
Citation: Cao, K.; Duan, Y. Mining

Top-k High Average-Utility

Sequential Patterns for Resource

Transformation. Appl. Sci. 2023, 13,

12340. https://doi.org/

10.3390/app132212340

Academic Editor: Keun Ho Ryu

Received: 19 September 2023

Revised: 17 October 2023

Accepted: 26 October 2023

Published: 15 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Mining Top-k High Average-Utility Sequential Patterns for
Resource Transformation
Kai Cao 1,2 and Yucong Duan 3,*

1 School of Cyberspace Security, Hainan University, Renmin Avenue 58, Haikou 570228, China;
ck@hainanu.edu.cn

2 School of Cryptology, Hainan University, Renmin Avenue 58, Haikou 570228, China
3 School of Computer Science and Technology, Hainan University, Renmin Avenue 58, Haikou 570228, China
* Correspondence: duanyucong@hotmail.com

Abstract: High-utility sequential pattern mining (HUSPM) helps researchers find all subsequences
that have high utility in a quantitative sequential database. The HUSPM approach appears to be
well suited for resource transformation in DIKWP graphs. However, all the extensions of a high-
utility sequential pattern (HUSP) also have a high utility that increases with its length. Therefore,
it is difficult to obtain diverse patterns of resources. The patterns that consist of many low-utility
items can also be a HUSP. In practice, such a long pattern is difficult to analyze. In addition, the
low-utility items do not always reflect the interestingness of association rules. High average-utility
pattern mining is considered a solution to extract more significant patterns by considering the
lengths of patterns. In this paper, we formulate the problem of top-k high average-utility sequential
pattern mining (HAUSPM) and propose a novel algorithm for resource transformation. We adopt
a projection mechanism to improve efficiency. We also adopt the sequence average-utility-raising
strategy to increase thresholds. We design the prefix extension average utility and the reduced
sequence average utility by incorporating the average utility into the utility upper bounds. The results
of our comparative experiments demonstrate that the proposed algorithm can achieve sufficiently
good performance.

Keywords: DIKW graph; resource transformation; sequential pattern; average utility; top-k;
pattern mining

1. Introduction

Various resources, data, and information are increasingly being collected from large-
scale intelligent devices in more diverse forms. However, some issues still need to be
addressed in the processes of storing and utilizing these data, such as data security and
processing efficiency. Some studies have redefined the concepts of the resources, as well as
their hierarchical relationships and resource modeling, and attempted to examine privacy
and security protection, model interpretability in data applications, and uncertainty or
loss of control issues in artificial intelligence from this perspective [1]. There are some
complex frameworks beyond the traditional DIKW pyramid that have been proposed to
address the complex interrelationships between data in the real world. A novel knowledge
graph system architecture, namely DIKW graphs, has been proposed, which is further
subdivided into data graphs (D), information graphs (I), knowledge graphs (K), and
wisdom graphs (W) [2]. The knowledge graphs describe the complex relationships between
entities and concepts in a structured form, and the conceptual approaches for defining
DataDIK, In f ormationDIK and KnowledgeDIK are described in Ref. [3].

Based on the theory of relation definition semantics of everything (RDXS) [4], an
extended metamodel was proposed in Ref. [5]. A conceptual framework is proposed
under the axioms and theorems system in the existence computation (EC) [4,6], defining
concepts such as “class/type” and “association”. From the perspective of RDXS, a semantic

Appl. Sci. 2023, 13, 12340. https://doi.org/10.3390/app132212340 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132212340
https://doi.org/10.3390/app132212340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0003-4707-4402
https://orcid.org/0000-0001-8417-892X
https://doi.org/10.3390/app132212340
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132212340?type=check_update&version=2

Appl. Sci. 2023, 13, 12340 2 of 27

transformation method has been proposed to convert relational semantics containing
discrete independent entities to entity semantics within RDFS [3]. The conceptualization
of “entity” and “relationship” have been proposed as forming the theoretical basis for
assessing semantic similarity or “sameness” between the compared elements [5,7].

The established DIKW graphs model has been expanded into the more comprehensive
DIKWP framework by adding proposed graphs (P) [8]. A proposed graph represents
the process of extracting meaning and value from raw data, containing the objectives
and intentions of artificial consciousness and driving the transformation between data,
information, knowledge, and wisdom. In the DIKWP model, data are raw facts and
numbers without processing. Information comprises data that have been given meaning
and insight by being interpreted and understood in a particular context. Knowledge is
a deeper understanding and familiarity with information, including the recognition of
patterns, associations, and relationships within information. Wisdom involves applying
knowledge, which involves synthesis, evaluation, and judgment to make wise decisions
and take prudent actions. The collected data needs to be transformed into information
through interpretation and understanding. The information is transformed into knowledge
through pattern recognition, trend analysis, or contextual understanding. Through deeper
analysis, classification, organization, or reasoning of information, a deep understanding of
knowledge is gained, which could be transformed into wisdom [9].

In typed DIKWP resources, information consists of associated data or data combina-
tions that contain specific semantic content that can be used for analysis and interpretation.
Data can be transformed into information through specific processing, such as analyzing
the frequency of data across structural, temporal, or spatial dimensions to capture their
associations. The associations between data, also represented as specific relationships in
a directed graph, indicate that an order exists between the data. If patterns of associated
or combined data are considered, sequence pattern mining (SPM) methods applicable
to sequence databases can satisfy the processing of transforming data into information.
From the information perspective, due to the existence of context, each data point may
have specific semantics. The frequency could reflect an internal feature of data, while
context-defined data requires another external evaluation criterion to distinguish each
other. The concept of utility can be used to distinguish data with different contexts. In
HUSPM, different utility functions can be defined to represent the external features of
data across different dimensions. Additionally, the transformation of data into information
does not necessarily always possess sufficient a priori knowledge, and therefore seeking
to select appropriate thresholds to optimize transformation efficiency proves challenging.
Top-k methods can achieve a goal-driven exploration by mapping user objectives to the
parameter k.

SPM has found applications in web clickstream mining [10] and consumer behavior
analysis [11]. However, in the frequent-oriented framework, patterns are extracted based
solely on their support. Each of the items in a transaction has intrinsic value in the real
world, and the value is unique. This frequent-oriented framework fails to consider the
intrinsic value of individual items and does not capture the uniqueness of patterns. As is
well known, the main task of retail business is to make more profits than sales. To overcome
this problem, the relative importance of items was considered [12,13]. By incorporating
the concept of utility, high-utility pattern mining (HUPM) [14] was introduced within
a utility-oriented framework [15,16]. HUPM focuses on discovering patterns with high
utility values in non-binary databases [17,18]. The utility value of an item is determined by
multiplying its internal utility (which represents its quantity) by its external utility (which
represents its unique value).

Sequential patterns based on pattern frequency do not always correspond to the
purpose of analysis, such as selling quantity and profit. Therefore, the SPM methods do not
always provide sufficient information to support the decisions of stakeholders. The obvious
contrast is between luxury goods and everyday supplies. Since each item in the sequential
database is accompanied by a timestamp, traditional high-utility itemset mining (HUIM)

Appl. Sci. 2023, 13, 12340 3 of 27

methods are unable to effectively address this aspect. To tackle this issue, HUSPM [19,20]
has been developed in the field of knowledge discovery in databases. It could be applied
to various scenarios [21].

In HUSPMA, a quantitative sequence database has been defined to represent the
relative importance of patterns. In the context of retail business, the number of intelligent
appliances or batteries purchased by a customer in a single visit is considered to be internal
utility, reflecting the number of item occurrences. The unit profit of intelligent appliances
or batteries is generally defined as external utility, indicating the relative importance of
the item. The main task of HUSPM is to discover high-utility sequential patterns (HUSPs),
which are subsequences with high utility values. Researchers have proposed many efficient
algorithms for mining HUSPs [22,23], such as designing efficient pruning strategies and
incorporating novel data structures. Notably, compared to SPM and HUIM, HUSPM takes
into account the chronological ordering of items and their associated utility values [24].
Although HUSPM can overcome some disadvantages of SPM and HUIM, there are still
some typical challenging problems in HUSPM.

The utility of a combined pattern is determined by the sum of the utilities of subpat-
terns constituting this combined pattern. Therefore, as the number of combined subpatterns
increases, the length of the pattern also increases, leading to a higher utility value. This
implies that a longer pattern has an advantage over a shorter one in terms of being a
high-utility pattern. As the pattern length increases and the number of subpatterns grows,
the association rules between these patterns become more difficult to comprehend [25].
Therefore, Hong et al. proposed the average-utility measurement, which offers a more
comprehensive assessment of itemset utility [26]. The high average-utility itemset (HAUI)
mining approach [27,28] is designed to extract patterns with high average-utility value
by considering both the utility of the pattern and its length [28,29]. In this way, it is more
objective to assess the utility of the pattern. A high average-utility pattern indicates that
each item comprising the pattern has a high utility value. Consequently, patterns with long
lengths and high utilities may not always qualify as high average-utility patterns.

There is another limitation in HAUI and HUSP mining algorithms. In most cases, it is
challenging to specify an appropriate value for the minimum utility threshold that ensures
sufficient but not excessive itemset mining, particularly when they are unfamiliar with
the features of the database. For instance, when designing a general model or analyzing a
new database, users are often unaware of the distribution of utilities and the total number
of sequences, so they must try different threshold parameters and execute the algorithm
multiple times until they obtain a desirable result. If the threshold is specified too low, many
HUSPs with redundant and unimportant information may be discovered. Conversely, if the
threshold value is set too high, the number of captured HUSPs may not provide sufficient
information. Additionally, fine-tuning the threshold extraction process is time-consuming.
However, in many practical applications, stakeholders are more interested in identifying
the top profitable patterns rather than hundreds of thousands of results. The top-k HUSPM
was proposed to handle this problem [30], which was desired to specify the number of
patterns instead of the minimum utility threshold. It draws inspiration from the top-k
HUIM [31]and top-k SPM [32]. The objective of the top-k HUSPM is to select patterns with
the top-k highest utilities from a sequential database.

Some preliminary studies [33] were conducted to capture top-k HAUI in the transac-
tion database. However, research in this area is still in its early stages, and these strategies
are not applicable to sequential databases. The approach proposed by Thilagu et al. was
limited to specific cases where each item can occur only once [34]. Tin et al. [35] proposed
the algorithm EHAUSM to identify HAUSP. However, there is a gap between the over-
estimation of utility, which is calculated by the total sequence utility or the maximum
item utility, and the actual utility, with the former being consistently higher. Furthermore,
the proposed upper bounds, which are similar to those in HAUPM, require a set number
of items with the highest utility in the rest of the sequence through multiple sorting. To
address these challenges and to improve performance and scalability, we formulate the

Appl. Sci. 2023, 13, 12340 4 of 27

problem of top-k HAUSPM and propose a novel algorithm named TKAUS. The main
contributions could be summarized as follows:

• By considering the HUSPM and the HAUIM, the concept of TKAUS is addressed,
and the problem of top-k HAUSPM is formulated. To quickly increase the mini-
mum average-utility threshold, we investigate the sequence average-utility-raising
(SAUR) strategy.

• Based on the widely accepted definition of high average utility, a novel algorithm with
utility upper bounds and corresponding pruning strategies is designed for mining
HAUSP. The proposed approach not only takes into account the actual utility of
prefixes but also avoids extra sorting processing.

• Comprehensive experiments demonstrate that the proposed algorithm TKAUS per-
forms excellently for top-k HAUSPM, particularly in terms of execution time, un-
promising candidate filtering, memory usage, and scalability.

The remainder of this paper is organized as follows. Section 2 briefly reviews various
related work. In Section 3, we provide definitions and formulate the top-k HAUSPM
problem. Section 4 presents our proposed TKAUS algorithm, including data structures and
several strategies. Section 5 presents experimental results and evaluates the performance
of our proposed algorithm. Finally, in Section 6, we provide a summary and discuss
future work.

