Hydrothermal Treatment via Microwave Radiation Improves Viscoelastic Properties of Native Gluten-Free Flours for Extrusion 3D Printing
Abstract
:1. Introduction
2. Materials
2.1. Raw Materials and Reagents
2.2. Microwave (MW) Treatment
2.3. Granulometry Analysis
2.4. Pasting Properties
2.5. Frequency Sweep
2.6. Gel Texture
2.7. Gels 3D Printing Performance
2.8. Statistical Analyses
3. Results and Discussion
3.1. Particle Size and Amylose/Damaged Starch Content
3.2. Pasting Characteristics and Viscoelastic Behavior of Gels
3.3. Texture Characteristics of Gels
3.4. Texture Profile of Printed Forms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lisovska, T.; Harasym, J. 3D Printing Progress in Gluten-Free Food—Clustering Analysis of Advantages and Obstacles. Appl. Sci. 2023, 13, 12362. [Google Scholar] [CrossRef]
- Pietzak, M. Chapter 11—Immunologic Reactions to Wheat: Celiac Disease, Wheat Allergy and Gluten Sensitivity. In Wheat and Rice in Disease Prevention and Health; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 133–141. [Google Scholar] [CrossRef]
- Jones, A.L. The Gluten-Free Diet: Fad or Necessity? Diabetes Spectr. 2017, 30, 118–123. [Google Scholar] [CrossRef]
- Arslain, K.; Gustafson, C.R.; Baishya, P.; Rose, D.J. Determinants of gluten-free diet adoption among individuals without celiac disease or non-celiac gluten sensitivity. Appetite 2021, 156, 104958. [Google Scholar] [CrossRef]
- Dhoble, P.; Abraham, P.; Desai, D.; Joshi, A.; Gupta, T.; Doctor, S.; Deshpande, A.; Basavanna, R. Self-reported Wheat Sensitivity in Irritable Bowel Syndrome and Healthy Subjects: Prevalence of Celiac Markers and Response to Wheat-free Diet. J. Neurogastroenterol. Motil. 2021, 27, 596–601. [Google Scholar] [CrossRef]
- Ponzo, V.; Ferrocino, I.; Goitre, I.; Pellegrini, M.; Bruno, M.; Astegiano, M.; Cadario, G.; Castellana, E.; Bioletto, F.; Corvaglia, M.R.; et al. Non-Celiac Gluten/Wheat Sensitivity: Clinical Characteristics and Microbiota and Mycobiota Composition by Response to the Gluten Challenge Test. Nutrients 2021, 13, 1260. [Google Scholar] [CrossRef]
- Vasundhra; Kumar, S.B.; Vijaykrishnaraj, M.; Prabhasankar, P. Organoleptic and shelf stability analysis of legume based gluten free snacks: Its biochemical and immunochemical validation. J. Food Meas. Charact. 2018, 12, 94–104. [Google Scholar] [CrossRef]
- Koumbi, L.; Giouleme, O.; Vassilopoulou, E. Non-Celiac Gluten Sensitivity and Irritable Bowel Disease: Looking for the Culprits. Curr. Dev. Nutr. 2021, 4, nzaa176. [Google Scholar] [CrossRef]
- Le-Bail, A.; Chieregato Maniglia, B.; Le-Bail, P. Recent advances and future perspective in additive manufacturing of foods based on 3D printing. Curr. Opin. Food Sci. 2020, 35, 54–64. [Google Scholar] [CrossRef]
