
flow caused by a storm, taking into consideration that this is reached when the intensity
of rainfall is constant for a certain duration, which is considered equal to the time of
concentration of the basin [19].

Qp = 0.278 C imax A (1)

where Qp = flow rate (m3/s); C = runoff coefficient (dimensionless); i = maximum rainfall
intensity for a duration equal to the time of concentration of the basin (mm/h); A = basin
area (km2); and 0.278 = unit conversion factor.

Chow method: This is based mainly on the concept of the unit hydrograph and the
S-curve. It is applicable for basins smaller than 24.3 km2. Equation (2) is used to determine
the peak flow rate of the unit hydrograph (q), and Equation (3) is used to determine the
peak flow rate (Q) of direct runoff.

q =
2.778 ∗A ∗ Z

d
(2)

where q = peak flow rate of the unit hydrograph (m3/s); A = basin area (km2); Z = peak
reduction factor (dimensionless); and d = total storm duration (hours).

Q =
2.778 ∗A ∗ Z ∗ Pe

d
(3)

where Q = peak flow rate of direct runoff (m3/s); A = basin area (km2); Z = peak reduction
factor (dimensionless); d = total storm duration (hours); and Pe = excess rainfall in the
study area for duration d (cm).
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Equation (4) represents the final flow rate equation and is expressed as follows:

Qm = 2.78AXZ (4)

where A = basin area (km2); X = climate factor (dimensionless); Z = peak reduction factor
(dimensionless); and Q = peak flow rate of the direct runoff hydrograph (m3/s).

SCS Method: Also known as the TR-55 method, this is a method used in small and
medium-sized basins to estimate the maximum flow rate using Equation (5) as follows:

Qp = qu ∗ Pe ∗ Fp ∗A (5)

where Qp = peak flow rate (m3/s); qu = unit peak flow rate per cm of rainfall in excess
and km2 of basin area (m3/s); Pe = excess precipitation, corresponding to rainfall of 24 h
duration and design Tr corrected according to the basin size (cm); Fp = adjustment factor
for ponds and marshes in the basin (0%–1.00, 0.2%–0.97, 1%–0.87, 3%–0.75 and 5%–0.72);
and A = basin area (km2).

Likewise, the unit peak flow rate (qu) is calculated with Equation (6) as follows:

log(qu) = C0 + C1log(Tc) + C2[log(Tc)]2 − 2.366 (6)

where Tc = time of concentration of the basin (hours), and C0, C1, and C2 = 0.10. When
Ia/Pc > 0.50, those of 0.50 are used; the nearest quotient for intermediate values is interpo-
lated or adopted. The value of Ia is calculated with Equations (7) and (8):

Ia = 0.20 ∗ S (7)

S =

(
25, 400

N
− 254

)
(8)

where S = maximum potential retention (mm), and N = SCS runoff curve number (dimen-
sionless).

The maximum 24 h rainfall and the design return period were calculated using the
IDF curves of the site, correcting this value using the basin magnitude with Equations (9)
and (10) as follows:

FRA = 1.0− 0.091293
(

1.0− e−0.005794∗A
)

(9)

Pc = FRA ∗ P (10)

Based on an analysis of case diversity in the city of Culiacan, the American rational
method is the simplest to apply [4,34]. This is because the parameters necessary for its
application are obtained relatively easily. In this method, it is assumed that the rainfall
intensity is constant and uniform in the study basin. Although this method does not
provide crescent hydrographs, it is proven to have very good results compared to other
methods [47].

However, we considered calculating the design flow using the three methods cited
above to compare the different results.

3. Results
3.1. Analysis and Processing of Precipitation Records

The statistical parameters were analyzed for the 27 years of records from the UAS
rainfall station. Subsequently, probability distribution tests were performed with the help
of the Hidroesta program. According to the obtained results, the probability distribution
that best fitted the data was Gumbel of two populations, with which the predictions of
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maximum daily rainfall were obtained. These were multiplied by a factor of 1.13 to obtain
the maximum daily precipitation [40], as shown in Table 2.

Table 2. Adjusted maximum daily precipitation for different return periods.

