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Abstract: Ballasted railway tracks can be modeled using reduced/simplified models composed
of several layers of discrete components. This paper deals with the two-layer model, which is
very popular due to its computational efficiency. In order to provide some recommendations for
track design, it is necessary to identify which set of parameters leads to some irregular/unexpected
behavior. In this paper, irregularities are investigated at three levels, namely, (i) the critical velocity of
a moving constant force, (ii) the instability of one moving mass, and (iii) the instability of two moving
masses. All results are presented in a dimensionless form to cover a wide range of real parameters.
Irregular cases are identified by sets of parameters leading to them, which is the main finding of
this paper; then, general conclusions are drawn. Regarding the method, all results are obtained
analytically or semi-analytically, where “semi” refers to solving the roots of a given polynomial using
predefined numerical procedures in symbolic software. No numerical integration is involved in any
of the results presented. This means that the results are highly accurate and refer to exact values, so
any kind of parametric or sensitivity analyses is readily possible.

Keywords: integral transforms; contour integration; ballasted railway track; critical velocity; instability
of moving inertial objects

1. Introduction

The two-layer railway track model is widely used by other researchers to approximate
several phenomena. Here, it will be used to identify the set of parameters under which it
exhibits irregular behavior, i.e., behavior that is not expected.

In recent decades, a considerable amount of research has been presented in this field,
proving that it is a field of great interest and still very active thanks to the current trend of
decarbonization, which requires the transfer of road transport to rail. With this in mind,
it is not possible to cover all relevant research in this section. Emphasis will be placed on
railway-related research implementing similar solution techniques, avoiding finite and
boundary element methods in this review.

Published works can be classified according to several criteria. First, a separation can
be made according to the structure type, into finite or infinite, or according to moving
objects, into structures subjected to moving force(s) or moving inertial object(s) such as
mass(es), oscillator(s), or even simplified vehicle models. After that, a separation can be
made according to the supporting structure arrangement, into continuous (2D or 3D) or
discrete, which usually consists of several layers. A further separation can distinguish
between fully linear and non-linear behavior of the supporting structure components.

When building a literature review, it is customary to start with Frýba’s monograph [1],
which includes several cases mentioned in the previous paragraph. The moving force
problem is generally much simpler, and fully analytical solutions for infinite structures are
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given in [2,3]. The critical velocity is also determined, but in such structures with massless
foundations, waves cannot propagate in the foundation, so the conclusions are unrealistic.
The results are more realistic when the foundation mass is taken into account [4–6].

In general, and especially in railway applications, the beam is modeled according
to the Euler–Bernoulli theory. Some works are devoted to the analysis of the differences
induced in the results by the implementation of linear and non-linear beam theories.
This is exemplified on an elastically supported finite beam without an elastic foundation
traversed by a moving mass in [7,8], where a similar analysis is made and results obtained
using different beam theories are compared. A multi-span beam is analyzed in [9]. The
main focus is on the mechanical behavior of the beam, modeled with linear viscoelastic
material according to the Kelvin–Voight model, which is suitable for concrete structures
but not for applications where the beam is represented by a steel rail. In all these works,
besides time discretization, spatial discretization is also used, followed by a numerical
solution of the governing equations, which is somewhat beyond the scope of this overview.
Although parametric analyses are conducted to extract the maximum deflections, the issue
of instability is not addressed, and since there is no elastic foundation, the conclusions
drawn are not directly relevant to the analysis presented in this paper.

Pioneering works on the instability of moving inertial objects include [10–12]. In [10,11],
several masses moving on a finite beam are considered, and in [12], the problem of one mass
moving on a viscoelastically supported infinite beam is solved. The problem of one moving
mass is further described in detail in [13,14], where the instability is determined using the
D-decomposition method. The physical explanation of the phenomenon is related to the
anomalous Doppler waves radiated by the moving object. Mathematically, such a situation
is detected due to the exponential increase in vibration amplitudes, implying that the steady-
state solution is never reached even in the presence of damping. Several moving inertial
objects on finite structures have been recently analyzed in [15–17]. Other works about infinite
structures have also implemented the D-decomposition method together with the dynamic
Green’s function [18–21] or integral transforms [22,23]. It is commonly assumed that the mass
is in permanent contact with the beam [22,23]; however, in some works, a contact spring is
introduced [18–21]. The critical velocity of the moving force is then usually not analyzed.
A connection with the critical velocity and a different approach to identifying instability by
tracing the instability lines is presented in [24,25]. This approach is also suitable for the problem
of two moving proximate masses, where a strong dynamic interaction can significantly alter
the onset of instability. Using the mentioned approach, the conditions under which the results
can be superposed can also be derived, and cases where the dynamic interaction induces
instability at a velocity lower than the lowest critical velocity of the moving force can be
identified. Additionally, this approach can be readily extended to moving oscillators.

Recent works deal with more complicated moving objects or foundation [26–28]. Further
extensions to large deflections are considered in [29]. The change in stiffness of the Winkler
foundation introduced with a smooth variation is analyzed in [30,31]. A moving force is
applied in [30], while a moving oscillator is applied in [31]. A comparison of possible methods
for solving similar problems is presented in [32]. When inhomogeneity is considered, the
moving element method, successfully applied in [33–36], or the moving window [37] should
also be mentioned, because they are efficient in dealing with such situations. In [36], a
computationally efficient and accurate numerical method for the dynamic response of a
maglev train passing on an “infinitely” long multi-span bridge is proposed. The results are
validated against test cases from the literature. A novel model for the dynamic interaction of a
beam with its foundation is introduced in [38]. It is shown that the Winkler and Pasternak
moduli are not constant but time-dependent, because they are influenced by the beam–
foundation interaction. Therefore, they are determined as a part of the solution. The mass that
is dynamically activated in the foundation is determined in a similar way.