- Radoš, K.; Benković, M.; Čukelj Mustač, N.; Habuš, M.; Voučko, B.; Pavičić, T.V.; Ćurić, D.; Jezek, D.; Novotni, D. Powder properties, rheology and 3D printing quality of gluten-free blends. J. Food Eng. 2023, 338, 111251. [Google Scholar] [CrossRef]
- Thangalakshmi, S.; Arora, V.K.; Prithviraj, V. A Comprehensive Assessment of 3D Food Printing: Technological and Processing Aspects. J. Biosyst. 2021, 46, 286–304. [Google Scholar] [CrossRef]
- Harasym, J. 3D Printers for Food Printing—Advantages and Drawbacks of Market Ready Technical Solutions. Nauki Inżynierskie Technol. 2022, 1, 41–59. [Google Scholar] [CrossRef]
- Verma, V.K.; Kamble, S.S.; Ganapathy, L.; Belhadi, A.; Gupta, S. 3D Printing for sustainable food supply chains: Modelling the implementation barriers. Int. J. Logist. Res. Appl. 2023, 26, 1190–1216. [Google Scholar] [CrossRef]
- Huang, M.-S.; Zhang, M.; Bhandari, B. Assessing the 3D Printing Precision and Texture Properties of Brown Rice Induced by Infill Levels and Printing Variables. Food Bioprocess Technol. 2019, 12, 1185–1196. [Google Scholar] [CrossRef]
- Krishnaraj, P.; Anukiruthika, T.; Choudhary, P.; Moses, J.A.; Anandharamakrishnan, C. 3D Extrusion Printing and Post-Processing of Fibre-Rich Snack from Indigenous Composite Flour. Food Bioprocess Technol. 2019, 12, 1776–1786. [Google Scholar] [CrossRef]
- Agarwal, D.; Wallace, A.; Kim, E.H.-J.; Wadamori, Y.; Feng, L.; Hedderley, D.; Morgenstern, M.P. Rheological, structural and textural characteristics of 3D-printed and conventionally-produced gluten-free snack made with chickpea and lupin flour. Future Foods 2022, 5, 100134. [Google Scholar] [CrossRef]
- Vukušić Pavičić, T.; Grgić, T.; Ivanov, M.; Novotni, D.; Herceg, Z. Influence of Flour and Fat Type on Dough Rheology and Technological Characteristics of 3D-Printed Cookies. Foods 2021, 10, 193. [Google Scholar] [CrossRef]
- Torbica, A.; Belović, B.; Popović, L.; Čakarević, J. Heat and hydrothermal treatments of non-wheat flours. Food Chem. 2021, 334, 127523. [Google Scholar] [CrossRef]
- Subroto, E.; Indiarto, R.; Yarlina, V.P.; Izzati, A.N. A Mini Review of Physicochemical Properties of Starch and Flour by Using Hydrothermal Treatment. Polymers 2022, 14, 5447. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Castanha, N.; Le-Bail, P.; Le-Bail, A.; Augusto, P.E.D. Starch Modification through Environmentally Friendly Alternatives: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2482–2505. [Google Scholar] [CrossRef]
- Mathobo, V.M.; Silungwe, H.; Ramashia, S.E.; Anyasi, T.A. Effects of Heat-Moisture Treatment on the Thermal, Functional Properties and Composition of Cereal, Legume and Tuber Starches—A Review. J. Food Sci. Technol. 2021, 58, 412–426. [Google Scholar] [CrossRef]
