The Effect of Ultrasound and Pulsed Electric Field on the Osmotic Dehydration Process of Strawberries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Technological Methods
2.2.1. Pretreatment
Ultrasound Treatment Process (US)
Pulsed Electric Field Treatment Process (PEF)
2.2.2. Osmotic Dehydration Process (OD)
- m0—initial weight of strawberries before osmotic dehydration (kg),
- mt—final weight of strawberries after osmotic dehydration (kg),
- , —water and dry matter content before osmotic dehydration (kg/kg),
- , —water and dry matter content after osmotic dehydration (kg/kg).
2.3. Analitical Methoods
2.3.1. Water Content
2.3.2. Microbiological Analysis
2.3.3. Physical Properties (Color, Texture)
2.3.4. Determination of Bioactive Compounds
Extract Preparation
Total Polyphenols Content (TPC)
Total Anthocyanins Content (TAC)
Vitamin C Content
Antioxidant Activity with DPPH and ABTS Radicals (AA)
2.3.5. Sugars Content
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. The Influence of US or PEF Pretreatment on the Kinetics of the Strawberry Osmotic Dehydration Process
3.2. The Influence of US or PEF Pretreatment on the Water Content and Microbilogical Stability
3.3. The Influence of US or PEF Pretreatment on the Physical Properties (Color, Texture)
3.4. The Influence of US or PEF Pretreatment on the Bioactive Compounds (TPC, TAC, Vitamin C, Antioxidant Activity—AA)
3.5. The Influence of US or PEF Pretreatment on the Sugar Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghellam, M.; Zannou, O.; Pashazadeh, H.; Galanakis, C.M.; Aldawoud, T.M.S.; Ibrahim, S.A.; Koca, I. Optimization of Osmotic Dehydration of Autumn Olive Berries Using Response Surface Methodology. Foods 2021, 10, 1075. [Google Scholar] [CrossRef] [PubMed]
- Ciurzyńska, A.; Kowalska, H.; Czajkowska, K.; Lenart, A. Osmotic Dehydration in Production of Sustainable and Healthy Food. Trends Food Sci. Technol. 2016, 50, 186–192. [Google Scholar] [CrossRef]
- Cichowska, J.; Żubernik, J.; Czyżewski, J.; Kowalska, H.; Witrowa-Rajchert, D. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions. Molecules 2018, 23, 446. [Google Scholar] [CrossRef] [PubMed]
- Lech, K.; Michalska, A.; Wojdylo, A.; Nowicka, P.; Figiel, A. The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution. Molecules 2017, 22, 2246. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, M.; Ghasemkhani, N.; Moayedi, F. Osmotic Dehydration of Fruits in Food Industrial: A Review. Int. J. Biosci. 2014, 4, 42–57. [Google Scholar]
- Kowalska, J.; Kowalska, H.; Marzec, A.; Brzeziński, T.; Samborska, K.; Lenart, A. Dried Strawberries as a High Nutritional Value Fruit Snack. Food Sci. Biotechnol. 2018, 27, 799–807. [Google Scholar] [CrossRef]
- Tylewicz, U.; Nowacka, M.; Rybak, K.; Drozdzal, K.; Dalla Rosa, M.; Mozzon, M. Design of Healthy Snack Based on Kiwifruit. Molecules 2020, 25, 3309. [Google Scholar] [CrossRef]
- Galanakis, C.M. Functionality of Food Components and Emerging Technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef]
- Salehi, F. Recent Advances in the Ultrasound-Assisted Osmotic Dehydration of Agricultural Products: A Review. Food Biosci. 2023, 51, 102307. [Google Scholar] [CrossRef]