2. Related Work
2.1. Sequential Pattern Mining

SPM was defined by Agrawal and Srikant in 1995. The proposed algorithm AprioriAll
was applied to analyze customer consumption records [36]. Later, repeated database
traversal in the GSP method [11] incurred very high computational costs. According to
the combinatorial property, SPADE [37] and SPAM [38] resolved the repetitive scanning
problem, but when handling dense datasets, they posed a combinatorial explosion. Yang
et al. [39] presented LAPIN and how to judge whether a frequent sequential pattern can be
extended. Han et al. presented FreeSpan [40] and PrefixSpan [41] to resolve the problem
that the Apriori-based SPM algorithms generate many unpromising candidates by utilizing
projection strategies. However, the pattern-growth SPM algorithms that built projected
databases recursively also incurred high computational costs. To avoid storing unpromising
sequences, DISC-all [42] was proposed based on early pruning strategies.

2.2. High-Utility Sequential Pattern Mining

The frequency-oriented pattern mining framework does not directly correlate with
significance in any circumstances. The mining framework of HUSPs considers both external
and internal utilities and establishes the relationship between frequency and significance in
the real world. Ahmed et al. [43] introduced the concept of utility into SPM and defined
HUSPM. They proposed two two-phase algorithms: Utility Span (US) and Utility Level
(UL). US utilizes a pattern-growth method without generating candidates, while UL adopts
a level-wise approach to mine HUSPs. To avoid additional scans for identifying HUSPs,
another efficient algorithm, UM-Span [21], utilizes a projected database-based approach.
Yin et al. [20] presented the method USpan, which adopts an efficient prefixed tree structure,
namely lexicographic quantitative sequence tree (LQS-tree), to avoid multiple unnecessary
database scans. In LQS-tree, each node only stores the necessary information of the
candidate sequence in a matrix, and its child nodes can be extended through one extension
operation. Two pruning strategies were utilized: SWU and SPU. The former SWU removed
unpromising items, and the latter SPU stopped USpan traversing deeper nodes. Lan
et al. [44] presented an efficient projection-based HUSPM algorithm named PHUS, which
utilizes the sequence-utility upper bound (SUUB) model and the maximum utility measure.
More accurate upper bounds of candidate utilities could be obtained with the effective
projection-based pruning strategy. The method HuspExt [45] used the cumulate rest of
match (CRoM) as a tighter upper bound to eliminate candidate items early. To reduce

Appl. Sci. 2023, 13, 12340 5 of 27

the search space, Wang et al. [46] designed two tighter utility upper bounds, reduced
sequence utility (RSU) and prefix extension utility (PEU), in algorithm HUS-Span to remove
unpromising patterns early. ProUM [23] utilizes the utility-array as the projection of the
original database for multiple scanning based on the prefix sequences. HUSP-ULL [24]
designs a quite compact data structure, which was named UL-list, to store information
about patterns. In contrast to existing data structures, these compressed store and index
structures are used to calculate the utility efficiently.

2.3. Top-k High-Utility Sequential Pattern Mining

To extract the required information without using a minimum threshold, Yin et al. [30]
designed a projection-based top-k HUSPM algorithm called TKHUS-Span. TUS, a method
proposed by Yin et al. [30], is the first algorithm for top-k HUSPM and extends their
preliminary work on USpan to discover patterns without a minimum threshold. Wang
et al. [46] further developed three versions of the algorithm TKHUS-Span. All of them
are based on the algorithm HUS-Span. Among these, the BFS strategy-based version of
TKHUS-Span performs better than other versions. With limited memory space, the hybrid
search strategy-based version demonstrates the best performance.

TU-SEQ was introduced by Zihayat et al. [47] for extracting the top-k gene regulation-
related patterns over time from a microarray dataset. It utilizes the vertical data structure
ItemUtilList and pre-evaluation using the genes and sequences (PES) strategy. Zhang
et al. [48] formulated the problem of top-k HUSPM and proposed the TKUS algorithm for
sufficiently good performance.

2.4. High Average-Utility Pattern Mining

The calculation of average utility in HAUIM algorithms takes into account the length
of pattern. This approach helps to identify short patterns that may be missed by traditional
algorithms. Two-phase average-utility (TPAU) mining [26,49] is the first HAUI mining
algorithm. The average utility value does not satisfy the downward closure property.
To address this limitation, TPAU proposed an average-utility upper bound auub, which
maintains the property, because the value of auub is always larger than the average utility of
pattern. The auub is utilized to improve mining performance by pruning. However, TPAU
is bound by repeated scanning of the original database and generating a huge amount of
candidate patterns.

HAUI-Growth [50] was designed to limit the generation of candidates and to overcome
multiple scanning. The average utility of each itemset was maintained as an array in the
node of a HAUI-tree structure. Another approach, PBAU, proposed by Lan et al. [28], is
the projection-based mining algorithm, which uses index tables to reveal HAUIs. They
used a tree structure to reduce the number of scans in the original database [27]. An
enumeration tree structure was used in the algorithm HAUI-Tree [51]. However, the
number of candidates generated by these tree-based methods is still high.

With the list structure, MHAI [52] and HAUI-Miner [53] adopted the transaction-
maximum utility and the maximum average utility as the utility upper bound to prune
unpromising patterns, respectively. EHAUPM [54] proposed a revised tighter upper
bound model (rtub) and looser upper bound (lub) and presented MAU-list based on
a list structure. In the transaction database, to reduce the unpromising patterns, TUB-
HAUPM [55] proposed maximum following utility upper bound (mfuub), transaction-rival
tight upper bound (trtub), and top-k revised transaction-maximum utility upper bound
(krtmuub). By considering both vertical information of other transactions and horizontal
information in the same transaction, VMHAUI [56] suggested three upper bounds by
introducing vertical approaches [57]. By employing tighter upper bounds, the algorithm
can hugely reduce the search space. Considering the protection of sensitive content, Le
et al. designed an algorithm H-FHAUI [58] with a novel vertical utility list structure,
TIU-VIU, for updating upper bounds quickly. Kim et al. [59] employed the maximum

Appl. Sci. 2023, 13, 12340 6 of 27

remaining average-utility upper bound and tight maximum average-utility upper bound
and proposed a HAUPM approach with the list-based structure.

It is a limitation of HUSPM that the utility function tends to be biased toward discover-
ing longer patterns. Based on the pattern-growth approach, Thilagu et al. [34] proposed an
approach to reveal the effect of pattern length in a web traversal sequence. The proposed
average transaction-weighted utility (atwu) used the high average-utility concept, which
was introduced in Ref. [31]. The search space was divided by the transaction-weighted
utility (TWU) of each pattern, and the number of candidates was reduced. However, each
item can occur more than once in most cases. This approach proposed by Thilagu et al. was
inapplicable to the general case [35]. Tin et al. [35] proposed anti-monotonic upper bound
(AMUB), bi-directional upper bound (BiUB), and four pruning strategies in algorithm
EHAUSM. Three weak upper bounds, twaub, rmwub, and tmwub, were proposed to prune
all proper extensions of a sequence early.

Moreover, Lin et al. [60] considered the size of a sequence and proposed a framework
of SPM for finding potential HAUSPs from the uncertain dataset. Wu et al. proposed
HAOP-Miner [61] and HANP-Miner [62] to discover the sequential pattern under the
one-off condition and nonoverlapping sequential pattern. The reverse filling (Rf) algorithm
was designed to avoid creating redundant nodes and to calculate the support effectively.
The simplified Nettree structure was adopted in depth-first search and backtracking strate-
gies [62] to reduce the algorithm complexity of HANP-Miner. Then, Tin et al. proposed
C-FHAUSPM [63], which satisfies monotonic and anti-monotonic constraints, to find con-
strained HAUSPs. To consider the average cost for mining, Tin et al. formalized the
FLCHUSM problem and proposed algorithm FLCHUSPM [64] with an upper bound on
average utility and a lower bound on average cost.

The average-utility measure of the quantitative sequence is neither anti-monotonic nor
monotonic. Generally, designing an upper bound that holds for the anti-monotone property
is an effective approach to reducing the search space of the algorithm. Some of these upper
bounds were calculated by the total sequence utility, including the ATWU and AMUB.
Therefore, there is a gap between the actual value and the upper bound, and the wider this
gap is, the more candidate patterns are generated. Some other upper bounds must sort
items by their utilities for each computation, e.g., BiUB and tmwub. The proposed approach
designs upper bounds by considering the actual utility of prefixes such as krtmuun and
rmwub. There are no extra sorting costs.

3. Mining Top-k High Average-Utility Pattern

In this section, several definitions are introduced to explain the framework of TKAUS.
Table 1 shows an example.

Consider a set of distinct items I = {i1, i2, · · · , iM}, X is a nonempty subset of I,
denoted as X ⊆ I, and |X| represents the size of X. A sequence S : 〈X1, X2, · · · , Xm〉 is an
ordered list of itemsets, where Xk ⊆ I, (1 6 k 6 m). The length of S : 〈X1, X2, · · · , Xm〉 is
calculated as l = ∑m

k=1 |Xk|, and is called l-sequence. The size of S : 〈X1, X2, · · · , Xm〉 is m.
Assume that there exists integers 1 6 j1 < j2 < · · · < jn 6 m such that Xv

′ ⊆ Xjv , (1 6 v 6
n), the sequence S : 〈X1, X2, · · · , Xm〉 has a subsequence s : 〈X1

′, X2
′, · · · , Xn

′〉, notated as
S ⊇ s or s ⊆ S.

The definitions of the quantitative sequence and the quantitative sequence database
have been proposed in [48]. A quantitative sequence database consists of quantitative
sequences (q-sequences). The q-sequence is an ordered list of the quantitative itemset
(q-itemset). The quantitative item (q-item) is expressed in the form of (item, quantity) and
denoted as (i,q). In the tuple, the quantity of the item is represented by the internal utility
value of the item. In Table 1, Q1 is an identifier of q-sequence, and it is unique.

Appl. Sci. 2023, 13, 12340 7 of 27

Table 1. An illustration of the quantitative sequence database.

SID Q-Sequence

Q1 〈{(a : 4)(c : 2)}, {(e : 3)(f : 1)}, {(a : 1)(b : 1)}, {(d : 4)(g : 1)}, {(a : 1)(c : 3)(e : 1)(f : 2)}, {(b : 1)(d : 2)}〉
Q2 〈{(a : 3)(d : 2)}, {(a : 5)(f : 1)}, {(c : 1)(d : 3)(e : 1)(g : 2)}, {(b : 2)}〉
Q3 〈{(b : 2)(c : 1)}, {(a : 1)(b : 1)(e : 1)}, {(a : 2)(b : 2)(f : 2)}, {(g : 3)}〉
Q4 〈{(c : 1)(e : 1)}, {(a : 1)(b : 3)(g : 4)}, {(f : 2)}〉
Q5 〈{(c : 1)(f : 2)}, {(a : 1)(b : 1)(f : 1)(g : 3)}, {(b : 1)(e : 1)(g : 3)}〉

Definition 1 (Q-item Utility). Consider a q-item (i:q) in the jth q-itemset within a q-sequence
Q, the q-item utility is denoted as u(i, j, Q) and is calculated as follows:

u(i, j, Q) = q(i, j, Q)× eu(i)

where eu(i) is the external utility of the item i, and q(i, j, Q) is the internal utility of the item i and
is a quantitative measure for the q-item.

Definition 2 (Q-itemset Utility). Let Y : {(i1:q1)(i2:q2) · · · (in:qn)} is a q-itemset and is the
jth q-itemset in a q-sequence Q. The q-itemset utility is the sum of the q-item utilities. It is denoted
as u(Y, j, Q) and is calculated as follows:

u(Y, j, Q) =
n

∑
u=1

q(iu, j, Q)× eu(iu)

The profit of the item as the external utility values is provided in Table 2. For ex-
ample, as Definition 1, consider the 3rd q-itemset of Q2 in Table 1, the utility of q-item
d is q(d, 3, Q2) × eu(d) = 3× 2 = 6. Then, we have the utility of the 3rd q-itemset in
Q2 is calculated as u(Y, 3, Q2) = u(c, 3, Q2) + u(d, 3, Q2) + u(e, 3, Q2) + u(g, 3, Q2) =
8 + 6 + 7 + 8 = 29. D represents the q-sequence database in Table 1, and the overall
utility of D is u(D) = 123 + 56 + 63 + 59 + 73 = 374.

Table 2. The item profit table.