- Zia-Ud-Din; Xiong, H.; Fei, P. Physical and Chemical Modification of Starches: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Li, W.; Wang, X.; Lv, M.; Peng, Q.; Wang, M. Changes in physicochemical properties and in vitro digestibility of common buckwheat starch by heat-moisture treatment and annealing. Carbohydr. Polym. 2015, 132, 237–244. [Google Scholar] [CrossRef]
- Liu, H.; Lv, M.; Peng, Q.; Shan, F.; Wang, M. Physicochemical and textural properties of tartary buckwheat starch after heat-moisture treatment at different moisture levels. Starch/Staerke 2015, 67, 276–284. [Google Scholar] [CrossRef]
- Fonseca, L.M.; El Halal, S.L.M.; Dias, A.R.G.; Zavareze, E.d.R. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.; Wei, T.; Shen, J.; Wang, M. Differences in physicochemical properties and in vitro digestibility between tartary buckwheat flour and starch modified by heat-moisture treatment. LWT-Food Sci. Technol. 2017, 86, 285–292. [Google Scholar] [CrossRef]
- Solaesa, Á.G.; Villanueva, M.; Vela, A.J.; Ronda, F. Impact of microwave radiation on in vitro starch digestibility, structural and thermal properties of rice flour. From dry to wet treatments. Int. J. Biol. Macromol. 2022, 222, 1768–1777. [Google Scholar] [CrossRef]
- Solaesa, Á.G.; Villanueva, M.; Muñoz, J.M.; Ronda, F. Dry-heat treatment vs. heat-moisture treatment assisted by microwave radiation: Techno-functional and rheological modifications of rice flour. LWT 2021, 141, 110851. [Google Scholar] [CrossRef]
- Hu, Q.; He, Y.; Wang, F.; Wu, J.; Ci, Z.; Chen, L.; Xu, R.; Yang, M.; Lin, J.; Han, L.; et al. Microwave technology: A novel approach to the transformation of natural metabolites. Chin. Med. 2021, 16, 87. [Google Scholar] [CrossRef]
- Noore, S.; O’Donnel, C.; Tiwari, B.K. Green Technologies for Sustainable Food Production and Preservation: Microwaves. In Sustainable Food Science—A Comprehensive Approach; Elsevier: Amsterdam, The Netherlands, 2023; pp. 218–238. [Google Scholar] [CrossRef]
- Villanueva, M.; De Lamo, B.; Harasym, J.; Ronda, F. Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches. Carbohydr. Polym. 2018, 201, 374–381. [Google Scholar] [CrossRef]
- Villanueva, M.; Harasym, J.; Munoz, J.M.; Ronda, F. Microwave absorption capacity of rice flour. Impact of the radiation on rice flour microstructure, thermal and viscometric properties. J. Food Eng. 2018, 224, 156–164. [Google Scholar] [CrossRef]
- Villanueva, M.; Harasym, J.; Muñoz, J.M.; Ronda, F. Rice flour physically modified by microwave radiation improves viscoelastic behavior of doughs and its bread-making performance. Food Hydrocoll. 2019, 90, 472–481. [Google Scholar] [CrossRef]
- Vicente, A.; Villanueva, M.; Caballero, P.A.; Muñoz, J.M.; Ronda, F. Buckwheat grains treated with microwave radiation: Impact on the techno-functional, thermal, structural, and rheological properties of flour. Food Hydrocoll. 2023, 137, 108328. [Google Scholar] [CrossRef]