The two-layer model of the railway track is quite popular and has already been used
to accomplish several objectives, like, e.g., in [39,40]. The three-layer model is more realistic,
and its applicability to represent full finite element models is dealt with in [41] where
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the question of the critical velocity of the moving force is also briefly discussed. Among
other recent works on layered models, Dimitrovová [42] can be mentioned. A very long
finite three-layer model is considered in [43]. The modal expansion method is applied to a
reduced model to increase computational efficiency. A control volume is used to reduce the
computational domain, and the structure is traversed by a multi-body model of the vehicle.

Recently, artificial intelligence, machine learning and several other metaheuristic algo-
rithms are gaining popularity and have been successfully implemented in identification of
the critical velocity of a railway track [44]. Such an approach is fully justified by the fact that
the track corridor includes several track sections, and a separate analysis of each of them
would be computationally demanding. However, the present paper is dealing with a much
simpler situation where the track section is longitudinally homogeneous, and therefore, it is
possible to derive (semi)analytical results where all parameter influences are directly present.
Therefore, there is no need to seek help in predictions by metaheuristic approaches.

In this paper, the two-layer model is analyzed from a different point of view. The goal
is to establish the range of parameters leading to an irregular behavior, where “irregular”
means “different than expected”. The model is introduced in Section 2, where three
irregular situations are described in detail. Furthermore, the range of allowable parameters
is identified in Section 3. After that, three sections are devoted to the three situations where
some irregularity occurs. Finally, some conclusions are drawn in Section 7.

There are no published works that deal so widely with the identified irregularities
and summarize the results over a wide range of admissible parameters, which identifies
the novel contribution of this paper. Such analysis has a practical importance because
unexpected behavior can complicate the railway track design. Some results concerning the
two-layer model have already been included in [25,42]. However, [42] is focused on the
comparison of layered models, while [25] is specifically dedicated to the identification of
full beam vibrations by implementing a new form of results presentation. The present paper
has a different focus, and the main objective is to identify sets of parameters leading to
unexpected results, which is a problem that has not been analyzed in [25,42] or elsewhere.

2. The Model: Governing Equations and Irregular Situations

The track is modeled as an infinite beam standing for the rail, supported by linear
spring–damper elements representing the rail pads, kp and cp, point masses modeling
the sleeper half-masses, Ms, and supported further by linear spring–damper elements
representing the vertical stiffness and damping of all other layers, k f and c f , that is the
ballast, sub-ballast, foundation and other layers that might be placed below the sleepers.
The rail may be subjected to an axial force N. The model is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 29 
 

addition, the main simplification of the two-layer model affects the foundation 
model, and therefore, additional details regarding higher-order beam theories do not 
provide more realistic results. 

• The vertical displacements are measured from the equilibrium position determined 
by the weight of the model’s components. 

• The initial conditions are assumed to be homogeneous; however, this does not affect 
either the critical velocity or the conditions for instability. 

• Mass horizontal position is determined by its velocity. 
• No friction is assumed to act at the contact point. 
• The load and vertical displacements are considered positive downward. 
• As usual in several applications, the acting force may or may not represent the mov-

ing mass weight. 
• It is assumed that the moving masses are always in contact with the beam, which 

means that the contact is assumed as tight, and, therefore, the mass displacement and 
the displacement of the corresponding beam axis position are the same at all times. 
An extension to a situation with a linear contact spring can be easily implemented, 
but it is not presented in this paper. 

 
Figure 1. The two-layer model of a ballasted railway track subjected to an axial force and traversing 
by two proximate masses acted upon by constant vertical forces. 

The equations of motion of the model depicted in Figure 1 in fixed coordinates are 

( ) ( ) ( )+ + + − + − =, , , , , ,xxxx xx tt p t t pEIw Nw mw c w u k w u p x t  (1)

( ) ( )− − − − + − + =, , , , , 0s tt p t t p f s xx f tM u c w u k w u k u k u c u  (2)

where x  is the spatial coordinate and t  is the time. In addition to the parameters de-
fined in the first paragraph of this section, EI  and m  are the bending stiffness and mass 
per unit length of the beam, ( ),w x t  and ( ),u x t  are the unknown vertical displacement 

fields of the beam and discrete masses, respectively, and ( ),p x t  means the load. Deriv-
atives are denoted by the respective variables in subscripts preceded by a comma. The 
load is given by 

( ) ( )( ) ( ) ( )( ) ( )δ δ= − − + − −1 1 01, 1 2 2 02, 2, tt ttp x t P M w t x x P M w t x x  (3)

where δ  is the Dirac delta function, 1P  and 2P  are the moving forces, 1M  and 2M  
are the moving masses, v   is the constant velocity and = −2 1d x x   is the distance be-
tween the moving masses. Without affecting generality too much, all parameters are as-
sumed to be distributed to simplify the solution. Thus, discrete values are divided by the 
distance between the sleepers sl , which will result in continuous supports. In Figure 1, 
there is also a shear component sk  because the model should have some shear stiffness. 
Placing it between the sleepers is not very realistic, but this is immaterial for the analysis. 

v
2P

2M
1P

1M
v

x

w

fk

N N

fc

d

u

pk pc

sk

,EI m

sM

Figure 1. The two-layer model of a ballasted railway track subjected to an axial force and traversing
by two proximate masses acted upon by constant vertical forces.

The main assumptions for the analysis are listed below:

• The beam is prismatic and straight, and its material is homogeneous and isotropic.
• The beam may be subjected to an axial force acting on its axis (considered positive

when inducing compression).
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• The beam obeys linear elastic Euler–Bernoulli theory. Other researchers have found
this beam theory adequate for modeling the steel rail because the beam height is
small with respect to the length affected by the main vibrations. Differences in results
obtained by other beam theories are noticeable only at very high frequencies [45]. In
addition, the main simplification of the two-layer model affects the foundation model,
and therefore, additional details regarding higher-order beam theories do not provide
more realistic results.

• The vertical displacements are measured from the equilibrium position determined by
the weight of the model’s components.

• The initial conditions are assumed to be homogeneous; however, this does not affect
either the critical velocity or the conditions for instability.