- Ye, L.; Zhu, X.; Liu, Y. Numerical Study on Dual-Frequency Ultrasonic Enhancing Cavitation Effect Based on Bubble Dynamic Evolution. Ultrason. Sonochem 2019, 59, 104744. [Google Scholar] [CrossRef]
- Ma, Y.; Yi, J.; Bi, J.; Zhao, Y.; Li, X.; Wu, X.; Du, Q. Effect of Ultrasound on Mass Transfer Kinetics and Phenolic Compounds of Apple Cubes during Osmotic Dehydration. LWT 2021, 151, 112186. [Google Scholar] [CrossRef]
- Siucińska, K.; Dyki, B.; Murgrabia, A.; Pieczywek, P.M.; Konopacka, D. Ocena Zmian Struktury Suszonej Tkanki Wiśni Poddanej Wstępnie Obróbce Osmotycznej Wspomaganej Ultradźwiękami. Żywność Nauka Technol. Jakość 2015, 22, 123–137. [Google Scholar] [CrossRef]
- Gürsul, I.; Gueven, A.; Grohmann, A.; Knorr, D. Pulsed Electric Fields on Phenylalanine Ammonia Lyase Activity of Tomato Cell Culture. J. Food Eng. 2016, 188, 66–76. [Google Scholar] [CrossRef]
- Krishnaveni, S.; Rajini, V. Cascaded Boost Converter-Based High-Voltage Pulse Generator for Pulsed Electric Field Applications. Arch. Electr. Eng. 2021, 70, 631–641. [Google Scholar] [CrossRef]
- Won, Y.C.; Min, S.C.; Lee, D.U. Accelerated Drying and Improved Color Properties of Red Pepper by Pretreatment of Pulsed Electric Fields. Dry. Technol. 2015, 33, 926–932. [Google Scholar] [CrossRef]
- Dermesonlouoglou, E.; Chalkia, A.; Dimopoulos, G.; Taoukis, P. Combined Effect of Pulsed Electric Field and Osmotic Dehydration Pre-Treatments on Mass Transfer and Quality of Air Dried Goji Berry. Innov. Food Sci. Emerg. Technol. 2018, 49, 106–115. [Google Scholar] [CrossRef]
- Nowacka, M.; Dadan, M.; Tylewicz, U. Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Appl. Sci. 2021, 11, 1269. [Google Scholar] [CrossRef]
- Katsimichas, A.; Dimopoulos, G.; Dermesonlouoglou, E.; Taoukis, P. Modelling and Evaluation of the Effect of Pulsed Electric Fields and High Pressure Processing Conditions on the Quality Parameters of Osmotically Dehydrated Tomatoes. Appl. Sci. 2023, 13, 11397. [Google Scholar] [CrossRef]
- Sanz-Puig, M.; Santos-Carvalho, L.; Cunha, L.M.; Pina-Pérez, M.C.; Martínez, A.; Rodrigo, D. Effect of Pulsed Electric Fields (PEF) Combined with Natural Antimicrobial by-Products against S. Typhimurium. Innov. Food Sci. Emerg. Technol. 2016, 37, 322–328. [Google Scholar] [CrossRef]
- Garner, A.L. Pulsed Electric Field Inactivation of Microorganisms: From Fundamental Biophysics to Synergistic Treatments. Appl. Microbiol. Biotechnol. 2019, 103, 7917–7929. [Google Scholar] [CrossRef]
- Pagnossa, J.P.; Rocchetti, G.; Ribeiro, A.C.; Piccoli, R.H.; Lucini, L. Ultrasound: Beneficial Biotechnological Aspects on Microorganisms-Mediated Processes. Curr. Opin. Food Sci. 2020, 31, 24–30. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, C. Combined Effects of Aqueous Chlorine Dioxide and Ultrasonic Treatments on Postharvest Storage Quality of Plum Fruit (Prunus salicina L.). Postharvest Biol. Technol. 2011, 61, 117–123. [Google Scholar] [CrossRef]
- Do Rosário, D.K.A.; da Silva Mutz, Y.; Peixoto, J.M.C.; Oliveira, S.B.S.; de Carvalho, R.V.; Carneiro, J.C.S.; de São José, J.F.B.; Bernardes, P.C. Ultrasound Improves Chemical Reduction of Natural Contaminant Microbiota and Salmonella enterica subsp. enterica on Strawberries. Int. J. Food Microbiol. 2017, 241, 23–29. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Bhandari, B.; Jiang, F. A Combination Treatment of Ultrasound and ε-Polylysine to Improve Microorganisms and Storage Quality of Fresh-Cut Lettuce. LWT 2019, 113, 108315. [Google Scholar] [CrossRef]