- Calix-Rivera, C.S.; Villanueva, M.; Náthia-Neves, G.; Ronda, F. Changes on Techno-Functional, Thermal, Rheological, and Microstructural Properties of Tef Flours Induced by Microwave Radiation—Development of New Improved Gluten-Free Ingredients. Foods 2023, 12, 1345. [Google Scholar] [CrossRef]
- Harasym, J.; Satta, E.; Kaim, U. Ultrasound Treatment of Buckwheat Grains Impacts Important Functional Properties of Resulting Flour. Molecules 2020, 25, 3012. [Google Scholar] [CrossRef] [PubMed]
- Ronda, F.; Villanueva, M.; Collar, C. Influence of acidification on dough viscoelasticity of gluten-free rice starch-based dough matrices enriched with exogenous protein. LWT-Food Sci. Technol. 2014, 59, 12–20. [Google Scholar] [CrossRef]
- Olędzki, R.; Harasym, J. Boiling vs. Microwave Heating—The Impact on Physicochemical Characteristics of Bell Pepper (Capsicum annuum L.) at Different Ripening Stages. Appl. Sci. 2023, 13, 8175. [Google Scholar] [CrossRef]
- Abebe, W.; Náthia-Neves, G.; Calix-Rivera, C.S.; Villanueva, M.; Ronda, F. Lipase Inactivation Kinetics of Tef Flour with Microwave Radiation and Impact on the Rheological Properties of the Gels Made from Treated Flour. Molecules 2023, 28, 2298. [Google Scholar] [CrossRef]
- Zhu, Y.; Di, W.; Song, M.; Chitrakar, B.; Liu, Z. Correlating 3D printing performance with sol-gel transition based on thermo-responsive k-carrageenan affected by fructose. J. Food Eng. 2023, 340, 11316. [Google Scholar] [CrossRef]
- Paolillo, M.; Derossi, A.; van Bommel, K.; Noort, M.; Severini, C. Rheological properties, dispensing force and printing fidelity of starchy-gels modulated by concentration, temperature and resting time. Food Hydrocoll. 2021, 117, 106703. [Google Scholar] [CrossRef]
- Dankar, I.; Haddarah, A.; Sepulcre, F.; Pujolà, M. Assessing mechanical and rheological properties of potato puree: Effect of different ingredient combinations and cooking methods on the feasibility of 3D printing. Foods 2020, 9, 21. [Google Scholar] [CrossRef]
- Lille, M.; Kortekangas, A.; Heiniö, R.; Sozer, N. Structural and textural characteristics of 3D-printed protein- and dietary fibre-rich snacks made of milk powder and wholegrain rye flour. Foods 2020, 9, 1527. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, C.; Zhu, J.; Cheng, Y.; Yang, Y.; Qiao, S.; Jiao, B.; Ma, L.; Fu, Y.; Chen, H.; et al. Stabilization of capsanthin in physically-connected hydrogels: Rheology property, self-recovering performance and syringe/screw-3D printing. Carbohydr. Polym. 2023, 319, 121209. [Google Scholar] [CrossRef] [PubMed]
Sample | >200 µm [%] | 200–106 µm [%] | 150–106 µm [%] | <106 µm [%] | Amylose [%] | Damaged Starch (% w/w) |
---|---|---|---|---|---|---|