• Mass horizontal position is determined by its velocity.
• No friction is assumed to act at the contact point.
• The load and vertical displacements are considered positive downward.
• As usual in several applications, the acting force may or may not represent the moving

mass weight.
• It is assumed that the moving masses are always in contact with the beam, which

means that the contact is assumed as tight, and, therefore, the mass displacement and
the displacement of the corresponding beam axis position are the same at all times.
An extension to a situation with a linear contact spring can be easily implemented, but
it is not presented in this paper.

The equations of motion of the model depicted in Figure 1 in fixed coordinates are

EIw,xxxx + Nw,xx + mw,tt + cp(w,t − u,t) + kp(w− u) = p(x, t) (1)

Msu,tt − cp(w,t − u,t)− kp(w− u) + k f u− ksu,xx + c f u,t = 0 (2)

where x is the spatial coordinate and t is the time. In addition to the parameters defined in
the first paragraph of this section, EI and m are the bending stiffness and mass per unit
length of the beam, w(x, t) and u(x, t) are the unknown vertical displacement fields of the
beam and discrete masses, respectively, and p(x, t) means the load. Derivatives are denoted
by the respective variables in subscripts preceded by a comma. The load is given by

p(x, t) = (P1 −M1w01,tt(t))δ(x− x1) + (P2 −M2w02,tt(t))δ(x− x2) (3)

where δ is the Dirac delta function, P1 and P2 are the moving forces, M1 and M2 are the
moving masses, v is the constant velocity and d = x2 − x1 is the distance between the
moving masses. Without affecting generality too much, all parameters are assumed to
be distributed to simplify the solution. Thus, discrete values are divided by the distance
between the sleepers ls, which will result in continuous supports. In Figure 1, there is
also a shear component ks because the model should have some shear stiffness. Placing it
between the sleepers is not very realistic, but this is immaterial for the analysis. A different
treatment must be implemented to make this value distributed, because the condition of
uniform distribution must be applied on the inverse value. Therefore, if for a particular
track a value of ks with unit N/m is used, then ks = ksls with the correct unit of N.

In Equation (3), w01(t) and w02(t) are the masses displacements. Owing to the as-
sumption of the tight contact, w0j(t) = w

(
xj, t

)
, j = 1, 2 holds with x1 = vt and x2 = vt + d.

Therefore, the relevant derivatives using the chain rule are

w01,tt(t) = v2w,xx(x, t) + 2vw,xt(x, t) + w,tt(x, t) with x = x1 (4)

w02,tt(t) = v2w,xx(x, t) + 2vw,xt(x, t) + w,tt(x, t) with x = x2 (5)

Subsequently, the loading term reads as follows:
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(
P1 −M1

(
w,tt(x, t) + 2vw,xt(x, t) + v2w,xx(x, t)

))
δ(x− vt)

+
(

P2 −M2
(
w,tt(x, t) + 2vw,xt(x, t) + v2w,xx(x, t)

))
δ(x− vt− d)

(6)

Nevertheless, the solution will be presented in moving coordinates r = vx− t, t = t,
leading to the following system of equations (compare with [24,25,42]):

EIw,rrrr + Nw,rr + m
(
w,tt − 2vw,rt + v2w,rr

)
+ cp(w,t − vw,r − u,t + vu,r)

+kp(w− u) = (P1 −M1w,tt)δ(r) + (P2 −M2w,tt)δ(r− d)
(7)

Ms
(
u,tt − 2vu,rt + v2u,rr

)
− cp(w,t − vw,r − u,t + vu,r)

−kp(w− u)− ksu,rr + k f u + c f (u,t − vu,r) = 0 (8)

In the following text, the term “active point” will be used to spatially locate a moving
object on a beam. The moving object can be either a force or a mass upon which the force
acts. The designation “critical velocity” will be used for the critical velocity of a moving
constant force. In this sense, it corresponds to a resonance effect because if the force is
moving with its critical velocity in the absence of damping, then the steady-state solution
is never achieved because the deflections tend to infinity and never stabilize. The critical
velocity also indicates the separation between two distinct types of the steady-state beam
shape. Up to the lowest critical velocity, approaching the lowest value from below, the
maximum deflection of the steady-state solution over the entire beam is achieved at the
active point. The minimum deflection (in absolute value) is significantly lower than the
maximum. As already mentioned, there is no solution for the critical velocity. For higher
velocities, zero deflection is achieved at the active point, and maximum and minimum
deflections across the entire beam are the same. Similar properties can be found at higher
critical velocity; in particular, the jump to zero deflection at the active point when crossing
the critical velocity is preserved.

Since the model has two layers, it is expected to have two critical velocities. However,
by analyzing the equations, it can be shown that there will always be one or three resonances.
In the case of three resonances, after sorting them by numerical value, the value in the
middle will identify the so-called “false critical velocity” [42]. This means that resonance
will occur in the sense that a steady-state solution will never be reached, but the expected
properties listed above will not be met. Additionally, it will be shown that the false critical
velocity has no effect on stability. The regular case is therefore defined as the case with three
resonances and the irregular case is therefore defined as the case with only one resonance.
In the case of one resonance, the missing critical velocity has to be supplemented with the
so-called “pseudocritical velocity”, which will always be lower than the critical velocity.

To access the instability conditions, either for one or two moving masses, instability
lines will be traced in the velocity-moving mass plane. The approach presented here is
simpler than the D-decomposition method used by other authors [13,14,18–23]. It simply
means searching for the real-valued mass induced frequency that fulfills the characteristic
equation in a damped case. This is because such real-valued mass induced frequency
always marks the separation between the regions with a stable and unstable unsteady
harmonic part of the full solution.