Item a b c d e f g

Profit 1 3 8 2 7 9 4

Definition 3 (Q-itemset Average Utility). Let Y:{(i1:q1)(i2:q2) · · · (in:qn)} is the jth q-itemset
in a q-sequence Q. Its average utility is denoted as au(Y, j, Q) and is calculated as follows:

au(Y, j, Q) =
∑n

u=1 q(iu, j, Q)× eu(iu)
|Y| =

∑n
u=1 q(iu, j, Q)× eu(iu)

n

For instance, in Table 1, {a, c} is the 1st q-itemset in Q1, the average utility of {a, c} is
calculated as au({a, c}, 1, Q1) =

(4×1)+(2×8)
2 = 10.

Definition 4 (Match). Consider the q-itemset Y:{(i′1:q1)(i′2:q2) · · · (i′n:qn)} and the itemset
X:{i1, i2, · · · , im}, if and only if n = m such that i′k = ik, (1 6 k 6 m = n), we say
that X matches Y or Y matches X, denoted as X ∼ Y or Y ∼ X. Similarly, the q-sequence
Q:〈Y1, Y2, · · · , Yn〉 matches the sequence S:〈X1, X2, · · · , Xm〉, denoted as S ∼ Q or Q ∼ S, if
and only if n = m such that Yk ∼ Xk, (1 6 k 6 m = n).

Definition 5 (Contain). Consider the q-itemset Y:{(i′1:q1)(i′2:q2) · · · (i′n:qn)} and the itemset
X:{i1, i2, · · · , im}, we say that Y contains X or X is contained in Y, denoted as Y w X or X v Y,
if and only if X is a subset of itemset and the itemset matches the q-itemset Y.

Appl. Sci. 2023, 13, 12340 8 of 27

For instance, from Tables 1 and 2, the itemset {a, b, f } matches the q-itemset {(a:2), (b:2),
(f :2)} in the sequence Q3. In Q5, the q-itemset {(a:1), (b:1), (f :1), (g:3)} contains the itemset
{a, b, f }.

Definition 6 (Instance of Q-sequence). Consider the q-sequence Q:〈Y1, Y2, · · · , Yn〉 and the
sequence S:〈X1, X2, · · · , Xm〉, where n > m, we say that there is an instance of S at position
p:〈j1, j2, · · · , jm〉 in Q, if and only if there exists positive integers 1 6 j1 < j2 < · · · < jm 6 n, so
that Xv v Yjv , (1 6 v 6 m 6 n). Also, we can say Q contains S, denoted as S v Q.

For instance, there are two instances of sequence 〈{a, b}, {g}〉, 〈{(a:1), (b:1)}, {(g:3)}〉
and 〈{(a:2), (b:2)}, {(g:3)}〉, at positions 〈2, 4〉 and 〈3, 4〉 in Q3. Therefore, we could also say
the q-sequence 〈{(a:1), (b:1)}, {(g:3)}〉 or 〈{(a:2), (b:2)}, {(g:3)}〉 contains the sequence
〈{a, b}, {g}〉.

Definition 7 (Sequence Utility). Assume that the q-sequence 〈Yj1 , Yj2 , · · · , Yjm〉 is an instance
of sequence S:〈X1, X2, · · · , Xm〉 at position p:〈j1, j2, · · · , jm〉 in Q:〈Y1, Y2, · · · , Yn〉. The sequence
utility of S in Q is the sum of the utilities of the q-items within S, denoted as u(S, p, Q) and
calculated as follows:

u(S, p, Q) =
m

∑
v=1

u(Xv, jv, Q) =
m

∑
v=1

u(Yjv , jv, Q)

Generally, a sequence appears in one q-sequence more than once. Given P(S, Q)
denote the set of all the positions of S in Q. The sequence utility of S in Q is the maximum
value of instance utility at different positions and is defined as follows:

u(S, Q) = max
p∈P(S,Q)

u(S, p, Q)

Assume that the sequence S has instances within different Q in q-sequence database
D. The sequence utility of S in D can be defined as follows:

u(S) = ∑
Q∈D∧SvQ

u(S, Q)

For example, in Table 1, Q1 has an instance of 〈{e, f }, {g}〉 at position: 〈2, 4〉. Then, we
can calculate u(〈{e, f }, {g}〉, 〈2, 4〉, Q1) = 31 + 16 = 47. For another case, in Table 1, Q1 has
five instances of s1:〈a, d〉, P(s1, Q1) = {〈1, 4〉, 〈1, 6〉, 〈3, 4〉, 〈3, 6〉, 〈5, 6〉}, u(s1, 〈1, 4〉, Q1) =
4 + 8 = 12, u(s1, 〈1, 6〉, Q1) = 4 + 4 = 8, u(s1, 〈3, 4〉, Q1) = 1 + 8 = 9, u(s1, 〈3, 6〉, Q1) =
1 + 4 = 5, and u(s1, 〈5, 6〉, Q1) = 1 + 4 = 5. The utility of the sequence s1 in Q1 is
u(s1, Q1) = max{12, 8, 9, 5, 5} = 12, and u(s1) = u(s1, Q1) + u(s1, Q2) = 12 + 11 = 23.

Definition 8 (Sequence Average Utility). Consider the q-sequence 〈Yj1 , Yj2 , · · · , Yjm〉 is an
instance of sequence S:〈X1, X2, · · · , Xm〉 at position p:〈j1, j2, · · · , jm〉 in Q:〈Y1, Y2, · · · , Yn〉.
The sequence average utility of S in Q is denoted as au(S, P, Q) and is calculated as follow:

au(S, p, Q) =
u(S, P, Q)

|S| =
∑m

v=1 u(Xv, jv, Q)

∑m
v=1 |Xv|

=
∑m

v=1 u(Yjv , jv, Q)

∑m
v=1 |Yjv |

In this paper, we define the sequence average utility based on the concept of average
utility, which was defined as the pattern utility divided by its length. For instance, the aver-
age utility of 〈{c, e}, { f }〉 at position 〈1, 3〉 in Q4 is au(〈{c, e}, { f }〉, 〈1, 3〉, Q4) =

15+9
3 = 8.

Appl. Sci. 2023, 13, 12340 9 of 27

Assume that the set of all the positions of instances of S in Q is P:〈p1, p2, · · · , pw〉
and is denoted as P(S, Q), the sequence average utility of S in Q is the maximum value at
different position and is defined as follows:

au(S, Q) =
u(S, Q)

|S| = max
p∈P(S,Q)

au(S, p, Q)

Assume that the sequence S has instances within different Q in q-sequence database
D. The average utility of S in D can be defined as follows:

au(S) =
u(S)
|S| = ∑

Q∈D∧SvQ
au(S, Q)

For instance, in Tables 1 and 2, the sequence average utility of s2:〈{c}, {a, b}, {g}〉 in
Q3 is au(s2, Q3) = max{au(s2, 〈1, 2, 4〉, Q3), au(s2, 〈1, 3, 4〉, Q3)} = max{6, 7} = 7, and in
the entire database D, is au(s2) = au(s2, Q1) + au(s2, Q3) + au(s2, Q5) = 6 + 7 + 6 = 19.

Definition 9 (Top-k High Average-Utility Sequential Pattern). We define a sequence S as
the top-k high average-utility sequence in a q-sequence database if there exist fewer than k sequences
whose average-utility value is higher than au(S).

Problem Statement. The goal of conventional HUSPM is to find HUSPs in a sequence
database with a user-specified utility threshold [46]. Zhang et al. [48] proposed that the
threshold of top-k HUSPM can be represented as the minimum utility value of the complete
set of top-k HUSPs, which is easily accessible.

The utility of pattern is affected by its length [24]. In addition, mining representative k
patterns is a lossless compression of patterns [65]. Therefore, the drawback of HUPM is
more prominent in top-k HUSPM.

4. Proposed TKAUS Algorithm

The fundamental technologies require multiple original database scans for the can-
didates. Multiple scanning also exists in utility calculation. High cost is a main problem.
The projection and local search mechanism have been proposed to address the problem by
constructing a projected database to keep the necessary information. Elimination of the
unpromising items earlier also can greatly reduce the size of search space.

4.1. Data Structure and Projection Strategies

In the framework of the proposed algorithm, the mining process first scans the given
q-sequence database once. The lexicographic sequence tree as the complete search space
has been used in SPM and HUSPM [38]. Then, USpan [19] presented the lexicographic
quantitative sequence tree (LQS-tree) structure. Each node of this LQS-tree structure is
associated with a candidate, which consists of the q-sequence and its utility. The root of
this tree is null. All child nodes are arranged in ascending order, for instance, alphabetical
order. The child node is a prefix-based extension of its parent node. There are two kinds
of extension positions for the appending item in a sequence. One is the end of the last
itemset. The other position is after the last itemset as a new itemset. Both I-Extension and S-
Extension are operations of “extension” to generate new sequences. For example, consider a
l-sequence s and an appending item i, the size of s is k, I-Extension of sequence is to append
item i to the end of last itemset in sequence s, notated as s⊕ i, the new generate sequence
is (l + 1)-sequence s′, the length of s′ is (l + 1) and the size of s′ still is k. S-Extension of
sequence is to let itemset i as a new one {i} and append to the end of sequence s, notated as
s⊗ i. In this way, the newly generated sequence also is (l + 1)-sequence s′ which is (l + 1)
in length, but the size of s′ is (k + 1).

In some cases, the instances of the sequence S may appear more than one position,
and the set of positions of instances is denoted as P:{p1, p2, · · · , pw}. Zhang et al. [48]

Appl. Sci. 2023, 13, 12340 10 of 27

presented the position of the last itemset in instance is extension position. In q-sequence
Q, the sequence utility of S is the maximum utility of all instances. The last item within
instance is the extension item. The remaining sequence is a subsequence from the item after
the extension item to the end of Q, which is denoted as rs(S, p, Q). Yin et al. defined the
remaining utility of S at the extension position p in Q as urs(S, p, Q) [20].

urs(S, p, Q) = ∑
i′∈Q∧i′�S

u(i′)

where i′ � S indicates that the position of item i′ is after the extension position p. For
instance, from Tables 1 and 2, the sequence 〈{ f }, {g}〉 has instances at position 〈1, 3〉, 〈2, 3〉
and 〈1, 2〉 in Q5.The extension position of these instances are 〈3〉 and 〈2〉, and the item g is
the extension item. Thus, the remaining utility of 〈{ f }, {g}〉 at extension position 〈3〉 in Q5
is urs(〈 f , g〉, 〈3〉, Q5) = 0, and at extension position 〈2〉 is urs(〈 f , g〉, 〈2〉, Q5) = 17.

To calculate all the multiple instances in a q-sequence is time-consuming. In [46,48], the
projected database was utilized to keep the necessary information in sequence. By adopting
the utility-chain structure, these studies reduce calculation costs. The projected database of
a sequence is composed of an information table and a utility chain. The utility chain in the
structure consists of two parts: a head table and a utility list. The utility-chain structure
gives the auxiliary information to facilitate pruning search space in HUS-Span [46].

In this work, the prefix extension average utility (abbreviated as PEAU) of the sequence is
stored in the information table as a key piece. In addition to the maximum utility of all instances
and the utility of remaining sequence, the utility list also contains the length of instance and
remaining sequence. More details about PEAU are described in the subsequent section.

In the structure, the size of the utility list corresponds with the number of extension
positions of the instance in the q-sequence. In the 1st field, the unique identity of itemset,
which corresponds to the extension position is abbreviated as ItemsetID. In the 2nd and 3rd
fields, Utility and RestUtility, are the average-utility value of the instance and the remaining
sequence utility at this extension position. In the 4th and 5th fields are length of the instance
and remaining sequence, which are notated as Length and RestLength, respectively.

The above projection mechanism constructs a precise and complete projected database
to avoid multiple scanning for the original database. In the subsequent section, the algo-
rithm adopts various pruning strategies to further limit scanning space.

For instance, Figure 1 shows the projected database of s3: 〈{e}, {b}〉. There are four rows
on the head table. It shows s3 is contained in Q1, Q2, Q3 and Q4. The utility chain corresponds
to the head table. The first line in the utility chain contains complete information about two
extension positions in Q1 for the following process. Therefore, the TKAUS algorithm avoids
multiple scanning for the whole original database by the projection mechanism.

Figure 1. An illustration of the projected database.