Return Period (Years) Precipitation Height (mm)

2 79.439
5 127.69
10 185.32
20 232.78
25 246.34
50 284.76

100 317.53

3.2. Mapping of Basin Divides and Flow Directions

In this research, the flow directions and basin divides were determined from the
digital elevation model (DEM) together with the orthophotography of the same area. This
was carried out according to the methodology proposed by Rivera-Buelna [18], which
uses the specialized algorithm “Terrain Profile” of the open source software QGIS 3.34.0
‘Prizren’. This algorithm operates by identifying and selecting the area to be evaluated in
the DEM, which enables the pointer to draw a “temporary polyline” in the DEM. Then, a
graphic is obtained with the respective topographic elevations (maximum and minimum
heights) of the previously selected profile. The algorithm records the elevations in a series
of predetermined points that are exported as “copy to clipboard (with coordinates)”. With
this, the coordinates of each datum or elevation point are considered, according to the
coordinate reference system used.

The mapping consisted of identifying the highest points of each road from where the
surface water flow moves away, which also allows for the identification of the basin divides
on each road. Lines with arrowheads were then drawn to indicate the flow directions.
Each arrow indicates the direction of surface water flow (Figures 3 and 4). Likewise, the
points on the streets where the water parting should pass (representative points of the
basin divide) were marked. All the streets in the orthophoto were analyzed in this way,
resulting in two vector layers: one with the flow directions of the area and the other with
the representative points of the basin divide.
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3.3. Basin Delineation

The basin was delineated by joining the representative points. First, they were joined
directly, but we believed that this delineation was not correct because the water parting
would cross fields with buildings. These were not built following the basin divide, so the
runoff would not be separated from that line. A more realistic idea is that the basins follow
the urban layout incorporating complete fields.

To achieve the above, water parting was adjusted to the contour of the buildings
considering the flow directions. The result of this is shown in Figure 5, which shows that
there is more than one exit point for surface runoff.
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3.4. Geomorphological Characterization

From the delineation of the basin, it was possible to obtain some parameters such as
the basin area, perimeter, length of the main river, basin slope, and time of concentration
(Tc), and their values are listed in Table 3.

Table 3. Main geomorphological parameters of the study basin.

Area (ha) Perimeter (m) Length of Main Stream (m) Slope Tc (h) Tc (min)

21.271 2849 568 0.0202 0.193 11.56
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3.5. Determination of the Return Period

The return periods for storm drainage are selected according to the construction site
to be protected [37]. In Mexico, the National Water Commission suggests such values in
the Manual of Basic Data for Potable Water and Sewerage Projects [41].

Determination of Runoff Coefficients

Using ArcGIS 10.8 software and our DEM, we identified various runoff coefficients
within our delimited basin.

Applying the methodology proposed by García Páez et al. [42], the surfaces were
divided according to the characteristics of the material present in each zone. With the basin
delineation and orthophotography obtained previously, polygons were drawn to identify
the different surfaces of the basin to obtain the areas of each of the polygons, as shown in
Figure 6.
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Once the areas and respective surfaces were identified, the corresponding runoff
coefficient values were obtained for the selected return periods [41], and a pondered runoff
coefficient was calculated (Table 4).

Table 4. Pondered runoff coefficients with return periods (TR) of 2, 5, and 10 years.

Surfaces Area (km2) C-TR-2 C-TR-5 C-TR-10

Land without vegetation 0.769 0.1 0.25 0.35
Roof 1.331 0.8 0.85 0.9

Inclined roof 9.674 0.8 0.85 0.9
Sidewalk 0.633 0.1 0.25 0.35

Concrete street 5.583 0.87 0.88 0.9
Asphalt 1.360 0.87 0.88 0.9

Landscaped area 1.791 0.1 0.25 0.35
Total area 21.14 0.72 0.77 0.82

3.6. Estimation of IDF Curves

When pluviometric information is not available, as in the case of this study, isohyets
generated for large territorial extensions, such as those corresponding to the states, can
be used. Thus, the SCT isohyet curves were used, as well as the pluviometric information
related to maximum annual daily precipitation, based on Chen’s formula [45].

By applying this method, the values in Table 5 were obtained and then used to plot
the intensity–duration–frequency (IDTr or IDF) curves shown in Figure 7.
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Table 5. Rainfall intensities (mm/h) for different return periods and durations.