In the case of one moving mass, instability never occurs in the subcritical velocity
range; however, it is necessary to highlight that in the case of only one resonance, the
pseudocritical velocity must play the role of the lower critical velocity. In the regular
case, there are only two instability line branches, which tend to infinite moving mass
near (pseudo)critical velocities and to zero moving mass when the velocity is approaching
infinity. The instability branches for lower damping are below those for higher damping
and do not intersect. Moreover, the branches asymptotically approach (pseudo)critical
velocities from the left in a better way than from the right. The irregular cases are thus
characterized by a situation where the instability branches intersect the higher critical
velocity. In such a case, there are usually more than two branches, and the additional ones
can also be closed.
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Unfortunately, in the case of two moving masses, the (pseudo)critical velocities do
not provide any reasonable indication. There is an infinite number of instability branches,
whose asymptotes are not linked to any of the (pseudo)critical velocities, and these branches
generally intersect both (pseudo)critical velocities. The irregular situation is thus identified
as the one where the dynamic interaction shifts the onset of instability into the subcritical
range of velocities. However, since mathematically, the lower (pseudo)critical velocity
is always intersected by an instability branch, this condition will be considered as an
indication for the irregular case only when this intersection occurs for a realistic value of
the moving mass.

It should be noted that the instability branches cannot terminate suddenly. A detailed
analysis has shown that any branch always has a continuation until it is closed or tends
asymptotically to infinite or zero moving mass. The asymptotic tendency has its origin in
three factors: (i) the moving mass tends to infinity because the real-valued mass-induced
frequency tends to zero; (ii) the moving mass tends to infinity because the equivalent
flexibility of the supporting structure tends to zero; and (iii) the moving mass tends to zero
because the velocity tends to infinity.

3. Range of Allowable Values

In the following discussion, the range of allowable values is specified. As for the rail, the
range of possible values is quite narrow; basically, there are two guide sets of values for the
54E1 and 60E1 rails, determining the limits on EI and m. More variability can be attributed to
other data. They are listed in Table 1 and correspond to the values given in [46–48].

Table 1. Range of typical values of the main components of the two-layer model.

Parameter Approximate Range

EI (MNm2) 4.9–6.4

m (kg/m) distributed 54–60

Ms (kg) concentrated 40–160 [46]

kp (MN/m) concentrated 20–5000 [46]

k f (MN/m2) distributed 0.22–1000 [47,48]

The range of allowable parameters is defined with respect to their dimensionless
counterparts, for which a reference Winkler beam is selected. First, the dimensionless
moving spatial coordinate is introduced as

ξ = χr where χ =
4

√
k f

4EI
(9)

The other values are related to the reference Winkler beam by

µs =
Ms

m
, κp =

kp

k f
(10)

ηp =
cp

2
√

mk f

, η f =
c f

2
√

mk f

, ηN =
N

2
√

k f EI
, ηs =

ks

2
√

k f EI
(11)

where for simplicity, the previous designations are kept, but all values (except for N) are
assumed as longitudinally distributed.

Therefore, the decisive parameters are µs and κp. Assuming that the sleepers are
spaced from ls = 0.545 m [49,50] to ls = 0.711 m [50], this together with values in Table 1
identifies a relatively narrow interval for µs ∈ (1; 5.5), but it gives a very large variability
for κp ∈ (0.03; 40000). A typical spacing in Portugal [51], in most European and some
other countries, e.g., India, is 0.6 m. According to [50], ls should be related to the sleeper
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type and ballast height. There are studies analyzing how significant savings could be
achieved by increasing ls [52]; nevertheless, these are mainly theoretical studies, and larger
spacings than specified above are not yet common in practice. For practical reasons, a
shorter distance is inadequate, having in mind the typical sleeper base.

There is little data on shear stiffness, so it will be set to zero in most examples. Non-
zero values would make the model generally stiffer. Similarly, a compressive normal force
would make the model softer and a tensile one stiffer. However, since this is not the main
concern, it will also be set to zero in most examples. Regarding the viscous damping
coefficients, very different values can be found in the literature, so it was decided to directly
vary the dimensionless parameters.

4. Critical Velocity of a Constant Moving Force

To determine the critical velocity of a moving force, Equations (1)–(3) are first switched
to moving coordinates and then changed to a dimensionless form. After removing the
time-dependent terms not required for the steady-state regime, they read as

w̃,ξξξξ + 4α2w̃,ξξ + 4ηNw̃,ξξ + 8ηpα
(
−w̃,ξ + ũ,ξ

)
+ 4κp(w̃− ũ) = 8ηP1 δ(ξ) (12)

µsα2ũ,ξξ − ηsũ,ξξ − 2ηpα
(
−w̃,ξ + ũ,ξ

)
− κp(w̃− ũ)− 2η f αũ,ξ + ũ = 0 (13)

where, besides the parameters specified in Equations (9)–(11),

w̃ =
w

wst
, ũ =

u
wst

with wst =
P1χ

2k f
, and ηP1 =

P1

P1
(14)

vre f =
4

√
4k f EI

m2 =
1
χ

√
k f

m
, α =

v
vre f

(15)

Next, the Fourier transform is applied. In the transferred space, it is more convenient
to write the equations in the matrix form to facilitate the analytical solution[

D1 + D2 −D2
−D2 D2 + D3

]{
W
U

}
=

{
2ηP1

0

}
(16)

where

D1(p) =
p4

4
− α2 p2 − ηN p2 (17)

D2(p) = −2iηpαp + κp (18)

D3(p) = −µsα2 p2 − 2iη f αp + ηs p2 + 1 (19)

and W, U and p represent w̃, ũ and ξ in the Fourier space. Since the critical velocities should
be determined without damping, expressions (18) and (19) can be further simplified.