- Fan, K.; Wu, J.; Chen, L. Ultrasound and Its Combined Application in the Improvement of Microbial and Physicochemical Quality of Fruits and Vegetables: A Review. Ultrason. Sonochem 2021, 80, 105838. [Google Scholar] [CrossRef]
- Bai, X.; Campagnoli, M.; Butot, S.; Putallaz, T.; Michot, L.; Zuber, S. Inactivation by Osmotic Dehydration and Air Drying of Salmonella, Shiga Toxin-Producing Escherichia coli, Listeria Monocytogenes, Hepatitis A Virus and Selected Surrogates on Blueberries. Int. J. Food Microbiol. 2020, 320, 108522. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.; Bandral, J.D. Composition, Quality and Uses. In Strawberries; CRC Press: Boca Raton, FL, USA, 2019; pp. 23–30. [Google Scholar] [CrossRef]
- Ansar; Nazaruddin; Azis, A.D. New Frozen Product Development from Strawberries (Fragaria ananassa Duch.). Heliyon 2020, 6, e05118. [Google Scholar] [CrossRef]
- Haffner, K. Postharvest Quality and Processing of Strawberries. Acta Hortic. 2002, 567, 715–722. [Google Scholar] [CrossRef]
- Tompkins, N.J.; Murphy, T.T.; Furukawa, A.T. Furukawa Method for Processing Fresh Strawberries for Extended Shelf Life. U.S. Patent 5,616,354, 12 October 1995. [Google Scholar]
- Nowacka, M.; Dadan, M. Ultrasound-Assisted Drying of Food; Springer: Berlin/Heidelberg, Germany, 2022; pp. 93–112. [Google Scholar] [CrossRef]
- Dadan, M.; Barańska, A.; Matys, A.; Rybak, K.; Witrowa-Rajchert, D.; Wiktor, A.; Nowacka, M. Impact of Pulsed Electric Field Treatment on the Process Kinetics and Selected Properties of Air and Dehumidified Air-Dried Mushrooms. Processes 2023, 11, 2101. [Google Scholar] [CrossRef]
- Rząca, M.; Witrowa-Rajchert, D.; Tylewicz, U.; Rosa, M.D. Mass Exchange in Osmotic Dehydration Process of Kiwi Fruits. Żywność. Nauka. Technologia. Jakość 2009, 6, 140–149. [Google Scholar]
- Tylewicz, U.; Panarese, V.; Laghi, L.; Rocculi, P.; Nowacka, M.; Placucci, G.; Rosa, M.D. NMR and DSC Water Study during Osmotic Dehydration of Actinidia Deliciosa and Actinidia Chinensis Kiwifruit. Food Biophys. 2011, 6, 327–333. [Google Scholar] [CrossRef]
- Xu, B.; Chen, J.; Sylvain Tiliwa, E.; Yan, W.; Roknul Azam, S.M.; Yuan, J.; Wei, B.; Zhou, C.; Ma, H. Effect of Multi-Mode Dual-Frequency Ultrasound Pretreatment on the Vacuum Freeze-Drying Process and Quality Attributes of the Strawberry Slices. Ultrason. Sonochem 2021, 78, 105714. [Google Scholar] [CrossRef] [PubMed]
- Bogusz, R.; Pobiega, K.; Rybak, K.; Wiktor, A.; Parniakov, O.; Smetana, S.; Nowacka, M. The Pulsed Electric Field Treatment Effect on Drying Kinetics and Chosen Quality Aspects of Freeze-Dried Black Soldier Fly (Hermetia illucens) and Yellow Mealworm (Tenebrio Molitor) Larvae. Appl. Sci. 2023, 13, 10251. [Google Scholar] [CrossRef]
- Pobiega, K.; Przybył, J.L.; Żubernik, J.; Gniewosz, M. Prolonging the Shelf Life of Cherry Tomatoes by Pullulan Coating with Ethanol Extract of Propolis during Refrigerated Storage. Food Bioproc. Technol. 2020, 13, 1447–1461. [Google Scholar] [CrossRef]