Appl. Sci. 2023, 13, 12340 11 of 27

4.2. Sequential Average-Utility-Raising Strategies

The performance of the algorithm is limited due to more candidates being generated
in the process of threshold increasing from a lower value. The sequence average-utility-
raising (abbreviated as SAUR) strategy, which increases the rise rate of the minimum utility
threshold, was proposed in TKAUS.

Definition 10 (SAUR Strategy). Assume that TKList = {s1, s2, · · · , sn} is the set of sequences
contained in the q-sequence database D. Let aui denote the ith highest average-utility value in
TKList. Before the mining task, we can safely increase the minimum average-utility threshold,
which is a variable denoted as minau, to auk, where k is the desired input number of patterns.

Proof. Let minau is the minimum utility threshold of the mining process. When the variable
minau increases to auk from 0, the set of HAUSPs, denoted as Hminau, is reduced from H0
to Hauk (H0 ⊇ Hauk), and all the sequences whose average utility is not lower than auk
must be in the set of Hauk . According to the definition of top-k HAUSP, there are more than
k sequences in H0 whose average-utility values are not lower than auk. Thus, the SAUR
strategy effectively increases the minau to a rational level. In addition, we prove that the
method with the SAUR strategy will not miss any top-k HAUSPs.

4.3. Upper Bounds and Pruning Strategies

There is an inherent time order between items in the sequence database. The process
of HUSPM must deal with the critical combinatorial explosion of the search space [48]. If
the maximum sequence utility is much lower than the minimum utility threshold, even the
sum of sequence utility and utilities of items in the remaining sequence still cannot reach
the threshold. The sequence is “unpromising”. Zhang et al. [48] proposed the upper bound
and corresponding strategy to reduce unpromising patterns and unnecessary operations.
Several existing studies have proposed some sequence pattern mining upper bounds. Three
typical upper bounds: sequence extension utility (SEU) [22], sequence projected utilization
(SPU) [29], and sequence-weighted utilization (SWU) [19] had been introduced compared
in ref. [23]. SWU is a loose upper bound and is an overestimation, SPU loses some real
HUSPs, and SEU, which is a modified real upper bound, could further limit the search
scope. Wang et al. [46] proposed PEU upper bound and RSU upper bound to speed up
HUSPM. The PEU upper bound was defined as PEU(t, p, s) = u(t, p, s) + ru(s/(t,p)).

The existing research work is instructive to improve the performance of HAUSPM
by reducing the unpromising pattern. The transaction-maximum average-utility upper
bounds designed by Kim et al. [59] or proposed by Wu et al. [55] need to sort the set of
remaining items by utility descending order. However, in a quantitative sequence database,
each q-itemset has a special order, so sorting among q-items that contain different q-itemsets
is not an effective method.

In fact, each item in remaining sequence is helpful to add up to higher sequence utility
by the “extension” operation for HUSPM and algorithm TKUS. The item is promising if
the value of PEAU is not lower than the minimum average-utility threshold. However,
in HAUSPM and our proposed algorithm, the average utility of the sequence, which is
generated by the “extension” operation, is not higher than one of its prefixes if the utility of
the appending item is lower than the average utility of the prefix.

Definition 11 (Increment of Sequence Utility). Let u(s) be the sequence utility of s. If u(s) is
in excess of the minimum average-utility threshold minau, let uINCR(s) be the rising proportion of
the excess sequence-utility value in u(s), and is calculated as follows:

uINCR(s) = u(s)−minau× |s|,

Assume that there is an instance of sequence S at the extension position p : <j, j2, · · · , jm>
in q-sequence Q, the corresponding remaining sequence is rs which is the rest after p to the

Appl. Sci. 2023, 13, 12340 12 of 27

end. Let the rs′ be a subsequence consisting of items that have a higher utility value than
minau in rs. The rising proportion of the excess sequence-utility value in rs is denoted as
uINCR(rs), and is calculated as follows:

uINCR(rs′) = ∑
Q∈D∧SvQ

urs′(S, jm, Q)−minau× |rs′|,

where the |rs′| is the maximum length of rs′ of the prefix S in database D. Please note that
jm is determined by the extension position of sequence S.

Therefore, we define the uINCR(rs′). It is a measure for the promotion of the remaining
sequence utility on the utility of the generated candidates. The concept of “unpromising”,
which has been mentioned at the beginning of this section, can be redefined. The appending
item is unpromising if the average utilities of all the generated sequences containing this
item still are lower than minau, i.e., all the promotion of its prefix and its remaining sequence
will not increase the sequence average utility to the value of minau. We will, therefore, give
the following upper bounds and pruning strategies.

Definition 12 (PEAU Upper Bound). Assume that there is an instance of sequence S at the
extension position p:〈j, j2, · · · , jm〉 in q-sequence Q, the corresponding remaining sequence is rs
which is the rest after p to the end. Let rs′ be a subsequence of rs and consist of items that have a
higher utility value than minau. The prefix extension average utility of S in q-sequence database D
is defined as follows:

PEAU(S) =

u(S)+uINCR(rs′)

|S| , uINCR(rs′) > 0

0, otherwise

The PEAU(S) is also calculated as

PEAU(S) =

PEURevised(S)−minau×|rs′ |

|S| , |rs′| > 0

0, otherwise

where |rs′| is the maximum length of rs′ of the prefix S in D. The PEURevised(S) is a revised
prefix extension utility of the sequence S in D. The revised prefix extension utility of S at the
extension position p:〈j, j2, · · · , jm〉 in Q is defined as follows:

PEURevised(S, p, Q) =

{
u(S, p, Q) + urs′(S, jm, Q), urs(S, jm, Q) > 0

0, otherwise

Then, let pi is one position of S in Q, we define the revised prefix extension utility of S in Q
is PEURevised(S, Q) = max{PEURevised(S, pi, Q)}. And we define the revised prefix extension
utility of S in D is PEURevised(S) = ∑SvQ∧Q∈D PEURevised(S, Q).

For example, consider the sequence s4:〈{c}, {b}〉, there is an instance in Q2, and PEAU
(s4, 〈3, 4〉, Q2) equal to 0 because urs′(s4, 4, Q2) = 0. In addition, s4 has two instances in
Q3. When minau = 20, for all q-sequence Q with s4 v Q ∧ Q ∈ D, the utilities of items
a, b and d in remaining sequence of s4 are 3, 12 and 8, which are lower than minau, re-
spectively. Therefore, a /∈ rs′,b /∈ rs′ and d /∈ rs′. We have PEURevised(s4, 〈1, 2〉, Q3) =
(8 + 3) + (7 + 18 + 12) = 48 and PEURevised(s4, 〈1, 3〉, Q3) = (8 + 6) + (18 + 12) = 44,
so that PEURevised(s4, Q3) = max{PEURevised(s4, 〈1, 2〉, Q3), PEURevised(s4, 〈1, 3〉, Q3)} =
max{48, 44} = 48. Finally, the prefix extension average utility of any sequence extended
by s4 is PEURevised(s4) = PEURevised(s4, Q1) + PEURevised(s4, Q2) + PEURevised(s4, Q3) +
PEURevised(s4, Q4)+ PEURevised(s4, Q5) = 72 + 0 + 48 + 51 + 51 = 222. The maximum

Appl. Sci. 2023, 13, 12340 13 of 27

length of rs′ is |rs′| = max{4, 0, 3, 2, 4} = 4, so that we have PEAU(s4) =
PEURevised(s4)−minau×|rs′ |

|s4|
= 222−204

2 = 71.

Proof. Let the sequence S is a prefix of sequence S′, and the remaining sequence
rs = {i1, i2, · · · , in}. Set a subsequence rs′ ⊆ rs is {i′1, i′2, · · · , i′m}, where 1 6 m 6 n,
and ∀i′ ∈ rs′, u(i′) > minau.

(1) if rs′ is not null, then u′rs > 0 and |rs′| 6= 0. Let ik is an item in rs, then
ik 6 max{i′1, i′2, · · · , i′m}. We have

au(S′) =
∑SvQ∧Q∈D(u(S, p, Q) + u(ik, jk, Q))

|S|+ 1

6
∑SvQ∧Q∈D max{u(S, p, Q) + u(ik, jk, Q)}

|S|+ 1

6
u(S) + u(ik)

|S|+ 1

=
u(S) + (uINCR(ik) + minau)

|S|+ 1

6
u(S) + (uINCR(rs′) + minau)

|S|+ 1

=
(uINCR(S) + minau× |S|) + (uINCR(rs′) + minau)

|S|+ 1

=
uINCR(S) + uINCR(rs′)

|S|+ 1
+ minau

6
uINCR(S) + uINCR(rs′)

|S| + minau

=
uINCR(S) + uINCR(rs′) + minau× |S|

|S|

=
(uINCR(S) + minau× |S|) + uINCR(rs′)

|S|

=
u(S) + uINCR(rs′)

|S|
= PEAU(S).

Appl. Sci. 2023, 13, 12340 14 of 27

(2) if rs′ is null, but rs is not null, then urs′(S, jm, Q) = 0 and |rs′| = 0. Consider an
item ik in rs and ik < minau, we obtain

au(S′) =
∑SvQ∧Q∈D(u(S, p, Q) + u(ik, jk, Q))

|S|+ 1

6
∑SvQ∧Q∈D max{u(S, p, Q) + u(ik, jk, Q)}

|S|+ 1

6
u(S) + u(ik)

|S|+ 1

<
u(S) + minau
|S|+ 1

=
(u(S)−minau× |S|) + minau× |S|+ minau

|S|+ 1

=
uINCR(S) + minau× |S|+ minau

|S|+ 1

=
uINCR(S)
|S|+ 1

+ minau

6
uINCR(S)
|S| + minau

=
uINCR(S) + minau× |S|

|S|

=
u(S)
|S|

= PEAU(S).

Therefore, we obtain PEAU(S) > au(S′).

Based on the above derivation, the average utility of any sequence extended from S is
less than PEAU(S). Then, the PEAU(S) is the maximum average-utility upper bound of S
and its descendant. Thus, if the value of PEAU(S) is less than minau, any descendants of
S will not be the high average-utility sequential pattern, and these descendants could be
safely pruned.

Definition 13 (RSAU Upper Bound). Let PEAU(S) be the prefix extension average utility
of S in database D. Assume that a sequence S′ is extended from S through one I-Extension or
S-Extension operation, i.e., consider the node representing S in LQS-tree, the node representing S′

is its child node. The reduced sequence average utility of S′ in q-sequence database D, denoted as
RSAU(S′), is defined as

RSAU(S′) =

{
PEAU(S), S v Q ∧ S′ v Q ∧Q ∈ D

0, otherwise

Proof. Assume the sequence S′ is a prefix of S′′ or S′′ = S′, and the sequence S′ could be
extended from sequence S through one “extension” operation, such that the sequence S is
also a prefix of S′′.

Based on the Definition 11, we obtain

au(S′′) > PEAU(S).

According to the Definition 12, we have

RSAU(S′) = PEAU(S),

Appl. Sci. 2023, 13, 12340 15 of 27

such that the average of the sequence is

au(S′′) > RSAU(S′).

Thus, if the value of RSAU(S′) is less than minau, any descendants of S are not the
high average-utility sequential pattern, and these descendants could also be safely pruned.
But RSAU still overestimates the upper bound. This upper bound is similar to RSU in
HUS-Span, and more details can be found in Ref. [46].

4.4. Proposed TKAUS Algorithm

By adopting the aforementioned mechanism and strategy, the proposed TKAUS is
described as follows. The main algorithm is represented as Algorithm 1. Algorithm 2
represents a recursive procedure, and Part 3 of the whole algorithm procedure represents
the updating of the set of HAUSPs and the threshold.

In the beginning, a given quantitative database is read, and the number of desired
HAUSPs is specified. The algorithm utilizes the variable minau to keep the current mini-
mum average-utility threshold (Line 1) and engages the TKList, which is a sorted list of
size k to maintain the top-k HAUSPs (Line 2). From lines 3 to 7, scan the original database
once, calculate the utility value of each item (1-sequences), and construct the projected
databases of all items. In line 8 and line 9, following the SAUR strategy, the algorithm
increases minau to the kth highest average-utility value. From lines 10 to 14, for each item
whose utility is greater than minau, update to the TKList. Then, adopting the upper bound,
for each promising item, the projection-TKAUS algorithm is called recursively (Lines 15
to 19). When the TKAUS algorithm is over, the TKList is returned, which stores all the
HAUSPs.