To analytically determine the critical velocity, it is necessary to find at least one real
double p-root of the determinant of system (16). This means finding a real-valued solution
to a system of two equations, where the first one is the determinant and the second one is
its derivative with respect to p. The determinant can be written as a cubic polynomial with
real coefficients for p = p2, and the second equation as a quadratic polynomial with real
coefficients for p

p3(µsα2 − ηs
)
− p2(4(µsα2 − ηs

)(
ηN + α2)+ κp + 1

)
+4p

(
α2( κpµs + κp + 1

)
+ ηN

(
κp + 1

)
− ηs κp

)
− 4 κp = 0

(20)
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3p2(µsα2 − ηs
)
− 2p

(
4
(
µsα2 − ηs

)(
ηN + α2)+ κp + 1

)
+4
(
α2(κpµs + κp + 1

)
+ ηN

(
κp + 1

)
− ηs κp

)
= 0

(21)

In order to express directly α2, Equation (21), multiplied by p, should be subtracted
from Equation (20) multiplied by 2. Then

α2 =
8 κp − p3ηs − 4p

(
ηN
(

κp + 1
)
− ηs κp

)
4p
(

κpµs + κp + 1
)
− p3µs

(22)

which is simplified when ηN = ηs = 0 to

α2 =
8 κp

4p
(

κpµs + κp + 1
)
− p3µs

(23)

Thus, finding the real double p-root is an easy task using the predefined root-finding
procedures in any symbolic software. Equation (22) or Equation (23) is substituted into
Equation (21), which (for the given data κp, µs, ηs and ηN) can be solved for valid p and
consequently p and α.

The irregular case was defined as the case with only one resonance. This analysis
is presented for the simpler case of ηN = ηs = 0. After substituting Equation (23) into
Equation (21), a cubic equation is obtained for p2 = p4. Its discriminant is simplified to

µ3
s κ3

p
(
κp − 8

)
+ 3µ2

s κ2
p
(
κp − 2

)2
+ 3µsκp

(
κ3

p − 3κp − 2
)
+
(
κp + 1

)4 (24)

The irregular case occurs when expression (24) is negative, which means that there
is only one real root for p2 = p4. Expression (24) is a fourth-order polynomial for κp and
third-order polynomial for µs. To identify the separation between three and one resonance,
µs is solved analytically as a function of κp.The analytical values of µs are given by

θ =
1
3

arccos

(
2B3

1 − 9B1B2 + 27B3

2
(

B2
1 − 3B2

)3/2

)
(25)

µsj =
B1

3
+

2
3

√
B2

1 − 3B2 cos
(

θ + (j− 1)
2π

3

)
, j = 1, 2, 3 (26)

where

B1 = −
3
(
κp − 2

)2

κp
(
κp − 8

) (27)

B2 =
3
(

κ3
p − 3κp − 2

)
κ2

p
(
κp − 8

) (28)

B3 = −
(
κp + 1

)4

κ3
p
(
κp − 8

) (29)

The separation of regions with three and only one resonance is shown in Figure 2, where
irregular stands for one resonance, regular stands for three resonances and the cases falling on
the boundary have, in fact, two resonances because one of the three resonances is doubled.

The curve in Figure 2 is obtained by plotting µs3 until κp = 2 and then by µs1 for larger
κp. It has an asymptotic tendency to κp = 8, but this only occurs for µs outside the allowable
range. It can be observed that for µs > 1, there is always an open interval of κp for which
there is only one resonance. For µs = 1, there is only a double root κp = 1 leading to a
collapsed interval, and therefore, one of the three resonances is doubled. The same happens
when the selection κp and µs lies on the curve indicated in Figure 2. In these cases, the critical
velocity properties are suppressed, because the false critical velocity is decisive and the case
is irregular.
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Figure 2. Separation of regions with one and three resonances in κp-µs plane for the simplified case
with ηN = ηs = 0.

The results of the parametric analyses of four selected cases are presented in Figure 3;
in all of them, ηN = ηs = 0 and for better clarity, the scale does not start at α = 0. As an
example for the regular situation, µs = 1, κp = 0.36 are selected, and for the irregular one:
µs = 1.1, κp = 0.6. In the regular case, as shown in Figure 3a, it can be seen that the analytically
determined values for the resonances 0.681, 0.707 and 0.913 indicate the lower critical velocity
(αcr1), the false critical velocity (α f cr) and the higher critical velocity (αcr2), as predicted. In
the irregular case, as shown in Figure 3b, it is observed that the only analytically determined
value of 0.996 is αcr2 and αcr1 is replaced by the pseudocritical velocity (αpcr) with a value of
0.692. Other cases concern the situations at the boundary of the domain shown in Figure 2, i.e.,
when one of the roots is double. Figure 3c shows when µs = 1 and κp = 1, which corresponds
to the case where the interval of irregular cases is collapsed to a single value, proving that
αcr1 is suppressed by α f cr (both equal to 0.707) and the case is irregular with a unique αcr2 of
1.125. The same happens in the case plotted in Figure 3d for µs = 3 and κp = 0.125, which
corresponds to the lower end of the irregular case interval, where αcr1 is again suppressed by
α f cr (both equal to 0.553) and the case is irregular with a unique αcr2 of 0.658.
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This analysis is consistent with correspondence with finite beams according to [53]. As
explained in [42], αcrj corresponds to local minima in the resonant velocity plot, while α f cr
corresponds to a local maximum, and the double root corresponds to the inflection point.

In conclusion, the irregular cases only mean that the first peak in displacements
cannot be found by solving for the resonances, and therefore, αpcr must be determined
by parametric analysis. This is important for two reasons. First, αcr may not provide the
relevant information about the lowest velocity where excessive vibrations occur. Second,
when it comes to instability, αpcr plays the role of αcr1 and therefore must be known in
advance to draw correct conclusions regarding the instability of moving inertial objects. In
addition, αpcr can be dominant like in Figure 3b or not. When it is barely visible, extreme
values are not always reached at the same α, and the determination of αpcr is ambiguous.