- Samborska, K.; Eliasson, L.; Marzec, A.; Kowalska, J.; Piotrowski, D.; Lenart, A.; Kowalska, H. The Effect of Adding Berry Fruit Juice Concentrates and By-Product Extract to Sugar Solution on Osmotic Dehydration and Sensory Properties of Apples. J. Food Sci. Technol. 2019, 56, 1927–1938. [Google Scholar] [CrossRef]
- Kowalska, H.; Trusinska, M.; Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Nowacka, M. Shaping the Properties of Osmo-Dehydrated Strawberries in Fruit Juice Concentrates. Appl. Sci. 2023, 13, 2728. [Google Scholar] [CrossRef]
- Wiktor, A.; Chadzynska, M.; Rybak, K.; Dadan, M.; Witrowa-Rajchert, D.; Nowacka, M. The Influence of Polyols on the Process Kinetics and Bioactive Substance Content in Osmotic Dehydrated Organic Strawberries. Molecules 2022, 27, 1376. [Google Scholar] [CrossRef]
- Farias, C.A.A.; Moraes, D.P.; Neuenfeldt, N.H.; Zabot, G.L.; Emanuelli, T.; Barin, J.S.; Ballus, C.A.; Barcia, M.T. Microwave Hydrodiffusion and Gravity Model with a Unique Hydration Strategy for Exhaustive Extraction of Anthocyanins from Strawberries and Raspberries. Food Chem. 2022, 383, 132446. [Google Scholar] [CrossRef]
- Spínola, V.; Mendes, B.; Câmara, J.S.; Castilho, P.C. An Improved and Fast UHPLC-PDA Methodology for Determination of L-Ascorbic and Dehydroascorbic Acids in Fruits and Vegetables. Evaluation of Degradation Rate during Storage. Anal. Bioanal. Chem. 2012, 403, 1049–1058. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Yang, S.; Meng, Z.; Li, Y.; Chen, R.; Yang, Y.; Zhao, Z. Evaluation of Physiological Characteristics, Soluble Sugars, Organic Acids and Volatile Compounds in ‘Orin’ Apples (Malus domestica) at Different Ripening Stages. Molecules 2021, 26, 807. [Google Scholar] [CrossRef] [PubMed]
- Prithani, R.; Dash, K.K. Mass Transfer Modelling in Ultrasound Assisted Osmotic Dehydration of Kiwi Fruit. Innov. Food Sci. Emerg. Technol. 2020, 64, 102407. [Google Scholar] [CrossRef]
- Dellarosa, N.; Ragni, L.; Laghi, L.; Tylewicz, U.; Rocculi, P.; Dalla Rosa, M. Time Domain Nuclear Magnetic Resonance to Monitor Mass Transfer Mechanisms in Apple Tissue Promoted by Osmotic Dehydration Combined with Pulsed Electric Fields. Innov. Food Sci. Emerg. Technol. 2016, 37, 345–351. [Google Scholar] [CrossRef]
- Parniakov, O.; Lebovka, N.I.; Bals, O.; Vorobiev, E. Effect of Electric Field and Osmotic Pre-Treatments on Quality of Apples after Freezing–Thawing. Innov. Food Sci. Emerg. Technol. 2015, 29, 23–30. [Google Scholar] [CrossRef]
- Puértolas, E.; Luengo, E.; Álvarez, I.; Raso, J. Improving Mass Transfer to Soften Tissues by Pulsed Electric Fields: Fundamentals and Applications. Annu. Rev. Food Sci. Technol. 2012, 3, 263–282. [Google Scholar] [CrossRef]
- Ahmed, I.; Qazi, I.M.; Jamal, S. Developments in Osmotic Dehydration Technique for the Preservation of Fruits and Vegetables. Innov. Food Sci. Emerg. Technol. 2016, 34, 29–43. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, T.Z.; Fan, X.; Wu, J. Biochemical Degradation and Physical Migration of Polyphenolic Compounds in Osmotic Dehydrated Blueberries with Pulsed Electric Field and Thermal Pretreatments. Food Chem. 2018, 239, 1219–1225. [Google Scholar] [CrossRef]