BP | 25.57 ± 0.62 d | 41.67 ± 0.89 b | 26.52 ± 1.30 d | 6.25 ± 1.58 bc | 23 ± 2 a | 1.60 ± 0.10 |
BPT | 43.70 ± 2.12 g | 40.35 ± 1.77 b | 12.35 ± 1.20 a | 3.60 ± 0.85 abc | 20 ± 3 a | 1.70 ± 0.15 |
SB | 36.55 ± 0.21 f | 66.85 ± 1.77 d | 10.80 ± 0.57 a | 8.75 ± 0.49 c | 33 ± 3 b | 0.91 ± 0.09 |
SBT | 31.80 ± 1.05 e | 78.80 ± 0.85 f | 15.95 ± 0.35 b | 1.40 ± 1.56 ab | 29 ± 2 b | 0.99 ± 0.04 |
WT | 2.13 ± 1.27 ab | 71.00 ± 1.13 e | 22.00 ± 3.54 c | 4.88 ± 5.93 abc | 32 ± 1 b | 1.37 ± 0.01 |
WTT | 0.40 ± 0.28 a | 87.85 ± 0.78 g | 11.00 ± 0.28 a | 0.75 ± 0.21 a | 26 ± 5 ab | 1.01 ± 0.07 |
BT | 13.60 ± 1.70 c | 30.95 ± 0.64 a | 16.55 ± 0.92 b | 15.95 ± 1.77 d | 28 ± 3 ab | 1.72 ± 0.02 |
BTT | 3.85 ± 0.35 b | 47.00 ± 1.56 c | 18.88 ± 0.20 bc | 2.32 ± 0.31 ab | 21 ± 4 a | 1.24 ± 0.06 |
Sample | PV [mPa × s) | TV [mPa × s] | BV [mPa × s] | FV [mPa × s] | SV [mPa × s] | Pasting temp. [°C] |
---|---|---|---|---|---|---|
BP | 1563.0 ± 21.2 c | 1695.0 ± 8.5 c | 0 ± 0 a | 3352.0 ± 15.6 c | 1657.0 ± 24.0 b | 70.2 ± 0.1 a |
BPT | 725.0 ± 35.4 a | 925.0 ± 36.8 a | 0 ± 0 a | 1491.5 ± 41.7 a | 566.5 ± 78.5 a | 78.4 ± 0.4 c |
SB | 1994.0 ± 8.5 d | 2205.0 ± 32.5 d | 0 ± 0 a | 4104.0 ± 28.3 d | 1899.0 ± 4.2 c | 71.7 ± 0.1 b |
SBT | 799.0 ± 14.1 b | 1075.0 ± 17.0 b | 0 ± 0 a | 1740.0 ± 84.9 b | 665.0 ± 101.8 a | 79.5 ± 0.1 d |
WT | 1651.0 ± 39.6 c | 1329.0 ± 45.3 c | 322.0 ± 5.7 c | 2106.5 ± 54.4 c | 777.5 ± 99.7 b | 72.5 ± 0.2 b |
WTT | 1413.0 ± 26.9 b | 1391.5 ± 10.6 c | 21.5 ± 16.3 a | 1894.3 ± 8.6 b | 502.8 ± 2.0 a | 79.2 ± 0.4 c |
BT | 1411.5 ± 4.9 b | 1158.5 ± 14.8 b | 253.0 ± 9.9 b | 1911.4 ± 18.1 b | 752.9 ± 3.3 b | 71.0 ± 0.1 a |
BTT | 811.6 ± 2.5 a | 801.2 ± 17.3 a | 10.4 ± 14.7 a | 1310.4 ± 16.6 a | 509.2 ± 0.6 a | 80.4 ± 0.1 d |
Sample | G′ [Pa] | a | G″ [Pa] | b | tan δ | c |
---|---|---|---|---|---|---|
BP | 2490.3 ± 236.2 a | 0.065 ± 0.0056 a | 353.69 ± 1.23 a | 0.1163 ± 0.0035 b | 0.142 ± 0.0021 a | 0.0511 ± 0.003 d |
BPT | 2971.2 ± 125.2 b | 0.0879 ± 0.0061 c | 607.2 ± 0.96 b | 0.0687 ± 0.032 a | 0.206 ± 0.0064 b | 0.02 ± 0.001 c |
SB | 2440.0 ± 302.4 a | 0.0742 ± 0.0052 b | 642.6 ± 2.31 c | 0.0751 ± 0.0045 a | 0.263 ± 0.0011 c | 0.0001 ± 0.0000 a |
SBT | 2836.0 ± 121.4 b | 0.0751 ± 0.0012 b | 710.8 ± 1.21 d | 0.0677 ± 0.0011 a | 0.25 ± 0.0009 c | 0.006 ± 0.0001 b |
WT | 1633.6 ± 93.5 b | 0.1196 ± 0.0011 b | 201.69 ± 3.14 b | 0.1528 ± 0.0009 b | 0.1233 ± 0.0003 a | 0.0332 ± 0.002 b |
WTT | 1868.0 ± 101.9 b | 0.1106 ± 0.0020 a | 279.3 ± 4.65 c | 0.1335 ± 0.0004 a | 0.1491 ± 0.0074 b | 0.0236 ± 0.003 a |
BT | 1464.4 ± 52.3 a | 0.1238 ± 0.0009 c | 165.55 ± 3.98 a | 0.1578 ± 0.0014 b | 0.1127 ± 0.0062 a | 0.0352 ± 0.00025 b |
BTT | 1728.1 ± 39.1 b | 0.1113 ± 0.0011 a | 325.72 ± 2.11 d | 0.1309 ± 0.0007 a | 0.1875 ± 0.0027 c | 0.0211 ± 0.0010 a |