A very good estimate of αcr1 is provided by extension of the classical formula by
considering the involved stiffnesses in series and by summing the masses, i.e., by

αcr1 = 4

√
κp(

1 + κp
)
(1 + µs)

2

√
1 + ηs − ηN (30)

which is valid for higher κp, approximately for κp > 100, which, in fact, means that for such
values, αcr1 is practically independent on κp and thus

αcr1 ≈
1√

1 + µs

√
1 + ηs − ηN (31)

can also be used. This identifies the influential parameters on αcrj and thus suggests how
this value can be adapted to suit the needs. To complete the analysis, graphs of resonances
and an indication of the irregular cases is further summarized in Figures 4–7, also with the
influence on ηN and ηs.
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Figure 4. Graphs of αcr1 as a function of κp in logarithmic scale for discrete values of µs from 1 to 5.5
by 0.5 (ten curves) and ηN = ηs = 0: (a) κp > 100 (Formula (30) is not plotted because it perfectly
matches the analytical value; no irregular cases are detected); (b) κp ∈ 〈0.03; 100〉 (Formula (30) is
plotted in green but cannot be used as already mentioned; the region of irregular cases in agreement
with Figure 2 is clearly identified).
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Figure 5. Graphs of all resonances and the associated Fourier variable as a function of κp in logarithmic
scale, for discrete values of µs from 1 to 5.5 by 0.5 (ten curves) and ηN = ηs = 0: (a) αcr1 (orange), α f cr (blue)
and αcr2 (yellow) for κp ∈ 〈0.03; 100〉 (region of irregular cases is clearly identified); (b) Fourier variables
associated to the previous values in the same color scheme indicating the reason for missing resonances.
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Figure 6. Graphs of resonances as a function of κp in logarithmic scale for discrete values of µs from
1 to 5.5 by 0.5 (ten curves) and ηN = 0, ηs = 0.2: (a) αcr1 for κp > 100 (Formula (30) is not plotted
because it perfectly matches the semi-analytical value; no irregular cases are detected); (b) αcr1 (orange),
α f cr (blue) and αcr2 (yellow) for κp ∈ 〈0.03; 100〉 (region of irregular cases is clearly identified).

The results presented in Figures 4–7 allow one to conclude how αcr1 is affected by
model parameters as well as how to change the model parameters to increase or decrease
this value respecting the actual needs. The easiest way to alter parameter κp is by changing
the stiffness of the rail pads, µs can be altered by the sleepers’ selection; additionally, the
reference value k f can be adjusted by ballast layer height or by other reinforcing layers
below it. The changes resulting from modifying the sleepers’ spacing are not very important,
and introducing a different rail profile than that intended for such a railway is usually
not possible.
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5. Instability of One Moving Mass

To solve the problem of instability of one moving mass, the previously omitted time-
dependent terms must be included back; thus, Equations (12) and (13) are now given by

w̃,ξξξξ + 4ηNw̃,ξξ + 4α2w̃,ξξ + 4w̃,ττ − 8αw̃,ξτ + 8ηp
(
w̃,τ − αw̃,ξ − ũ,τ + αũ,ξ

)
+4κp(w̃− ũ) =

(
8ηP1 − 4ηM1 w̃,ττ

)
δ(ξ)

(32)

µs
(
ũ,ττ − 2αũ,ξτ + α2ũ,ξξ

)
− 2ηp

(
w̃,τ − αw̃,ξ − ũ,τ + αũ,ξ

)
−κp(w̃− ũ)− ηsũ,ξξ + ũ + 2η f

(
ũ,τ − αũ,ξ

)
= 0 (33)
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where
τ = χvre f t, ηM1 =

M1χ

m
(34)

In the solution method, the Laplace transform must be applied first and then the
Fourier one second. Initial conditions are assumed to be homogeneous. The following
definition is used for the Laplace transform

F̃(ξ, q) =
∞∫

0

f (ξ, τ)e−qτdτ (35)

to keep its formalism, q = iq will be used in the following with q designating the frequency.
In the transformed space, the equations can be again written in the matrix—formally the
same as Equation (16) except for the right-hand side[

D1 + D2 −D2
−D2 D2 + D3

]{
W
U

}
=

{
2ηP1

iq + ηM1 q2W̃(0, iq)
0

}
(36)

and also

D1(p, q) =
p4

4
− (q− αp)2 − ηN p2 (37)

D2(p, q) = 2iηp(q− αp) + κp (38)

D3(p, q) = −µs(q− αp)2 + 2iη f (q− αp) + ηs p2 + 1 (39)

which shows that whenever there was −αp in Equations (17)–(19) is now q− αp.
In Equation (36), there is still W̃(0, iq), which must be solved for. For this, first,

Equation (36) is solved for W(p, iq).

W(p, iq) =
1

D1(p, q) + D2(p,q)D3(p,q)
D2(p,q)+D3(p,q)

(
2ηP1

iq
+ ηM1 q2W̃(0, iq)

)
(40)

Now, one can perform the inverse Fourier transform to return to the Laplace image,
and by assuming ξ = 0, one obtains the following:

W̃(0, iq) =
2ηP1

iq
K(0, q)

2π − ηM1 q2K(0, q)
(41)

where

K(ξ, q) =
∞∫
−∞

eipξdp

D1(p, q) + D2(p,q)D3(p,q)
D2(p,q)+D3(p,q)

(42)

and finally

W̃(ξ, q) =
2ηP1

iq
K(ξ, q)

2π − ηM1 q2K(0, q)
(43)

where without losing generality, W̃(ξ, iq) was switched to W̃(ξ, q).
The final response in the time domain is obtained by the inverse Laplace trans-

form, which in most cases can be well approximated by the sum of residues as a result
of contour integration.

However, this paper is concerned with the identification of intervals of velocities
where the mass movement is unstable, and more specifically, to the identification of the
irregular cases. The case with µs = 1, κp = 300, ηN = ηs = 0 and variable damping
levels is selected as an example of the regular, that is, the expected behavior. According to
the previous section, this case has three resonances, which are calculated as αcr1 = 0.707,
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α f cr = 1.899 and αcr2 = 4.573. Without involving the D-decomposition method, instability
lines can be directly determined by tracing the real-valued-induced frequency. This simply
means to find a real q that fulfills the characteristic equation

2π − ηMq2K(0, q) = 0 (44)

where subscript 1 is removed for simplicity and K(0, q) is proportional to the equivalent
flexibility of the model. Because ηM must be real, this implies finding a q for which K(0, q)
is real, and thus, the full analysis can be kept within the real domain.

