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Abstract: In the deep well drilling process in the Fukang Depression of the Eastern Junggar Basin,
rock fracturing issues and low rate of penetration (ROP) have posed significant challenges to drilling
efficiency. Accurate predictions of ROP prior to drilling are of considerable value in this context.
Precise predictions enable on-site engineering teams to proactively identify drilling difficulties and
anticipate potential complex scenarios, facilitating them in designing preventive measures in advance,
such as selecting appropriate drill bits, adjusting drilling parameters, or employing specific drilling
techniques to address these issues. This, in turn, enhances drilling efficiency and greatly reduces
drilling risks. Traditional mechanical-specific energy drilling rate models, despite their widespread
use, exhibit significant disparities with actual results when predicting ROP. These models only
consider the influence of drill bits, drilling tools, and some drilling parameters on ROP, failing
to adequately account for the variations caused by engineering factors and failing to capture the
interrelationships between various parameters, especially when dealing with complex subsurface
formations in the Fukang Depression. Random forest is a non-parametric algorithm in the field of
machine learning that is suitable for analyzing and predicting ROP affected by various complex and
non-linear drilling parameters. This paper establishes a Random forest model based on a dataset
containing multiple variables of logging parameters and the actual ROP. The model ranks and
assesses the important feature parameters of ROP to reveal their impact. Additionally, the model uses
bootstrap sampling and feature random selection to construct multiple decision trees, reducing the
risk of overfitting and endowing the model with a high generalization capability. Evaluation metrics
indicate that the model exhibits a high prediction accuracy and performs well, significantly improving
the accuracy of mechanical drilling rate predictions in the deep wells of the Fukang Depression. This
model provides robust support and serves as a positive demonstration for addressing mechanical
drilling rate issues in complex subsurface formations in the future.

Keywords: Fukang Sag; ROP; mechanical-specific energy; data-driven; random forest

1. Introduction

The Fukang Fault Zone in the Junggar Basin, located in front of the Bogda Mountains [1,2],
has undergone complex structural deformations and oil and gas reservoir formation pro-
cesses due to the superimposition of multiple tectonic movements, like the Himalayas,
Yanshan, and Haisi [3]. Within the Fukang Depression, vertical sedimentary sequences are
characterized by multiple intricate layers [4–6], representing a typical low porosity and
ultra-low permeability reservoir [7]. In deep formations, where deep formations demon-
strate a low ROP [8], with an average drilling rate of only 1.56 m per hour in the Permian
strata [9]. The mechanical drilling rate is a crucial indicator for assessing drilling efficiency,
making the development of efficient and accurate mechanical drilling rate prediction mod-
els of great significance. This is essential for optimizing drilling parameters and reducing
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drilling costs in the Fukang Depression, ultimately promoting efficient exploration and
development [10,11].

Experts and scholars worldwide have conducted extensive research on mechanical
drilling rate prediction methods. Commonly employed methods include prediction based
on field experience, prediction based on drilling rate equations, and numerical simulation-
based predictions [12]. Bourgoyne et al. [13] introduced a mechanical drilling rate prediction
method based on multivariate regression, but this method involves several empirical
parameters in its calculations. Rastegar et al. [14] enhanced the prediction model for
ROP by taking into account factors like bit wear, hydraulic parameters, and formation
characteristics. Liu et al. [15] developed a drilling rate prediction model related to bit
weight through the analysis of laboratory test data. Li et al. and Chen et al. [16,17] derived
drilling rate equations based on rock strength criteria and mechanical-specific energy theory.
However, due to the complex and variable subsurface conditions, accurately depicting
the relationship between ROP and variables, like formation properties and engineering
parameters, poses a challenge: ROP cannot be predicted by a simple mapping relationship.
Soares et al. [18] highlighted the limitations of traditional mechanical drilling rate prediction
methods based on analytical equations. These equations, as well as laboratory tests, struggle
to comprehensively consider the influence of various drilling parameters, engineering
factors, and geological conditions on ROP. Additionally, these parameters can interact
with each other, making it difficult to predict ROP accurately using a standard equation.
Existing equations for mechanical drilling rate predictions are often one-sided and exhibit
significant deviations.