Sample | Hardness [N] | Cohesiveness | Springiness | Guminess [N] | Resilience |
---|---|---|---|---|---|
PB | 0.73 ± 0.03 c | 0.219 ± 0.026 c | 0.659 ± 0.246 c | 0.160 ± 0.016 b | 1.220 ± 0.150 c |
PBT | 0.37 ± 0.01 a | 0.107 ± 0.012 b | 0.330 ± 0.121 ab | 0.040 ± 0.004 a | 0.610 ± 0.007 b |
SB | 2.20 ± 0.02 d | 0.211 ± 0.025 c | 0.508 ± 0.041 bc | 0.483 ± 0.061 c | 0.710 ± 0.003 b |
SBT | 0.55 ± 0.01 b | 0.053 ± 0.006 a | 0.127 ± 0.006 a | 0.029 ± 0.004 a | 0.390 ± 0.008 a |
WT | 1.50 ± 0.02 c | 0.344 ± 0.044 b | 0.520 ± 0.008 b | 0.770 ± 0.09 a | 0.792 ± 0.004 a |
WTT | 0.90 ± 0.01 a | 0.165 ± 0.028 a | 0.410 ± 0.033 a | 0.150 ± 0.07 a | 0.697 ± 0.041 a |
BT | 1.80 ± 0.05 d | 0.420 ± 0.015 c | 0.620 ± 0.030 c | 0.730 ± 0.10 b | 0.719 ± 0.110 a |
BTT | 1.10 ± 0.03 b | 0.248 ± 0.057 a | 0.400 ± 0.050 a | 0.270 ± 0.09 b | 0.713 ± 0.032 a |
Sample | Hardness [N] | Cohesiveness | Springiness | Guminess [N] | Resilience |
---|---|---|---|---|---|
PB | 0.58 ± 0.03 b | 0.100 ± 0.016 b | 0.473 ± 0.139 c | 0.050 ± 0.006 b | 1.220 ± 0.150 c |
PBT | 0.39 ± 0.01 a | 0.089 ± 0.012 b | 0.231 ± 0.021 b | 0.034 ± 0.002 a | 0.610 ± 0.007 b |
SB | 1.89 ± 0.09 c | 0.105 ± 0.015 b | 0.401 ± 0.019 c | 0.197 ± 0.010 c | 0.710 ± 0.003 b |
SBT | 0.52 ± 0.03 b | 0.043 ± 0.006 a | 0.100 ± 0.016 a | 0.022 ± 0.001 a | 0.390 ± 0.008 a |
WT | 1.00 ± 0.05 a | 0.217 ± 0.021 b | 0.330 ± 0.008 b | 0.220 ± 0.060 b | 0.691 ± 0.024 b |
WTT | 0.90 ± 0.07 a | 0.135 ± 0.012 a | 0.360 ± 0.043 b | 0.120 ± 0.030 a | 0.581 ± 0.031 a |
BT | 1.20 ± 0.02 b | 0.210 ± 0.025 b | 0.470 ± 0.050 c | 0.250 ± 0.060 b | 0.601 ± 0.010 a |
BTT | 0.90 ± 0.08 a | 0.151 ± 0.032 a | 0.300 ± 0.010 a | 0.140 ± 0.040 a | 0.603 ± 0.012 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisovska, T.; Banaś, K.; Orkusz, A.; Harasym, J. Hydrothermal Treatment via Microwave Radiation Improves Viscoelastic Properties of Native Gluten-Free Flours for Extrusion 3D Printing. Appl. Sci. 2023, 13, 12465. https://doi.org/10.3390/app132212465
Lisovska T, Banaś K, Orkusz A, Harasym J. Hydrothermal Treatment via Microwave Radiation Improves Viscoelastic Properties of Native Gluten-Free Flours for Extrusion 3D Printing. Applied Sciences. 2023; 13(22):12465. https://doi.org/10.3390/app132212465
Chicago/Turabian StyleLisovska, Tetiana, Karol Banaś, Agnieszka Orkusz, and Joanna Harasym. 2023. "Hydrothermal Treatment via Microwave Radiation Improves Viscoelastic Properties of Native Gluten-Free Flours for Extrusion 3D Printing" Applied Sciences 13, no. 22: 12465. https://doi.org/10.3390/app132212465
APA StyleLisovska, T., Banaś, K., Orkusz, A., & Harasym, J. (2023). Hydrothermal Treatment via Microwave Radiation Improves Viscoelastic Properties of Native Gluten-Free Flours for Extrusion 3D Printing. Applied Sciences, 13(22), 12465. https://doi.org/10.3390/app132212465