It can be easily verified that the lowest branch of the instability lines never intersects αcr1

or αpcr; therefore, instability always occurs in the supercritical velocity range. In the regular
cases, instability lines are formed by two branches, as demonstrated in Figure 8. The first
branch is delimited by αcr1 (or αpcr) and αcr2 , and both ends tend to infinite ηM. The second
branch approaches αcr2 from the left where it tends to infinite ηM, and the other end tends to
zero ηM at infinite α. α f cr is ignored and has no influence on the instability lines.
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Figure 8. Instability lines for a regular case with µs = 1, κp = 300, ηN = ηs = 0 and two levels of
damping as indicated in the legend. (CV1 = αcr1 , FCV = α f cr, CV2 = αcr2 . Both CV1 and CV2 are
represented by the same dashed line because they have the primary effect on the instability lines.
This introduces no ambiguity because, by definition, CV1 < CV2.).

With decreasing damping, the instability lines become closer to αcrj . From Figures 8 and 9,
it can be concluded that the left sides of both branches are already quite close to αcrj , and
therefore, the decrease in damping does not have much influence. However, the right part of
the first branch is highly affected by the damping level.

The irregular cases are identified by the fact that αcr2 is intersected by one of the
branches. Additionally, there can be a third branch, which in some cases can be closed.
It was proven by parametric analysis within the ranges of allowable parameters that the
irregular cases only occur for κp on or below the line plotted in Figure 10. The curve in
Figure 10 does not look smooth because the step in κp was selected as 0.01 and in µs, it was
selected as 0.1. The line would be smoother for finer steps.

As an example, one case selected from the irregular region: µs = 1.1, κp = 0.6 and
ηN = ηs = 0 with variable damping levels is discussed. The instability lines are presented
in Figure 11, where intersections with αcr2 are shown. This case is also irregular from the
point of view of the moving force; therefore, αpcr is plotted in Figure 11, demonstrating that
the role of αcr1 is fully secured by αpcr. For the sake of completeness, related q values are
plotted in Figure 12.
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Figure 11. Instability lines for µs = 1.1, κp = 0.6, ηN = ηs = 0 and four levels of damping as
indicated in the legend (PCV = αpcr, CV = αcr2 ).
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Figure 12. Real-valued mass induced frequency linked to the instability lines from Figure 11
(PCV = αpcr, CV = αcr2 ).

The level of damping is indicated in the legend of Figures 11 and 12. It is considered
that both values are equal: ηp = η f . For ηp = η f = 1 · 10−6 and ηp = η f = 1 · 10−4, there
are three instability branches from which one of them is closed. This is not very clear from
Figure 11, because the closed branch is overlaid for these two levels of damping. The other
two branches have similar behavior as in the regular cases. For ηp = η f = 0.01, the closed
branch is broken, and there are only two instability branches. The first one is regular, and
the second one crosses αcr2 . For ηp = η f = 0.05, there are also only two branches, but both
of them intersect αcr2 and have no similarity with the regular behavior.

6. Instability of Two Moving Masses

When two masses are traversing the beam, then the only difference with respect to the
previous analysis is the right-hand side of Equation (32), which reads as

4
(
2ηP1 − ηM1 w̃,ττ

)
δ(ξ) + 4

(
2ηP2 − ηM2 w̃,ττ

)
δ
(

ξ − d̃
)

(45)

with additional parameters introduced as ηP2 = P2
P1

, ηM2 = M2χ
m and d̃ = dχ.

The solution steps can follow the same pattern as before, which allows to conclude
that the characteristic equation is now(

π − 2ηM1 q2K(0, q)
)(

π − 2ηM2 q2K(0, q)
)

−4ηM1 ηM2 q4K
(

d̃, q
)

K
(
−d̃, q

)
= 0

(46)

which for d̃ = 0 reduces to the characteristic equation of ηM = ηM1 + ηM2 , as expected.
To simplify the following analysis, it is assumed that ηM1 = ηM2 = ηM and

ηP1 = ηP2 = ηP. Equation (46) is not as straightforward for tracing the instability lines as
Equation (44) was. Nevertheless, Equation (46) is quadratic for ηM; therefore, it can be
solved analytically for ηM, and then two conditions for finding the real-valued induced
frequency can be specified as√

K
(

d̃, q
)

K
(
−d̃, q

)
− K(0, q) or

√
K
(

d̃, q
)

K
(
−d̃, q

)
+ K(0, q) (47)

Thus, if one of these functions has a real value for real q, then the corresponding ηM can
be computed from the associated root, and after that, the negative values can be discarded.

After detailed analysis, it can be concluded that when two moving masses are considered,
then αcrj and αpcr are not respected. Any combination of allowable parameters creates situations
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where αcr1 or αpcr are intersected, and thus, instability occurs in the subcritical velocity range.
Additionally, αcr2 does not serve to indicate some position of any of the asymptotes.

To identify the irregular cases, it is necessary to state when the instability occurs in
the subcritical velocity range for some realistic ηM. In railway applications, the mass and
moving force are not linked by a mass-to-weight relation. Owing to the primary and the
secondary suspension, it is a bit ambiguous what mass should be used in such simplified
cases. It could be 10 t as a typical force transmitted by one wheel or just 880 kg, which is the
wheel mass. Since according to Table 1, the value of χ can vary between 0.3 and 2.7 m−1,
then the range for ηM is 50–497 for 10 t and 4.5–44 for 880 kg. Therefore, ηM = 100 was
selected to be a limit value.

To avoid tracing the instability lines for all possible cases, the analysis is performed
by identifying crossings with a specific q-value. In fact, only values as low as 0.1–0.15 are
worth studying. Thus, µs was stepped by 0.1, κp was stepped by 2, real q was stepped
by 0.01 and d̃ was stepped by 0.25 starting at 1. The level of damping was selected as
ηp = η f = 0.05. The tested region was specified by α spanning from 0 to αcr1 or αpcr. The
obtained results are presented graphically in Figure 13.
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Figure 13. Identification of irregular cases for two moving masses: (a) d̃ = 1.25; (b) d̃ = 1.5;
(c) d̃ = 1.75. The numbers in the legend indicate µs, starting κp and q, respectively. The arrow
indicates the direction of κp increase. For better clarity, single values are indicated by markers. An
additional letter “S” indicates that this branch is starting without terminating the instability region.