- Bchir, B.; Bouaziz, M.A.; Ettaib, R.; Sebii, H.; Danthine, S.; Blecker, C.; Besbes, S.; Attia, H. Optimization of Ultrasound-Assisted Osmotic Dehydration of Pomegranate Seeds (Punica granatum L.) Using Response Surface Methodology. J. Food Process Preserv. 2020, 44, e14657. [Google Scholar] [CrossRef]
- Xin, Y.; Zhang, M.; Adhikari, B. Effect of Trehalose and Ultrasound-Assisted Osmotic Dehydration on the State of Water and Glass Transition Temperature of Broccoli (Brassica oleracea L. var. botrytis L.). J. Food Eng. 2013, 119, 640–647. [Google Scholar] [CrossRef]
- Nowacka, M.; Tylewicz, U.; Laghi, L.; Dalla Rosa, M.; Witrowa-Rajchert, D. Effect of Ultrasound Treatment on the Water State in Kiwifruit during Osmotic Dehydration. Food Chem. 2014, 144, 18–25. [Google Scholar] [CrossRef]
- Goula, A.M.; Kokolaki, M.; Daftsiou, E. Use of Ultrasound for Osmotic Dehydration. The Case of Potatoes. Food Bioprod. Process. 2017, 105, 157–170. [Google Scholar] [CrossRef]
- Macedo, L.L.; Corrêa, J.L.G.; da Silva Araújo, C.; Vimercati, W.C. Effect of Osmotic Agent and Vacuum Application on Mass Exchange and Qualitative Parameters of Osmotically Dehydrated Strawberries. J. Food Process Preserv. 2022, 46, e16621. [Google Scholar] [CrossRef]
- Tylewicz, U.; Tappi, S.; Genovese, J.; Mozzon, M.; Rocculi, P. Metabolic Response of Organic Strawberries and Kiwifruit Subjected to PEF Assisted-Osmotic Dehydration. Innov. Food Sci. Emerg. Technol. 2019, 56, 102190. [Google Scholar] [CrossRef]
- Gani, A.; Baba, W.N.; Ahmad, M.; Shah, U.; Khan, A.A.; Wani, I.A.; Masoodi, F.A.; Gani, A. Effect of Ultrasound Treatment on Physico-Chemical, Nutraceutical and Microbial Quality of Strawberry. LWT Food Sci. Technol. 2016, 66, 496–502. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.S.; Chemat, F. Degradation during Application of Ultrasound in Food Processing: A Review. Food Control 2013, 31, 593–606. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, M.; Devahastin, S.; Yu, D. Effect of Ultrasound-Assisted Osmotic Dehydration Pretreatments on Drying and Quality Characteristics of Pulsed Fluidized Bed Microwave Freeze-Dried Strawberries. LWT 2021, 145, 111300. [Google Scholar] [CrossRef]
- Paraskevopoulou, E.; Andreou, V.; Dermesonlouoglou, E.K.; Taoukis, P.S. Combined Effect of Pulsed Electric Field and Osmotic Dehydration Pretreatments on Mass Transfer and Quality of Air-Dried Pumpkin. J. Food Sci. 2022, 87, 4839–4853. [Google Scholar] [CrossRef]
- Rahaman, A.; Zeng, X.A.; Kumari, A.; Rafiq, M.; Siddeeg, A.; Manzoor, M.F.; Baloch, Z.; Ahmed, Z. Influence of Ultrasound-Assisted Osmotic Dehydration on Texture, Bioactive Compounds and Metabolites Analysis of Plum. Ultrason. Sonochem 2019, 58, 104643. [Google Scholar] [CrossRef]
- Pieczywek, P.M.; Kozioł, A.; Konopacka, D.; Cybulska, J.; Zdunek, A. Changes in Cell Wall Stiffness and Microstructure in Ultrasonically Treated Apple. J. Food Eng. 2017, 197, 1–8. [Google Scholar] [CrossRef]
- Dermesonlouoglou, E.; Paraskevopoulou, E.; Andreou, V.; Taoukis, P. Osmotic Dehydration for the Production of Novel Pumpkin Cut Products of Enhanced Nutritional Value and Sustainability. Appl. Sci. 2020, 10, 6225. [Google Scholar] [CrossRef]