Algorithm 1 The TKAUS algorithm

Input: A quantitative database, D.
The number of desired HAUSPs, k.

Output: Top-k HAUSPs in D.
1: initializing minau = 0
2: initializing TKList = ∅
3: //First scanning (for the original database)
4: for each sequence Q in D
5: (1) calculating and storing the average utility of all 1-sequences
6: (2) constructing projected databases of all 1-sequences
7: end for
8: sorting the average-utility values of all 1-sequences in descending order, then getting

the kth highest average-utility value minau0
9: minau = minau0

10: for each sequence S ∈ 1-sequences
11: if S.au > minau
12: update TKList
13: end if
14: end for
15: for each sequence S ∈ 1-sequences
16: if PEAU(S) > minau
17: calling projection-TKAUS (S, DS)
18: end if
19: end for
20: return TKList

Appl. Sci. 2023, 13, 12340 16 of 27

Algorithm 2 projection-TKAUS algorithm

Input: A sequence as prefix, S.
The projected database of S, DS.

Output: Top-k HAUSPs in D.
1: scanning DS once to:
2: (1) adding I-Extension items of S to ilist
3: (2) adding S-Extension items of S to slist
4: for each item i ∈ ilist
5: S′ ← 〈S⊕ i〉
6: if RSAU(S′) < minau
7: removing i from ilist (Pruning the unpromising item in ilist)
8: end if
9: constructing projection database of S′,DS′

10: if S′.au > minau
11: calling update(S′, minau, TKList)
12: putting S′ to seqlist
13: end if
14: end for
15: for each item i ∈ slist
16: S′ ← 〈S⊗ i〉
17: if RSAU(S′) < minau
18: removing i from slist (Pruning the unpromising item in slist)
19: end if
20: constructing projection database of S′, DS′

21: if S′.au > minau
22: calling update(S′, minau, TKList)
23: putting S′ to seqlist
24: end if
25: end for
26: for each sequence S′ ∈ seqlist
27: if PEAU(S′) > minau
28: Calling Projection-TKAUS(S′, DS′)
29: end if
30: end for
31: return TKList

As shown in Algorithm 2, in line 1, the projection-TKAUS algorithm identifies items
that can be extended by scanning the projected database. Each input sequence is regarded
as a prefix of a pattern. From lines 4 to 25, for each extended sequence, if the RSAU value is
not less than the threshold, the extended sequence could be a top-k HAUSP or its prefix.
After that “extension” operation, we compare all generated sequences in seqlist to the new
minimum average-utility threshold according to their PEAU values. Then, the projection-
TKAUS algorithm is called recursively. Algorithm 3 is update(S′, minau, TKList) algorithm.
The lowest average-utility sequence is removed from TKList when the size exceeds the
specified parameter. Meanwhile, the minau is updated to the sequence average utility of
kth HAUSP in TKList.

Appl. Sci. 2023, 13, 12340 17 of 27

Algorithm 3 update(S′, minau, TKList) algorithm

Input: A generated sequence from S, S′.
The number of desired HAUSPs, k.

Output: A minimum average-utility threshold, minau.
A set of top-k high average-utility sequential patterns, TKList.

1: scanning TKList once to:
2: (1) sorting all sequences by the sequence average utility in descending order, then

getting the sequence with the lowest average-utility value lowest.au.seq
3: (2) getting the number of sequential patterns in TKList, k′

4: if k′ > k
5: Inserting S′ into TKList
6: minau = the average utility of kth HAUSP in TKList
7: Removing lowest.au.seq from TKList
8: else
9: Inserting S′ into TKList

10: end if
11: return minau,TKList

4.5. Complexity Analysis of the Proposed TKAUS Algorithm

Suppose the number of quantitative sequences in a quantitative sequential database
is |D|, |Q| is the average number of items of the quantitative sequence in the database,
and |I| is the number of distinct items in the database. k represents the desired number
of HAUSPs. It is a user-specified parameter. Therefore, in the first scan of the original
database, O(|D| × |Q|) q-items are processed to calculate the information of each one.
This information is stored in a projected database, and O(|D| × |Q|) is also the memory
complexity of the first scan. Then, in TKAUS, the kth highest average-utility value of
all 1-sequences is set as the initial threshold, so it takes O(|I| log |I|) in order to sort all
1-sequences in an average utility descending order using the quick sorting algorithm.
In the sorting step, the memory complexity is O(log |I|). TKAUS next updates TKList,
which is used to store HAUSPs. At this time, in the worst case, it takes O(|D| × |Q|)
to calculate the actual sequence average utility for each sequence. Meanwhile, TKAUS
calls the recursive function projection-TKAUS. The required processing for comparing
the threshold and the PEAU of each sequence is O(|D| × |Q|). In projection-TKAUS, the
(k + 1)-sequence is generated from the k-sequence by appending each item. In addition,
two conditional lists are constructed to store the appending items. It takes O(|D| × |Q|)
to scan the projected database and to mark the unpromising items with low RSAU. Then,
the unpromising items will be deleted from the lists. The largest size of a conditional
list is |I|. The algorithm next traverses the reduced lists and appends each item to the
prefix. Meanwhile, TKAUS finds the HAUSPs and calls the update function. The required
amount of processing to calculate the actual sequence average utility is O(|D| × |Q|). The
generated sequence with high PEAU is set as a new prefix and is inserted in the projected
database. Repeat the above process for all the prefixes. The corresponding time complexity
is O(|D||Q|) +O(|D||Q|) +O(|D||Q|), which equals O(|D||Q|). Its memory complexity
is O(|D||Q|) +O(|D||Q|) +O(|D||Q|) +O(|I|) +O(|I|), which equals O(|D||Q|+ |I|).
As for the update function, the generated sequence is inserted into TKList, and the sequence
with the lowest average utility is deleted. Its time complexity of the process is O(k log k).
In addition, the memory complexity of the update function is O(log k).

Suppose L is the sequence length of the longest generated one in the above pro-
cess. Then, |Q| 6 L. Therefore, the maximum number of recursive calls is |I|L in the
function projection-TKAUS. According to the above, the time complexity and memory com-
plexity of TKAUS are O(|D||Q|+ |I| log |I|) + |I|L ×O(|D||Q|) + |I|L × |I| × O(k log k)
and O(|D||Q| + log |I|) + L × O(|D||Q| + |I|) + L × |I| × O(logk), respectively. In the
worst case where |Q| = L, the time complexity and memory complexity are O(|I|L|D|L +
|I| log |I|+ |I|(L + 1)k log k) and O(L2|D|+ log |I|+ L|I|+ L|I| log k).

Appl. Sci. 2023, 13, 12340 18 of 27

5. Experiments

In this section, we conducted experiments to compare and contrast the performance of
the proposed TKAUS algorithm. The algorithms are implemented in Java and developed
in Eclipse IDE, and the experiments are conducted on a cloud virtual machine equipped
with an Intel(R) Xeon(R) Platinum 8255c CPU and Linux version 3.10.0-1160.31.1.el7.x86_64
operating system.

5.1. Experimental Settings

To evaluate performance, the experiments are conducted on seven datasets with
different characteristics, which are obtained from SPMF (http://www.philippe-fournier-
viger.com/spmf/), accessed on 20 December 2022. Currently, there is a scarcity of existing
works focusing on top-k HAUSPM. For the performance tests, we assess the execution time,
space overhead, the total number of candidates generated, and scalability toward large
datasets by comparing with the TKUS algorithm [48]. The details of the experiments are
given as follows.

The Bible is a conversion dataset from part of the Bible, and each word is considered
to be an item. Each sentence is considered to be a sequence, and the lengths of sequences
are mainly medium in the Bible. The Leviathan is also a conversion dataset from the
novel Leviathan by Thomas Hobbes (1651). It is similar to the previous one. The special
word in the novel was replaced by the digital item. The Sign is a new format of the sign
language utterance dataset, and the original one was created by the National Center for
Sign Language and Gesture Resources at Boston University. There are approximately
730 sequences, and most of them are long. The Kosarak is a clickstream dataset from a
Hungarian online news portal. It is difficult to deal with the extremely high sequence
length in this dataset. Yoochoose is also clickstream data from e-commerce in a new format.
It is composed of a single-itemset or multi-itemset sequence and has been used in Ref. [48].

For all datasets, five parameters are used for the feature description. |D| indicates the
number of q-sequences in dataset. |I| indicates the number of distinct items in a dataset.
AvgLen and MaxLen are the average length and the maximal length of q-sequence in
dataset, respectively. The average number of q-itemsets in one q-sequence is denoted as
AvgSeqSize. The average number of q-items in one q-itemset is denoted as AvgSetSize. The
details of datasets are given in Table 3.

Table 3. Features of datasets.

Dataset |D| |I| AvgLen MaxLen AvgSeqSize AvgSetSize

Bible 36,369 13,905 21.64 100 17.85 1.0

Leviathan 5834 9025 33.81 100 26.34 1.0

Sign 730 267 52 94 51.99 1.0

Yoochoose 234,300 16,004 2.25 112 1.14 1.97

Kosarak_10K 10,000 10,094 8.14 608 8.14 1.0

SynDataset_80K 79,718 7584 6.19 18 26.69 4.32

Scalability_10K 10,000 7313 6.22 18 6.22 4.35

5.2. Strategy Performance and Effectiveness Analysis

In this subsection, the experimental results will be used to assess the algorithm’s
performance. The top-k EHAUSM was selected as a comparison based on EHAUSM, which
is the first approach for HAUSPM in general case [35]. However, it is not clear whether
the performance of the EHAUSM proposed by Tin et al. [35] is better than the one for
this experiment. They mentioned and demonstrated HAUSPs ⊆ HUSPs by comparing
HAUSM to HUSM in the experiment. We also evaluate the proposed algorithm TKAUS
against TKUS because these new upper bounds correspond to efficient pruning strategies
inspired by TKUS. They have examined the impact of each pruning strategy by comparing

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/

Appl. Sci. 2023, 13, 12340 19 of 27

the distinct variants of the algorithm. The results and more details can be found in Ref. [48].
In the TKAUS algorithm, we take a similar idea. Moreover, we modify and redefine the
upper bound and pruning strategies to define a new problem for TKAUSM.

Combined with the previous section and the comparative results here, the proposed
upper bounds PEAU and RSAU benefit the algorithm to obtain better performance. Mean-
while, considering the existing research on HAUIM and the characteristics of “extension”
operation, we adopt a new threshold to stop TKSUA scanning unpromising node in the
LQS-tree. As we expected, the results in the same scenarios are listed in Tables 4 and 5,
which proves that, in most cases, the combination pruning strategy plays a more effective
role in reducing the generated candidates and the running time to achieve an improvement
in performance.

Table 4. Effectiveness of Top-kEHAUSM and TKAUS.

Dataset
Time Max Memory Candidates

Top-kEHAUSM TKAUS Top-kEHAUSM TKAUS Top-kEHAUSM TKAUS

Bible k = 200 1621.854 22.548 410.481 323.106 15,724 6143

Leviathan k = 500 1490.095 16.152 351.635 319.743 73,712 40,918

Sign k = 500 3420.941 79.63 353.422 312.315 649,694,319 990,105

Yoochoose k = 8000 13,127.643 2429.662 777.194 397.227 29,703,530,233 37,185,721

Kosarak_10K k = 9 1.79 1.251 102.335 39.050 54 348

SynDataset_80K k = 200 1177.576 65.639 480.374 373.288 2574 5630

Table 5. Effectiveness of TKAUS and TKUS.