Tr (Years)
Duration (min)

5 10 15 20 30 45 60 80 100 120 1440

2 115.85 89.26 73.91 63.74 50.90 40.01 33.49 27.90 24.15 21.44 3.99
5 181.45 139.80 115.76 99.84 79.72 62.67 52.45 43.70 37.83 33.58 6.25

10 231.08 178.03 147.42 127.15 101.52 79.81 66.80 55.65 48.18 42.77 7.96
25 296.68 228.57 189.27 163.24 130.34 102.47 85.76 71.45 61.86 54.91 10.23
50 346.30 266.81 220.93 190.55 152.14 119.61 100.11 83.40 72.21 64.10 11.94
100 395.93 305.04 252.59 217.85 173.94 136.75 114.45 95.35 82.55 73.28 13.65
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Figure 7. Intensity duration frequency curves.

3.7. Determination of the Design Storm

The design storm was defined with the IDTr curves, selecting a return period of
10 years and a duration of 11.56 min, which corresponds to the time of concentration of the
basin under study. The resulting rainfall intensity was 166.9 mm/h.

3.8. Calculation of the Design Flow Rate

Table 6 below shows the results obtained by applying the three methods recommended
above.

Table 6. Flow rates calculated using the different methods (m3/s).

Rational Method Chow Method
SCS Method

Hydrograph of Direct Runoff Triangular Unit Hydrograph

8.07 4.569 6.371 2.964

Finally, the result of the rational method, i.e., a design flow rate of 8.07 m3/s, was
selected. This could be used to generate a proposal for a pluvial solution to the problem of
frequent flooding at the study site.

4. Discussion

There are several other methods commonly used for storm flow design. The selection
of the method depends on several factors, including the project requirements, available
data, and local regulations. Engineering references, guidelines, or local authorities are
usually consulted to determine the most appropriate method to calculate the storm flow
design in a specific location. According to this, no standardized methodology has been
proposed in the literature. In addition, references generally do not include standardized
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procedures for delineating urban basins, and consequently, the dimensions of their areas
and even their shapes can influence the magnitude of rainfall–runoff.

Some of the commonly used methods are the unit hydrograph method, soil conserva-
tion service (SCS) method, time of concentration method, rational method, and hydrologic
models. The unit hydrograph method involves developing a hydrograph, which represents
the flow rate of stormwater over time, based on the rainfall characteristics and the catch-
ment’s response [48]. The unit hydrograph is derived from the observed hydrographs to
estimate the peak flow rate and hydrograph shape for a given storm event. The SCS method
is commonly used in the United States and uses a hydrologic soil group classification sys-
tem to estimate the runoff volume and peak flow rate [49]. This classification system is
based on the soil properties, land use, and rainfall characteristics to calculate storm runoff.
The time of concentration method is based on the time it takes for the entire catchment area
to contribute runoff to a specific point [50]. However, several specific factors, such as flow
path length, slope, surface roughness, and some hydraulic properties, must be provided
to determine this time. Once the time of concentration is known, this time can be used to
calculate the peak flow rate.

The rational method provides an estimate of the peak flow rate and is based on several
assumptions. It is commonly used for the preliminary design and sizing of stormwater
management systems. It is used to estimate the peak flow rate of stormwater runoff from a
given catchment considering the land use and surface characteristics, and the rainfall inten-
sity obtained from local weather records and using rainfall intensity–duration–frequency
(IDF) curves specific to the study area [51]. In addition, there are various hydrologic
models available that simulate the rainfall–runoff process. These models utilize complex
algorithms and data inputs to estimate the peak flow rate and hydrograph. Examples of
commonly used hydrologic models include HEC-HMS, SWMM (stormwater management
model), and TR-20 [52–54]. These models consider the presence of green infrastructure,
detention/retention facilities, or other stormwater management practices that affect the
runoff characteristics.

Since the values of rainfall intensities are defined by zone or calculated with informa-
tion that is generally not available in developing countries, the use of simple methods with
many assumptions is common. As an example, the delineation of urban basin boundaries
is traditionally carried out with automatic digital tools. These tools are based on the use of
DEMs with poor resolution and do not properly consider the effect of urbanization [55],
which can distort the understanding of the surface rainfall flow pattern in the study area.
In addition, the presence of the subsurface storm drainage system can greatly modify this
flow pattern.