- Taiwo, K.A.; Eshtiaghi, M.N.; Ade-Omowaye, B.I.O.; Knorr, D. Osmotic Dehydration of Strawberry Halves: Influence of Osmotic Agents and Pretreatment Methods on Mass Transfer and Product Characteristics. Int. J. Food Sci. Technol. 2003, 38, 693–707. [Google Scholar] [CrossRef]
- Tylewicz, U.; Tappi, S.; Mannozzi, C.; Romani, S.; Dellarosa, N.; Laghi, L.; Ragni, L.; Rocculi, P.; Dalla Rosa, M. Effect of Pulsed Electric Field (PEF) Pre-Treatment Coupled with Osmotic Dehydration on Physico-Chemical Characteristics of Organic Strawberries. J. Food Eng. 2017, 213, 2–9. [Google Scholar] [CrossRef]
- Barragán-Iglesias, J.; Rodríguez-Ramírez, J.; Sablani, S.S.; Méndez-Lagunas, L.L. Texture Analysis of Dried Papaya (Carica papaya L., cv. Maradol) Pretreated with Calcium and Osmotic Dehydration. Dry. Technol. 2019, 37, 906–919. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Tak, Y.; Olum, E.; Sujayasree, O.J.; Tekgül, Y.; Çalışkan Koç, G.; Kaur, M.; Nayi, P.; Kothakota, A.; Kumar, M. Advanced Osmotic Dehydration Techniques Combined with Emerging Drying Methods for Sustainable Food Production: Impact on Bioactive Components, Texture, Color, and Sensory Properties of Food. J. Texture Stud. 2022, 53, 737–762. [Google Scholar] [CrossRef]
- Sakooei-Vayghan, R.; Peighambardoust, S.H.; Hesari, J.; Peressini, D. Effects of Osmotic Dehydration (with and without Sonication) and Pectin-Based Coating Pretreatments on Functional Properties and Color of Hot-Air Dried Apricot Cubes. Food Chem. 2020, 311, 125978. [Google Scholar] [CrossRef]
- Ratnawati, R.; Prasetyaningrum, A.; Wardhani, D.H. Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan. Bull. Chem. React. Eng. Catal. 2016, 11, 48–58. [Google Scholar] [CrossRef]
- Wu, B.; Guo, X.; Guo, Y.; Ma, H.; Zhou, C. Enhancing Jackfruit Infrared Drying by Combining Ultrasound Treatments: Effect on Drying Characteristics, Quality Properties and Microstructure. Food Chem. 2021, 358, 129845. [Google Scholar] [CrossRef]
- Dermesonlouoglou, E.; Zachariou, I.; Andreou, V.; Taoukis, P.S. Effect of Pulsed Electric Fields on Mass Transfer and Quality of Osmotically Dehydrated Kiwifruit. Food Bioprod. Process. 2016, 100, 535–544. [Google Scholar] [CrossRef]
- Lawag, I.L.; Nolden, E.S.; Schaper, A.A.M.; Lim, L.Y.; Locher, C. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Appl. Sci. 2023, 13, 2135. [Google Scholar] [CrossRef]
- Macedo, L.L.; Corrêa, J.L.G.; da Silva Araújo, C.; Oliveira, D.d.S.; Teixeira, L.J.Q. Use of Coconut Sugar as an Alternative Agent in Osmotic Dehydration of Strawberries. J. Food Sci. 2023, 88, 3786–3806. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Jiang, K.; Kuang, Y.; Zeng, Y.; Cheng, X.; Liu, Y.; Wang, S.; Shen, W. Preharvest Application of Hydrogen Nanobubble Water Enhances Strawberry Flavor and Consumer Preferences. Food Chem. 2022, 377, 131953. [Google Scholar] [CrossRef] [PubMed]
- Ramallo, L.A.; Mascheroni, R.H. Rate of Water Loss and Sugar Uptake during the Osmotic Dehydration of Pineapple. Braz. Arch. Biol. Technol. 2005, 48, 761–770. [Google Scholar] [CrossRef]