Dataset
Time Max Memory Candidates

TKAUS TKUS TKAUS TKUS TKAUS TKUS

Bible k = 200 22.548 888 323.106 4247 6143 17,059

Leviathan k = 500 16.152 339 319.743 2893 40,918 40,918

Sign k = 500 79.63 193 312.315 2682 990,105 193,477

Yoochoose k = 8000 2429.662 35 397.227 2780 37,185,721 180,641

Kosarak_10K k = 9 1.251 13 39.050 2279 348 2001

SynDataset_80K k = 200 65.639 839 373.288 5483 5630 972,569

5.3. Speed Performance and Efficiency Analysis

The execution time consists of two components: the processing time utilized by the
CPU and the access time necessary for input/output operations. There is a longer execution
time for multiple database scanning and candidate processing. The comparative results
showed in Ref. [48] demonstrated that both the projection mechanism and effective pruning
strategies are of great significance in improving the performance of the mining algorithm.
Figure 2 shows the execution times variation of the TKAUS algorithm with different values
of parameter k on each dataset. With the increase in parameter k, the growth of the threshold
is slowing, and more candidates are promising, and, in consequence, the execution time
is bound to increase substantially. The mining process for HAUSP can be accelerated by
the strategy with a tighter upper bound. However, for each prefix, top-k EHAUSM always
requires more time to find the highest utility item in remaining sequence than TKAUS. The
utility raising strategy is effective at reducing the search space fast in the top-k HUPM.
Please note that when k > 1000 on the Sign dataset, the runtime consumption of top-k
EHAUSM exceeds 27 h. It is far beyond what we think possible. The proposed algorithm
will take more time than TKUS with an increase in parameter k in Figure 2c,d. But apart
from that, for HAUSPM, when the desired sequence average utility is a fixed value, the
sequence utility also keeps an extra steady rise with its length increasing. Hence, the
TKAUS will have better performance than TKUS, too.

Appl. Sci. 2023, 13, 12340 20 of 27

100 200 500 1000 2000 3000
101

102

103

104

(a) Bible

Ru
nt

im
e

(s
ec

.)

k

 EHAUSM
 TKAUS
 TKUS

100 200 500 1000 2000 3000
100

101

102

103

104

(b) Leviathan

Ru
nt

im
e

(s
ec

.)

k

 EHAUSM
 TKAUS
 TKUS

100 200 500 1000 2000 3000
100

101

102

103

(c) Sign

Ru
nt

im
e

(s
ec

.)

k

 EHAUSM
 TKAUS
 TKUS

2000 4000 6000 8000 10,000 12,000
100

101

102

103

104

(d) Yoochoose

Ru
nt

im
e

(s
ec

.)
k

 EHAUSM
 TKAUS
 TKUS

9 10 11 12 13 14
100

101

102

103

(e) Kosarak_10K

Ru
nt

im
e

(s
ec

.)

k

 EHAUSM
 TKAUS
 TKUS

100 200 500 1000 2000 3000

102

103

104

105

(f) Scalability_80K

Ru
nt

im
e

(s
ec

.)

k

 EHAUSM
 TKAUS
 TKUS

Figure 2. Runtime for various k in different dataset.

5.4. Number of Candidates

The number of candidates could be regarded as a crucial measure of the search space.
The larger dataset generates more candidates from a macro perspective. In fact, TKUS and
TKAUS generate fewer candidates than other early algorithms by adopting the projection
mechanism. Zhang et al. in [48] defined search space shrinkage rate (SSSR) for evaluation
and validated that TKUS generates fewer candidates than TKHUS-Span in the experiment.

Moreover, among the different datasets, the longer the average length of the sequence
is, the greater the number of candidates is. The algorithms also generate more candidates as
the number of sequences increases. With increasing parameter k, the threshold for mining
decreases, and the quantity of candidates increases.

The upper bound proposed in EHAUSM overestimates the candidate sequence utility
based on the maximum item utility in the remaining sequence or the utility of the whole
sequence so that it is a larger value far beyond the actual utility of the candidate sequence.
Finally, more candidates were generated by the “extension” operation. But in Figure 3e, the
number of candidates in top-k EHAUSM is indeed less than in TKAUS. If the sequences in
the database vary considerably in length, and most of the item is interesting to the user and
has a high utility value, the TKAUS may lose its advantages.

Appl. Sci. 2023, 13, 12340 21 of 27

The main objective of TKUS is to find top-k HUSPs, but the purpose of the proposed
TKAUS is to identify top-k HAUSPs. The average utility of pattern not only depends on its
utility but also involves its length. Then, patterns with low utility also have great potential
to be high average-utility ones, which have a corresponding short length, and in Figure 3,
it is reasonable that the number of candidates generated in TKAUS is less than in TKUS,
especially in Figure 3f. Compared with the feature of the dataset, this could be a reason
that the value of item utility in the dataset is relatively concentrated, i.e., the utility of item
is the same level, and the length of pattern has a great effect on the sum of utility than the
average utility of items in a pattern.

Moreover, note that when k = 500 on the Sign dataset, the search space of the top-k
EHAUSM algorithm is far beyond the other two algorithms. Therefore, we do not show
more experiments. The proposed algorithm will generate more candidates than TKUS with
increasing parameter k in Figure 2c,d. The average length of the sequence and the maximal
length of the sequence have great effects on HAUSPM. In addition, that is why the results
of runtime have similar trends.

100 200 500 1000 2000 3000
100

101

102

103

104

105

106

(a) Bible

N
um

be
r o

f c
an

di
da

te
s

k

 EHAUSM
 TKAUS
 TKUS

0

20,000

40,000

60,000

80,000

M
in

im
um

 a
ve

ra
ge

 u
til

ity
 th

re
sh

ol
d

100 200 500 1000 2000 3000
100

101

102

103

104

105

106

(b) Leviathan

N
um

be
r o

f c
an

di
da

te
s

k

 EHAUSM
 TKAUS
 TKUS

2000

4000

6000

8000

M
in

im
um

 a
ve

ra
ge

 u
til

ity
 th

re
sh

ol
d

100 200 500 1000 2000 3000
100

101

102

103

104

105

106

107

108

109

(c) Sign

N
um

be
r o

f c
an

di
da

te
s

k

 EHAUSM
 TKAUS
 TKUS

4000

6000

8000

M
in

im
um

 a
ve

ra
ge

 u
til

ity
 th

re
sh

ol
d

2000 4000 6000 8000 10,000 12,000
100

101

102

103

104

105

106

107

108

109

1010

(d) Yoochoose

N
um

be
r o

f c
an

di
da

te
s

k

 EHAUSM
 TKAUS
 TKUS

50,000

100,000

150,000

200,000

M
in

im
um

 a
ve

ra
ge

 u
til

ity
 th

re
sh

ol
d

9 10 11 12 13 14
100

101

102

103

104

(e) Kosarak_10K

N
um

be
r o

f c
an

di
da

te
s

k

 EHAUSM
 TKAUS
 TKUS

16,000

18,000

20,000

M
in

im
um

 a
ve

ra
ge

 u
til

ity
 th

re
sh

ol
d

100 200 500 1000 2000 3000
100

101

102

103

104

105

106

107

(f) Scalability_80K

N
um

be
r o

f c
an

di
da

te
s

k

 EHAUSM
 TKAUS
 TKUS

2,000

4,000

6,000

8,000

10,000

12,000

M
in

im
um

 a
ve

ra
ge

 u
til

ity
 th

re
sh

ol
d

Figure 3. Number of candidates and threshold of top-k HAUSPs in different datasets.

5.5. Memory Overhead Evaluation

We can see from Figure 4 that TKAUS generally outperforms top-k EHAUSM and
TKUS in terms of memory usage. Figure 3d,e clearly illustrates that both EHAUSM and

Appl. Sci. 2023, 13, 12340 22 of 27

TKUS have more candidates than top-k EHAUSM in some cases. Although the gap is
still obvious, the process of sorting brings more memory consumption in top-k EHAUSM.
The more candidates are generated, the more sorting operations are needed. In TKUS,
the threshold is the sum of utilities. It is harder to avoid generating the candidate, which
consists of some low-utility items. This is different from top-k EHAUSM or TKAUS, and
it will incur a high memory usage. Because of that, both EHAUSM and TKUS have
good performance by adopting efficient strategies, but TKAUS has greater improvement.
Likewise, the memory consumption becomes larger when the parameter k increases.

100 200 500 1000 2000 3000
100

101

102

103

(a) Bible

M
em

or
y

us
ag

e
(M

B)

k

 EHAUSM
 TKAUS
 TKUS

100 200 500 1000 2000 3000
100

101

102

103

(b) Leviathan

M
em

or
y

us
ag

e
(M

B)

k

 EHAUSM
 TKAUS
 TKUS

100 200 500 1000 2000 3000
100

101

102

103

(c) Sign

M
em

or
y

us
ag

e
(M

B)

k

 EHAUSM
 TKAUS
 TKUS

2000 4000 6000 8000 10,000 12,000
100

101

102

103

(d) Yoochoose
M

em
or

y
us

ag
e

(M
B)

k

 EHAUSM
 TKAUS
 TKUS

9 10 11 12 13 14
100

101

102

103

(e) Kosarak_10K

M
em

or
y

us
ag

e
(M

B)

k

 EHAUSM
 TKAUS
 TKUS

100 200 500 1000 2000 3000
100

101

102

103

104

(f) Scalability_80K

M
em

or
y

us
ag

e
(M

B)

k

 EHAUSM
 TKAUS
 TKUS

Figure 4. Memory usage for various k in different dataset.

5.6. Scalability Evaluation

The scalability of TKAUS is evaluated in this part. The series of datasets with varying
sizes is built by combining the duplication of dataset Scalability_10k repeatedly. The
experimental results, including execution time, memory consumption, and the number of
candidates with k = 500, are depicted in Figure 5. The runtime increases linearly as the
database size grows. The increase in memory consumption is likewise linear. The number
of candidates keeps a constant value. It means that variations in dataset size did not cause
significant volatility or anomalies in algorithm efficiency based on the experimental results.
This supports the idea that the proposed method can provide relatively stable performance

Appl. Sci. 2023, 13, 12340 23 of 27

when processing datasets of diverse magnitudes. According to the experiments, the
proposed TKAUS shows a better scalability performance.

10 20 30 40 50 60 70 80 90 100 110 120

0

50

100

150

200

250
(a) Runtime of TKAUS

Ru
nt

im
e

(s
ec

.)

Dataset Size (K)

 k=500

10 20 30 40 50 60 70 80 90 100 110 120
0

100

200

300

400

500
(b) Memory usage of TKAUS

M
em

or
y

us
ag

e
(M

B)

Dataset Size (K)

 k=500

Figure 5. Scalability of TKAUS in Scalability_10k when k = 500.

5.7. Limitations

The experimental results presented in the preceding sections highlight the varying
degrees of efficiency advantages exhibited by the proposed algorithm across datasets with
diverse features. Although both the proposed method and the compared algorithms are
capable of handling datasets of the same type, the efficiency advantages may differ when
applied to datasets with different characteristics, e.g., the dataset Sign and Yoochoose.
The efficiency of the algorithm is significantly influenced by the specific characteristics
of the datasets. Although the experimental section includes discussions of six commonly
used datasets with diverse features, it is important to acknowledge that the quantity and
characteristics of the experimental datasets do not encompass the entire spectrum. Fur-
thermore, the experimentation parameter k has limited values, allowing for only a partial
representation of trends. The proposed algorithm is motivated by fundamental aspects of
the research problem and identified optimization potential in existing algorithms. However,
it demonstrates notable advantages in terms of algorithm efficiency. The computation of
average-utility upper bounds remains somewhat complex. This complexity leaves room
for further research to propose even more superior algorithms in this regard. In addi-
tion, as research on SPM and the transformation of typified resources within DIKWP
structures progresses, it is expected that additional relevant factors will be identified and
considered. This will necessitate further studies to enhance and potentially adjust existing
algorithms accordingly.

6. Conclusions

In this paper, the problem of top-k HAUSPM is formulated, and a novel algorithm
called TKAUS is proposed to handle information resource transformation in DIKWP graphs.
The projection mechanism, two new upper bounds and their corresponding strategies are
adopted in the proposed algorithm. As the quick minimum utility threshold increases, the
extraction efficiency for top-k HAUSPs also improves. By the “extension” operation, there
is a special correlation between the average utility of pattern and the utility of the length of
the pattern. A novel measure tailored for the remaining sequences in HAUSPM is designed.
Leveraging this measure, an improved upper bound is designed for HAUSPM that avoids
the multiple sorting of items, which is a limitation of existing approaches. Corresponding
pruning strategies and proofs are provided as well. Experimental results demonstrate that
the proposed methods deliver stable advantages. Runtime improvements of an order of
magnitude or more are achieved compared to alternative algorithms, with this advantage
expected to grow more pronounced as the number of patterns to be mined increases.
However, the performance of the algorithm is still dependent on dataset characteristics
and the parameter k, which determines the desired number of patterns. It is important to
note that the advantages of the algorithm may be limited when dealing with very small

Appl. Sci. 2023, 13, 12340 24 of 27

values of k or high thresholds. Additionally, results indicate that the proposed algorithm is
particularly well suited for datasets involving longer sequences. Our future work involves
designing more efficient approaches for resource transformation in DIKWP graphs.