The proposed methodology is simple and has advantages over other more sophisti-
cated methodologies that require detailed basic information [6,20,21,56]. This information
on various occasions is limited or nonexistent, especially in terms of data corresponding to
the topography of the surface of urban areas where the natural terrain conditions have been
modified [9]. Obtaining accurate data, such as rainfall data, soil properties, land use, and to-
pographic information, can be challenging and time-consuming in developed countries [25].
In our methodology, this problem is solved by generating a high-resolution digital surface
model using photogrammetry, which is a cost-effective and less time-consuming option
than traditional methodologies that require ground-level topographic surveys. This allows
for accurate and rapid basin mapping, which facilitates the study of surface water flow on
a basin basis rather than by urban development zone. Then, this methodology does include
a procedure to delineate the basins under study. In this same sense, our methodology
involves using a procedure to estimate rainfall intensity whose parameters are adjusted
based on local information, which has yielded appropriate results in Mexico.

The rational method is proposed because it continues to be an international standard
due to its simplicity and wide use. It requires the determination of the runoff coefficient,
which is based on land use and type. Land use can be determined based on the photographs
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obtained as a partial product of the UAV flights of this methodology. However, the
determination of soil type will depend on previous studies in the study area.

We recognize that the methodology proposed here has some disadvantages. One,
perhaps the main one, which is also common to other methodologies, is the lack of model
calibration. This is because it does not include field corroboration by means of a measure-
ment network of the design flow rates.

In addition, the design flow rate corresponds to the flow rate of the basin as a whole;
however, our study shows that it is not only discharged through a single point of interest
(in this case, the location of the sewer) but also through other points of water parting. These
correspond to streets that mainly constitute the surface drainage network of the area under
study. Therefore, the flow rate flowing through the sewer is lower than that calculated with
the rational method.

Our case study does not include the transfer of flows from the basin under study to
other basins through the secondary or subway storm drainage network, except for the flow
through the pipe connected to a sewer. This did not allow the influence of such transfers to
be included in the methodology.

5. Conclusions

In this study, we proposed a standardized methodology to design a storm drainage
system for a basin in Culiacan, México, using UAV, geographic information systems, and
hydrological methods. The urban basin was delineated using a high-resolution DEM
obtained from a photogrammetric process by using a UAV for image acquisition. The basin
had an area of 0.42 km2, a perimeter of 2.8 km, a length of 1.1 km, a slope of 0.02, and a
time of concentration of 11.56 min.

The probability distribution that best fitted the rainfall data was Gumbel of two
populations, and this was used to estimate the maximum daily precipitation for different
return periods. The high-resolution orthophoto was used to identify different land uses in
the study area, which were then used to calculate the runoff coefficients for each return
period. The intensity–duration–frequency curves were obtained using the isohyet curves
and Chen’s formula, and a design storm was defined with a return period of 10 years and a
duration of 11.56 min. The resulting rainfall intensity was 166.9 mm/h.

With the proposed methodology, it is possible to perform standardized hydrologic
studies to calculate design surface water flow rates in urban basins with little basic informa-
tion. Such standardization would facilitate the review of hydrologic studies by researchers
or authorities to analyze surface water flow or to authorize or deny construction permits.
The most appropriate methods existing in the literature were selected for urban areas
with scarce basic information, such as the case study area. This methodology includes the
delineation of urban basins with precision, considering the layout of roads and urban and
real estate storm drainage works. In addition, it emphasizes the study of urban surface
flow patterns with a basin vision instead of an urban development zone. This would allow
for the integration of results from sub-basins with the results for larger basins.

6. Future Research

The proposed methodology can be complemented with future research by including
the influence of flow rate transfers to other basins through subsurface urban storm drainage
systems. It is also appropriate to include the determination of the proportion of the total
flow rate flowing through the sewer relative to that flowing through the roads at other
points in the water parting of the basin under study. This could be performed by modeling
the flow over the roadways in the basin.

Finally, model calibration could be carried out by conducting a study to propose a
flow rate measurement network for the basin under study to compare theoretical results
with the practical data obtained in the field.
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