- González-Pérez, J.E.; Ramírez-Corona, N.; López-Malo, A. Mass Transfer During Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non-Thermal Methods. Food Eng. Rev. 2021, 13, 344–374. [Google Scholar] [CrossRef]
- Zongo, P.A.; Khalloufi, S.; Mikhaylin, S.; Ratti, C. Pulsed Electric Field and Freeze-Thawing Pretreatments for Sugar Uptake Modulation during Osmotic Dehydration of Mango. Foods 2022, 11, 2551. [Google Scholar] [CrossRef] [PubMed]
Code | Description | OD Process | US Treatment Time [s] | PEF Treatment Energy [kJ/kg] |
---|---|---|---|---|
F | Fresh | - | - | - |
SA_x 1 | Osmotic dehydrated in 50% sucrose solution | + | - | - |
SA_PEF1_x | PEF-treated and osmotic dehydrated | + | - | 1 |
SA_PEF2_x | PEF-treated and osmotic dehydrated | + | - | 2.5 |
SA_US1_x | US-treated and osmotic dehydrated | + | 30 | - |
SA_US2_x | US-treated and osmotic dehydrated | + | 90 | - |
Sample | OD Time [h] | L* [-] | a* [-] | b* [-] | ΔE [-] |
---|---|---|---|---|---|
Fresh | - | 54.6 ± 3.4 cdef * | 25.3 ± 8.2 cde | 23.9 ± 8.0 def | - |
SA | 0.5 | 48.4 ± 5.1 abc | 28.4 ± 1.9 e | 26.7 ± 2.8 f | 9.3 ± 4.6 a |
1 | 48.0 ± 3.0 ab | 26.6 ± 5.2 de | 22.3 ± 3.0 cdef | 9.6 ± 2.6 a | |
2 | 55.8 ± 4.7 ef | 15.9 ± 6.5 a | 18.6 ± 4.0 bcd | 12.5 ± 4.7 ab | |
SA_PEF1 | 0.5 | 50.1 ± 4.1 abcde | 23.1 ± 2.7 bcde | 17.9 ± 1.3 bc | 13.9 ± 2.5 a |
1 | 54.6 ± 3.9 cdef | 20.4 ± 5.9 abcd | 15.4 ± 3.4 ab | 10.8 ± 4.9 a | |
2 | 56.6 ± 2.7 f | 19.6 ± 1.3 abcd | 13.5 ± 1.7 ab | 11.6 ± 2.0 ab | |
SA_PEF2 | 0.5 | 52.5 ± 3.8 bcdef | 17.4 ± 3.6 ab | 13.8 ± 1.6 ab | 18.0 ± 2.2 a |
1 | 53.1 ± 2.8 bcdef | 15.3 ± 1.6 a | 10.9 ± 1.6 a | 20.6 ± 1.8 b | |
2 | 55.4 ± 3.5 def | 18.1 ± 4.1 abc | 14.4 ± 1.3 ab | 12.0 ± 3.2 ab | |
SA_US1 | 0.5 | 48.3 ± 7.8 abc | 23.9 ± 6.8 bcde | 22.2 ± 4.9 cdef | 16.9 ± 5.0 ab |
1 | 51.4 ± 3.9 bcdef | 22.0 ± 5.9 abcde | 21.4 ± 3.0 cdef | 13.7 ± 2.7 a | |
2 | 48.0 ± 4.4 ab | 25.1 ± 4.2 cde | 22.3 ± 3.1 cdef | 14.1 ± 3.0 a | |
SA_US2 | 0.5 | 49.2 ± 4.3 abcd | 25.6 ± 4.1 de | 24.6 ± 3.9 ef | 13.3 ± 4.6 a |
1 | 44.4 ± 1.7 a | 27.8 ± 2.7 e | 25.1 ± 3.7 ef | 17.0 ± 2.3 ab | |
2 | 44.8 ± 3.0 a | 26.3 ± 4.3 de | 20.9 ± 3.2 cdef | 17.0 ± 2.4 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pobiega, K.; Matys, A.; Trusinska, M.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. The Effect of Ultrasound and Pulsed Electric Field on the Osmotic Dehydration Process of Strawberries. Appl. Sci. 2023, 13, 12335. https://doi.org/10.3390/app132212335
Pobiega K, Matys A, Trusinska M, Rybak K, Witrowa-Rajchert D, Nowacka M. The Effect of Ultrasound and Pulsed Electric Field on the Osmotic Dehydration Process of Strawberries. Applied Sciences. 2023; 13(22):12335. https://doi.org/10.3390/app132212335
Chicago/Turabian StylePobiega, Katarzyna, Aleksandra Matys, Magdalena Trusinska, Katarzyna Rybak, Dorota Witrowa-Rajchert, and Malgorzata Nowacka. 2023. "The Effect of Ultrasound and Pulsed Electric Field on the Osmotic Dehydration Process of Strawberries" Applied Sciences 13, no. 22: 12335. https://doi.org/10.3390/app132212335
APA StylePobiega, K., Matys, A., Trusinska, M., Rybak, K., Witrowa-Rajchert, D., & Nowacka, M. (2023). The Effect of Ultrasound and Pulsed Electric Field on the Osmotic Dehydration Process of Strawberries. Applied Sciences, 13(22), 12335. https://doi.org/10.3390/app132212335