Author Contributions: Writing—original draft preparation, K.C.; writing—review and editing, Y.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Hainan Province Key R&D Program (No. ZDYF2022GXJS007,
ZDYF2022GXJS010), Hainan Province Higher Education and Teaching Reform Research Project
(No. Hnjg2021ZD-3), Natural Science Foundation of Hainan Province (No. 620RC561) and Hainan
Province Key Laboratory of Meteorological Disaster Prevention and Mitigation in the South China
Sea (No. SCSF202210).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Y.; Li, Z. Duan, Y.; Spulber, A.-B. Physical artificial intelligence (PAI): The next-generation artificial intelligence. Front. Inf.

Technol. Electron. Eng. 2023, 24, 1231–1238. [CrossRef]
2. Duan, Y.; Shao, L.; Hu, G. Specifying Knowledge Graph with Data Graph, Information Graph, Knowledge Graph, and Wisdom

Graph. Int. J. Softw. Innov. 2018, 6, 10–25. [CrossRef]
3. Duan, Y.; Sun, X.; Che, H.; Cao, C.; Li, Z.; Yang, X. Modeling Data, Information and Knowledge for Security Protection of Hybrid

IoT and Edge Resources. IEEE Access 2019, 7, 99161–99176. [CrossRef]
4. Duan, Y. Existence Computation: Revelation on Entity vs. Relationship for Relationship Defined Everything of Semantics. In

Proceedings of the 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, SNPD 2019, Toyama, Japan, 8–11 July 2019; Nakamura, M., Hirata, H., Ito, T., Otsuka, T.,
Okuhara, S., Eds.; IEEE Computer Society: Washington, DC, USA, 2019; pp. 139–144. [CrossRef]

5. Duan, Y. Applications of Relationship Defined Everything of Semantics on Existence Computation. In Proceedings of the 20th
IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, SNPD 2019, Toyama, Japan, 8–11 July 2019; Nakamura, M., Hirata, H., Ito, T., Otsuka, T., Okuhara, S., Eds.; IEEE
Computer Society: Washington, DC, USA, 2019; pp. 184–189. [CrossRef]

6. Duan, Y. Towards a Periodic Table of conceptualization and formalization on State, Style, Structure, Pattern, Framework, Archi-
tecture, Service and so on. In Proceedings of the 20th IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing, SNPD 2019, Toyama, Japan, 8–11 July 2019; Nakamura, M.,
Hirata, H., Ito, T., Otsuka, T., Okuhara, S., Eds.; IEEE Computer Society: Washington, DC, USA, 2019; pp. 133–138. [CrossRef]

7. Gao, H.; Duan, Y.; Shao, L.; Sun, X. Transformation-based processing of typed resources for multimedia sources in the IoT
environment. Wirel. Netw. 2021, 27, 3377–3393. [CrossRef]

8. Duan, Y.; Pham, V.T.; Song, M.; Nguyen, H.D. Ultimate of Digital Economy: From Asymmetric Data Economy to Symmetric
Knowledge and Wisdom Economy. In New Trends in Intelligent Software Methodologies, Tools and Techniques, Proceedings of the 22nd
International Conference on New Trends in Intelligent Software Methodologies, Tools and Techniques SoMeT2023, Naples, Italy, 20–22
September 2023; Fujita, H., Guizzi, G., Eds.; IOS Press: Amsterdam, The Netherlands, 2023; Volume 371, pp. 85–96. [CrossRef]

9. Duan, Y. DIKWP Artificial Consciousness Hypothesis, Nature and Principles (Empirical Description). 2023. Available on-
line: https://www.researchgate.net/publication/372140686_DIKWPrengongyishijiashebenzhiyuyuanlijingyanxingmiaoshu?
channel=doi&linkId=64a68bc2c41fb852dd556bf9&showFulltext=true (accessed on 31 July 2023).

10. Fournier-Viger, P.; Gueniche, T.; Tseng, V.S. Using Partially-Ordered Sequential Rules to Generate More Accurate Sequence
Prediction. In Proceedings of the Advanced Data Mining and Applications, 8th International Conference, ADMA 2012, Nanjing,
China, 15–18 December 2012; Zhou, S., Zhang, S., Karypis, G., Eds.; Proceedings; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7713, pp. 431–442. [CrossRef]

11. Srikant, R.; Agrawal, R. Mining Sequential Patterns: Generalizations and Performance Improvements. In Proceedings of the 5th
International Conference on Extending Database Technology: Advances in Database Technology, Avignon, France, 25–29 March
1996; Proceedings; Springer: Berlin/Heidelberg, Germany, 1996; EDBT’96; pp. 3–17.

12. Gan, W.; Lin, J.C.W.; Fournier-Viger, P.; Chao, H.C.; Tseng, V.S.; Yu, P.S. A Survey of Utility-Oriented Pattern Mining. IEEE Trans.
Knowl. Data Eng. 2021, 33, 1306–1327. [CrossRef]

13. Nguyen, L.T.; Vu, V.V.; Lam, M.T.; Duong, T.T.; Manh, L.T.; Nguyen, T.T.; Vo, B.; Fujita, H. An efficient method for mining high
utility closed itemsets. Inf. Sci. 2019, 495, 78–99. [CrossRef]

http://doi.org/10.1631/FITEE.2200675
http://dx.doi.org/10.4018/IJSI.2018040102
http://dx.doi.org/10.1109/ACCESS.2019.2931365
http://dx.doi.org/10.1109/SNPD.2019.8935728
http://dx.doi.org/10.1109/SNPD.2019.8935701
http://dx.doi.org/10.1109/SNPD.2019.8935653
http://dx.doi.org/10.1007/s11276-019-02200-6
http://dx.doi.org/10.3233/FAIA230226
https://www.researchgate.net/publication/372140686_DIKWPrengongyishijiashebenzhiyuyuanlijingyanxingmiaoshu?channel=doi&linkId=64a68bc2c41fb852dd556bf9&showFulltext=true
https://www.researchgate.net/publication/372140686_DIKWPrengongyishijiashebenzhiyuyuanlijingyanxingmiaoshu?channel=doi&linkId=64a68bc2c41fb852dd556bf9&showFulltext=true
http://dx.doi.org/10.1007/978-3-642-35527-1_36
http://dx.doi.org/10.1109/TKDE.2019.2942594
http://dx.doi.org/10.1016/j.ins.2019.05.006

Appl. Sci. 2023, 13, 12340 25 of 27

14. Liu, J.; Zhang, X.; Fung, B.C.; Li, J.; Iqbal, F. Opportunistic mining of top-n high utility patterns. Inf. Sci. 2018, 441, 171–186.
[CrossRef]

15. Yao, H.; Hamilton, H.J.; Butz, C.J. A Foundational Approach to Mining Itemset Utilities from Databases. In Proceedings of the
Fourth SIAM International Conference on Data Mining, Lake Buena Vista, FL, USA, 22–24 April 2004; Berry, M.W., Dayal, U.,
Kamath, C., Skillicorn, D.B., Eds.; SIAM: University City, PA, USA, 2004; pp. 482–486. [CrossRef]

16. Gan, W.; Lin, J.C.W.; Fournier-Viger, P.; Chao, H.C.; Hong, T.P.; Fujita, H. A Survey of Incremental High-Utility Itemset Mining.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1242. [CrossRef]

17. Yun, U.; Nam, H.; Kim, J.; Kim, H.; Baek, Y.; Lee, J.; Yoon, E.; Truong, T.; Vo, B.; Pedrycz, W. Efficient transaction deleting approach
of pre-large based high utility pattern mining in dynamic databases. Future Gener. Comput. Syst. 2020, 103, 58–78. [CrossRef]

18. Ryang, H.; Yun, U. Indexed List-Based High Utility Pattern Mining with Utility Upper-Bound Reduction and Pattern Combination
Techniques. Knowl. Inf. Syst. 2017, 51, 627–659. [CrossRef]

19. Zhang, C.; Zu, Y.; Nie, J.; Du, L. Two Efficient Algorithms for Mining High Utility Sequential Patterns. In Proceedings of the 2019
IEEE Intl Conf on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing
and Communications, Social Computing and Networking, ISPA/BDCloud/SocialCom/SustainCom 2019, Xiamen, China, 16–18
December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 905–911. [CrossRef]

20. Yin, J.; Zheng, Z.; Cao, L. USpan: An Efficient Algorithm for Mining High Utility Sequential Patterns. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 12 August 2012;
KDD’12; pp. 660–668. [CrossRef]

21. Shie, B.; Hsiao, H.; Tseng, V.S.; Yu, P.S. Mining High Utility Mobile Sequential Patterns in Mobile Commerce Environments. In
Proceedings of the Database Systems for Advanced Applications—16th International Conference, DASFAA 2011, Hong Kong,
China, 22–25 April 2011; Proceedings, Part I; Lecture Notes in Computer Science; Yu, J.X., Kim, M., Unland, R., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6587, pp. 224–238. [CrossRef]

22. Zhang, C.; Zu, Y. An Efficient Parallel High Utility Sequential Pattern Mining Algorithm. In Proceedings of the 21st IEEE
International Conference on High Performance Computing and Communications; 17th IEEE International Conference on Smart
City; 5th IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2019, Zhangjiajie, China, 10–12
August 2019; Xiao, Z., Yang, L.T., Balaji, P., Li, T., Li, K., Zomaya, A.Y., Eds.; IEEE: Piscataway, NJ, USA, 2019; pp. 2798–2803.
[CrossRef]

23. Gan, W.; Lin, J.C.W.; Zhang, J.; Chao, H.C.; Fujita, H.; Yu, P.S. ProUM: Projection-based utility mining on sequence data. Inf. Sci.
2020, 513, 222–240. [CrossRef]

24. Gan, W.; Lin, J.C.W.; Zhang, J.; Fournier-Viger, P.; Chao, H.C.; Yu, P.S. Fast Utility Mining on Sequence Data. IEEE Trans. Cybern.
2021, 51, 487–500. [CrossRef] [PubMed]

25. Lee, C.; Ryu, T.; Kim, H.; Kim, H.; Vo, B.; Lin, J.C.W.; Yun, U. Efficient approach of sliding window-based high average-utility
pattern mining with list structures. Knowl.-Based Syst. 2022, 256, 109702. [CrossRef]

26. Hong, T.; Lee, C.; Wang, S. Mining High Average-Utility Itemsets. In Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2526–2530.
[CrossRef]

27. Lan, G.C.; Hong, T.P.; Tseng, V.S. Efficiently Mining High Average-Utility Itemsets with an Improved Upper-Bound Strategy. Int.
J. Inf. Technol. Decis. Mak. 2012, 11, 1009–1030. [CrossRef]

28. Lan, G.; Hong, T.; Tseng, V.S. A Projection-Based Approach for Discovering High Average-Utility Itemsets. J. Inf. Sci. Eng. 2012,
28, 193–209.

29. Kim, D.; Yun, U. Efficient Algorithm for Mining High Average-Utility Itemsets in Incremental Transaction Databases. Appl. Intell.
2017, 47, 114–131. [CrossRef]

30. Yin, J.; Zheng, Z.; Cao, L.; Song, Y.; Wei, W. Efficiently Mining Top-K High Utility Sequential Patterns. In Proceedings of the 2013
IEEE 13th International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 1259–1264. [CrossRef]

31. Wu, C.W.; Shie, B.E.; Tseng, V.S.; Yu, P.S. Mining Top-K High Utility Itemsets. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD’12, Beijing, China, 12–16 August 2012; ACM: New
York, NY, USA, 2012; pp. 78–86. [CrossRef]

32. Tzvetkov, P.; Yan, X.; Han, J. TSP: Mining Top-K Closed Sequential Patterns. In Proceedings of the Third IEEE International
Conference on Data Mining, ICDM’03, Melbourne, FL, USA, 22 November 2003; IEEE Computer Society: Washington, DC, USA,
2003; pp. 347–354.