The graphs in Figure 13 are limited on the top by ηM = 100, as justified before, and on
the left by αcr1 or αpcr, which varies with κp and cannot therefore be directly indicated in
these graphs. In Figure 13a, there are only starting crossings, implying the beginning of
a larger unstable region with a higher degree of instability, but for lower µs, these values
are quite close to αcr1 . In Figure 13b,c, there are always two crossings, meaning that they
delimitate an unstable interval, and after that, stability is recovered. This also means that
in such cases, the rate of instability is generally low: lower than in the region with the
starting branch. No irregular situation was found for d̃ = 1 or higher µs than indicated in
Figure 13. For simplicity, higher values than κp = 300 were not tested because the tendency
for such high values is predictable. This is obvious from the fact that the points in graphs
of Figure 13 are becoming closer as κp increases by constant steps.

To conclude this analysis, the case with µs = 1 and κp = 300, which was regular for
one moving mass and now is irregular, is further examined for d̃ = 1; 1.25; 1.5; 1.75 with
ηp = η f = 0.05. All instability branches are plotted until α = 10 to cover also the region
beyond αcr2 . The results of this analysis are presented in Figures 14 and 15. In Figure 14a, α
is limited by 1.1, which is more realistic. However, to show how complicated instability
branches can be, how the number of asymptotes is affected by d̃ and the relation to αcrj and
αpcr are not preserved; also, the region with higher α values is shown in Figure 14b,c for
different scales of ηM. These graphs should be accompanied by the associated real-valued
q, which are reported separately for each d̃ in Figure 15.

It is worthwhile to compare Figure 14 with Figure 13. If the limit ηM = 100 is imposed,
it can be concluded that for d̃ = 1.5 and d̃ = 1.75, there is an unstable interval in the
subcritical velocity range. Crossings with discrete q values reported in Figure 13 do not
indicate the minimum ηM, but this value can be extrapolated. For d̃ = 1, there is no value
lower than ηM = 100 in the subcritical velocity range, and for d̃ = 1.25, there is only the
starting branch with values relatively close to αcr1 . It should also be mentioned that by
increasing the level of damping, the situation becomes generally worse [24,25].
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7. Conclusions

The two-layer model of the ballasted railway track is a generally reliable model used
by other researchers to analyze various aspects of its dynamic response induced by a
moving railway vehicle. The model was experimentally validated 40 years ago. These
results are published in [41]. There may be an issue in fitting the stiffness, damping and
other parameters of the model, but once this is accomplished, the results obtained are
realistic and trustworthy. Since wide variations in all parameters are considered in the
manuscript, it is not possible to find a representative track for each combination to run the
experiment and validate the results.

This paper presents a detailed analysis of the two-layer model; however, this is from a
different point of view than in previous works. The main objective is to identify the range
of parameters leading to some irregular behavior, where “irregular” means “different than
expected”. This has a practical importance because unexpected behavior can complicate the
railway track design. There are no published works that deal so widely with the identified
irregularities and summarize the results over the wide range of admissible parameters,
which identifies the novel contribution of this paper.

The irregular situations are defined differently for three distinct situations: one con-
stant moving force and the associated critical velocities, and one or two moving masses
and the associated velocity intervals of instability, identified by the instability lines. The
sets of parameters corresponding to each of these three irregularities overlap but are not
the same. To obtain a track with expected behavior, all of them must be avoided. All results
are presented in a dimensionless form, mostly analytically or semi-analytically, but without
any numerical integration or discretization.

The irregular case related to one moving force merely alerts that αcr1 cannot be de-
termined analytically, and therefore, parametric analysis must be used to identify αpcr.
Without it, there would be a serious error in predicting the lowest velocity that should
be avoided. Then, at αpcr, there is no real resonance, but an increase in displacements is
verified and also the role of αpcr in instability issues is preserved. Therefore, this irregular-
ity only requires a different approach in the determination of the relevant values without
suggestions for the railway design.
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Regarding the instability of one moving mass, it was concluded that the irregular cases
occur throughout the allowable range of µs but only for low values of κp, corresponding to
a strong foundation and soft rail pads. However, even this irregularity does not imply any
recommendation for railway design because the irregularity affects the dynamic response
at velocities around αcr2 , which should be avoided in real scenarios. It merely means that
αcr2 is not playing the expected role. An important conclusion that was drawn is that the
instability of one moving mass never occurs in the subcritical velocity range, considering
the role of αpcr.

Therefore, the irregular cases that must be avoided in railway design are the ones
that involve two moving proximate masses. However, it is not only important to know
what values of ηM and distances d̃ lead to the instability in the subcritical velocity range;
it is also essential to know how deep these values are located there, meaning what is the
corresponding α. Another important fact is the rate of instability, which is generally lower
in short, closed intervals of instability and higher at the beginning of a larger, possibly
semi-infinite interval. The distance between the masses also plays a role. It can certainly
be concluded that d̃ = 1.5 and d̃ = 1.75 may represent cases to be avoided when µs is low,
which corresponds to light sleepers such as wooden or similar. In addition, d̃ = 1.25 is also
to be avoided, even if α-values are not so low, but the rate of instability is expected to be
higher. There is no indication that a lower value implies a worse case except perhaps for µs.
As for d̃, this is not true because d̃ = 1 is not included in the irregular cases identified in
Figure 13. Regarding κp, this is also not true because, as indicated in the legend of Figure 13,
the starting κp value of several lines is quite high.

Definition of the dimensionless parameters and the presented graphs allow one to
conclude how a certain result is affected by the model parameters as well as how to change
the model parameters to increase or decrease this result value, respecting the actual needs.
The easiest way to alter parameter κp is by changing the stiffness of the rail pads. µs can be
altered by the sleepers’ selection; additionally, the reference value k f can be adjusted by
ballast layer height or by adding or improving other reinforcing layers below it. Changes
resulting from modifying the sleepers’ spacing are not very important, and introducing a
different rail profile than that intended for such a railway is usually not possible.
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