33. Wu, R.; He, Z. Top-k High Average-Utility Itemsets Mining with Effective Pruning Strategies. Appl. Intell. 2018, 48, 3429–3445.
[CrossRef]

34. Thilagu, M.; Nadarajan, R. Efficiently Mining of Effective Web Traversal Patterns with Average Utility. Procedia Technol. 2012,
6, 444–451. [CrossRef]

35. Truong, T.; Duong, H.; Le, B.; Fournier-Viger, P. EHAUSM: An efficient algorithm for high average utility sequence mining. Inf.
Sci. 2020, 515, 302–323. [CrossRef]

36. Agrawal, R.; Srikant, R. Mining Sequential Patterns. In Proceedings of the Eleventh International Conference on Data Engineering,
Taipei, Taiwan, 6–10 March 1995; ICDE’95; pp. 3–14.

37. Zaki, M.J. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Mach. Learn. 2001, 42, 31–60. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2018.02.035
http://dx.doi.org/10.1137/1.9781611972740.51
http://dx.doi.org/10.1002/widm.1242
http://dx.doi.org/10.1016/j.future.2019.09.024
http://dx.doi.org/10.1007/s10115-016-0989-x
http://dx.doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00132
http://dx.doi.org/10.1145/2339530.2339636
http://dx.doi.org/10.1007/978-3-642-20149-3_18
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00392
http://dx.doi.org/10.1016/j.ins.2019.10.033
http://dx.doi.org/10.1109/TCYB.2020.2970176
http://www.ncbi.nlm.nih.gov/pubmed/32142464
http://dx.doi.org/10.1016/j.knosys.2022.109702
http://dx.doi.org/10.1109/ICSMC.2009.5346333
http://dx.doi.org/10.1142/S0219622012500307
http://dx.doi.org/10.1007/s10489-016-0890-z
http://dx.doi.org/10.1109/ICDM.2013.148
http://dx.doi.org/10.1145/2339530.2339546
http://dx.doi.org/10.1007/s10489-018-1155-9
http://dx.doi.org/10.1016/j.protcy.2012.10.053
http://dx.doi.org/10.1016/j.ins.2019.11.018
http://dx.doi.org/10.1023/A:1007652502315

Appl. Sci. 2023, 13, 12340 26 of 27

38. Ayres, J.; Flannick, J.; Gehrke, J.; Yiu, T. Sequential PAttern Mining Using a Bitmap Representation. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’02, Edmonton, AB, Canada, 23–26 July
2002; ACM: New York, NY, USA, 2002; pp. 429–435. [CrossRef]

39. Yang, Z.; Wang, Y.; Kitsuregawa, M. LAPIN: Effective Sequential Pattern Mining Algorithms by Last Position Induction for
Dense Databases. In Proceedings of the International Conference on Database Systems for Advanced Applications, DASFAA’07,
Bangkok, Thailand, 9–12 April 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1020–1023.

40. Han, J.; Pei, J.; Mortazavi-Asl, B.; Chen, Q.; Dayal, U.; Hsu, M.C. FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining.
In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’00, Boston,
MA, USA, 20–23 August 2000; ACM: New York, NY, USA, 2000; pp. 355–359. [CrossRef]

41. Pei, J.; Han, J.; Mortazavi-Asl, B.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M. PrefixSpan: Mining Sequential Patterns by Prefix-
Projected Growth. In Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2–6 April
2001; IEEE Computer Society: Washington, DC, USA, 2001; pp. 215–224.

42. Chiu, D.Y.; Wu, Y.H.; Chen, A. An efficient algorithm for mining frequent sequences by a new strategy without support counting.
In Proceedings of the 20th International Conference on Data Engineering, Boston, MA, USA, 2 April 2004; IEEE Computer Society:
Washington, DC, USA, 2004; pp. 375–386. [CrossRef]

43. Ahmed, C.F.; Tanbeer, S.K.; Jeong, B.S. A Novel Approach for Mining High-Utility Sequential Patterns in Sequence Databases.
Etri J. 2010, 32, 676–686. [CrossRef]

44. Lan, G.C.; Hong, T.P.; Tseng, V.S.; Wang, S.L. Applying the maximum utility measure in high utility sequential pattern mining.
Expert Syst. Appl. 2014, 41, 5071–5081. [CrossRef]

45. Alkan, O.K.; Karagoz, P. CRoM and HuspExt: Improving Efficiency of High Utility Sequential Pattern Extraction. IEEE Trans.
Knowl. Data Eng. 2015, 27, 2645–2657. [CrossRef]

46. Wang, J.; Huang, J.; Chen, Y. On efficiently mining high utility sequential patterns. Knowl. Inf. Syst. 2016, 49, 597–627. [CrossRef]
47. Zihayat, M.; Davoudi, H.; An, A. Top-k utility-based gene regulation sequential pattern discovery. In Proceedings of the 2016

IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; pp. 266–273.
[CrossRef]

48. Zhang, C.; Du, Z.; Gan, W.; Yu, P.S. TKUS: Mining top-k high utility sequential patterns. Inf. Sci. 2021, 570, 342–359. [CrossRef]
49. Hong, T.P.; Lee, C.H.; Wang, S.L. Effective utility mining with the measure of average utility. Expert Syst. Appl. 2011, 38, 8259–8265.

[CrossRef]
50. Lin, C.W.; Hong, T.P.; Lu, W.H. Efficiently Mining High Average Utility Itemsets with a Tree Structure. In Proceedings of the

Intelligent Information and Database Systems, Hue City, Vietnam, 24–26 March 2010; Nguyen, N.T., Le, M.T., Świątek, J., Eds.;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 131–139.

51. Lu, T.; Vo, B.; Nguyen, H.T.; Hong, T. A New Method for Mining High Average Utility Itemsets. In Proceedings of the
Computer Information Systems and Industrial Management–13th IFIP TC8 International Conference, CISIM 2014, Ho Chi Minh
City, Vietnam, 5–7 November 2014; Saeed, K., Snásel, V., Eds.; Proceedings; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2014; Volume 8838, pp. 33–42. [CrossRef]

52. Yun, U.; Kim, D. Mining of high average-utility itemsets using novel list structure and pruning strategy. Future Gener. Comput.
Syst. 2017, 68, 346–360. [CrossRef]

53. Lin, J.C.W.; Shao, Y.; Fournier-Viger, P.; Djenouri, Y.; Guo, X. Maintenance Algorithm for High Average-Utility Itemsets with
Transaction Deletion. Appl. Intell. 2018, 48, 3691–3706. [CrossRef]

54. Lin, J.C.W.; Ren, S.; Fournier-Viger, P.; Hong, T.P. EHAUPM: Efficient High Average-Utility Pattern Mining With Tighter Upper
Bounds. IEEE Access 2017, 5, 12927–12940. [CrossRef]

55. Wu, J.M.T.; Lin, J.C.W.; Pirouz, M.; Fournier-Viger, P. TUB-HAUPM: Tighter Upper Bound for Mining High Average-Utility
Patterns. IEEE Access 2018, 6, 18655–18669. [CrossRef]

56. Truong, T.; Duong, H.; Le, B.; Fournier-Viger, P.; Yun, U. Efficient high average-utility itemset mining using novel vertical weak
upper-bounds. Knowl.-Based Syst. 2019, 183, 104847. [CrossRef]

57. Truong, T.; Duong, H.; Le, B.; Fournier-Viger, P. Efficient Vertical Mining of High Average-Utility Itemsets Based on Novel
Upper-Bounds. IEEE Trans. Knowl. Data Eng. 2019, 31, 301–314. [CrossRef]

58. Le, B.; Truong, T.C.; Duong, H.V.; Fournier-Viger, P.; Fujita, H. H-FHAUI: Hiding frequent high average utility itemsets. Inf. Sci.
2022, 611, 408–431. [CrossRef]

59. Kim, H.; Yun, U.; Baek, Y.; Kim, J.; Vo, B.; Yoon, E.; Fujita, H. Efficient list based mining of high average utility patterns with
maximum average pruning strategies. Inf. Sci. 2021, 543, 85–105. [CrossRef]

60. Lin, J.C.; Li, T.; Pirouz, M.; Zhang, J.; Fournier-Viger, P. High average-utility sequential pattern mining based on uncertain
databases. Knowl. Inf. Syst. 2020, 62, 1199–1228. [CrossRef]

61. Wu, Y.; Lei, R.; Li, Y.; Guo, L.; Wu, X. HAOP-Miner: Self-adaptive high-average utility one-off sequential pattern mining. Expert
Syst. Appl. 2021, 184, 115449. [CrossRef]

62. Wu, Y.; Geng, M.; Li, Y.; Guo, L.; Li, Z.; Fournier-Viger, P.; Zhu, X.; Wu, X. HANP-Miner: High average utility nonoverlapping
sequential pattern mining. Knowl.-Based Syst. 2021, 229, 107361. [CrossRef]

63. Truong, T.C.; Duong, H.V.; Le, B.; Fournier-Viger, P.; Yun, U. Frequent high minimum average utility sequence mining with
constraints in dynamic databases using efficient pruning strategies. Appl. Intell. 2022, 52, 6106–6128. [CrossRef]

http://dx.doi.org/10.1145/775047.775109
http://dx.doi.org/10.1145/347090.347167
http://dx.doi.org/10.1109/ICDE.2004.1320012
http://dx.doi.org/10.4218/etrij.10.1510.0066
http://dx.doi.org/10.1016/j.eswa.2014.02.022
http://dx.doi.org/10.1109/TKDE.2015.2420557
http://dx.doi.org/10.1007/s10115-015-0914-8
http://dx.doi.org/10.1109/BIBM.2016.7822529
http://dx.doi.org/10.1016/j.ins.2021.04.035
http://dx.doi.org/10.1016/j.eswa.2011.01.006
http://dx.doi.org/10.1007/978-3-662-45237-0_5
http://dx.doi.org/10.1016/j.future.2016.10.027
http://dx.doi.org/10.1007/s10489-018-1180-8
http://dx.doi.org/10.1109/ACCESS.2017.2717438
http://dx.doi.org/10.1109/ACCESS.2018.2820740
http://dx.doi.org/10.1016/j.knosys.2019.07.018
http://dx.doi.org/10.1109/TKDE.2018.2833478
http://dx.doi.org/10.1016/j.ins.2022.07.027
http://dx.doi.org/10.1016/j.ins.2020.07.043
http://dx.doi.org/10.1007/s10115-019-01385-8
http://dx.doi.org/10.1016/j.eswa.2021.115449
http://dx.doi.org/10.1016/j.knosys.2021.107361
http://dx.doi.org/10.1007/s10489-021-02520-1

Appl. Sci. 2023, 13, 12340 27 of 27

64. Truong, T.C.; Duong, H.V.; Le, B.; Fournier-Viger, P.; Yun, U. Mining interesting sequences with low average cost and high
average utility. Appl. Intell. 2022, 52, 7136–7157. [CrossRef]

65. Han, J.; Cheng, H.; Xin, D.; Yan, X. Frequent pattern mining: Current status and future directions. Data Min. Knowl. Discov. 2007,
432, 55–86. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10489-021-02505-0
http://dx.doi.org/10.1007/s10618-006-0059-1

	Introduction
	Related Work
	Sequential Pattern Mining
	High-Utility Sequential Pattern Mining
	Top-k High-Utility Sequential Pattern Mining
	High Average-Utility Pattern Mining

	Mining Top-k High Average-Utility Pattern
	Proposed TKAUS Algorithm
	Data Structure and Projection Strategies
	Sequential Average-Utility-Raising Strategies
	Upper Bounds and Pruning Strategies
	Proposed TKAUS Algorithm
	Complexity Analysis of the Proposed TKAUS Algorithm

	Experiments
	Experimental Settings
	Strategy Performance and Effectiveness Analysis
	Speed Performance and Efficiency Analysis
	Number of Candidates
	Memory Overhead Evaluation
	Scalability Evaluation
	Limitations

	Conclusions
	References