With the rapid advancement of artificial intelligence, an increasing number of re-
searchers are applying machine learning methods to the petroleum industry. Amer et al. [19]
used artificial neural networks (ANNs) to establish a mechanical drilling rate prediction
model based on drilling and bit parameters, although the considered influencing parame-
ters are not comprehensive. Shi et al. and Zhao et al. [20,21] employed extreme learning
machines (ELMs) for the prediction of ROP in offshore wells. However, ELMs struggle
to provide highly transparent and interpretable predictive results and are susceptible to
overfitting. Ahmed et al. [22] explored several machine learning approaches for predicting
ROP, including neural network (ANN), extreme learning machine, support vector regres-
sion, and least-square support vector regression (LS-SVR), all demonstrating commendable
performance. Nevertheless, these methods face challenges in handling high-dimensional
data, sensitivity to noise, and capturing nonlinear relationships. Nevertheless, most of
these studies focus primarily on data mapping relationships and overlook mechanistic
models or provide explanations for the causes of mechanical drilling rate anomalies.

This study takes a mechanistic modeling approach, utilizing the mechanical specific
energy theory to predict ROP in deep wells within the Fukang Depression, while analyzing
the reasons behind the lower drilling rates in deep formations. Subsequently, driven by
data, a model suitable for predicting ROP in deep wells of the Fukang Depression is devel-
oped using the random forest algorithm, with engineering parameters like weight on bit,
rotational speed, and drilling fluid equivalent density as the feature variables. The model’s
validity is assessed based on the correlation of influencing parameters with the mechanistic
model. The analysis results indicate that, compared to traditional mechanical drilling rate
prediction models, data-driven mechanical drilling rate prediction demonstrates higher
accuracy and applicability. This offers valuable guidance for predicting ROP in complex
deep formations.

2. ROP Prediction Based on Mechanical-Specific Energy Theory
2.1. Drilling Rate Equations Based on Mechanical-Specific Energy Theory

Mechanical drilling rate prediction based on mechanical-specific energy theory is a
method used to estimate the mechanical drilling rate during underground drilling pro-
cesses. The fundamental idea of this theory is that mechanical drilling rate depends on the
mechanical performance of the drill bit and the physical properties of the formation.
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In the latter half of the 19th century, R. Teale [23] proposed the mechanical-specific en-
ergy theory through extensive laboratory experiments on rock fragmentation. Its expression
is as follows:

M =
4W
πD2

b
+

480rTb

D2
bR

(1)

where M is the mechanical specific energy, MPa; W is the drilling pressure, KN; Db is the
diameter of the drill bit, mm; r is the rotational speed, r/min; Tb is the torque of the drill
bit, KN·m; and R is the ROP, m/h.

The mechanical-specific energy theory assumes that the formation is homogeneous
and isotropic. The M value represents the ease of cutting rock or formation materials under
unit cutting energy, and this degree is determined by factors such as the drill bit type and
drilling tool parameters.

In the process of rock breaking with a drill bit, rock strength plays a crucial role. The
unconfined compressive strength (UCS) of rock represents the actual compressive strength
of rocks under confinement. However, during drilling calculations, the uniaxial compres-
sive strength is still often used. This is because true triaxial rock mechanic experiments
are costly and require strict experimental conditions, making it difficult to obtain a large
amount of experimental data.

The Mohr-Coulomb criterion is an essential tool for analyzing and predicting the
fracture and shear behavior of rocks under stress conditions. It is based on graphical
representation and employs the Mohr circle and the angle of friction to describe the shear
behavior of materials, as expressed below:

τ = c + σ · tan(φ) (2)

where τ represents shear strength, MPa; c is the cohesion of the rock (shear strength
typically measured under unconfined conditions), MPa; σ denotes normal stress, MPa; and
φ is the internal friction angle, ◦.

When subsurface rocks are subjected to confining pressure, their compressive strength
increases significantly. Using uniaxial compressive strength to describe subsurface rocks
under these conditions would result in significant deviations. Therefore, in practical
engineering, it is common to perform an equivalent substitution using the Mohr-Coulomb
criterion. This involves replacing the parameters in Equation (2) with stress parameters
under lateral confinement to obtain the rock’s lateral confinement compressive strength:{

CCS = UCS + Dp + 2Dp +
sin φ

1−sin φ

Dp = ECD− Pp
(3)

where CCS is the confined compressive strength, MPa; UCS is the uniaxial compressive
strength, MPa; Dp is the difference between drilling fluid pressure and formation pressure,
MPa; φ is the internal friction angle of the rock, ◦; ECD is the circulating drilling fluid
pressure, MPa; and Pp is the formation pressure, MPa.

Based on Equations (1) and (3), that is, based on the mechanical-specific energy theory
while considering other drilling parameters, such as drill bit characteristics, the drilling
rate equation can be derived as:

R =
480rTb

MD2
b −

4W
π

=
4.06µ · r

Db

(
0.6446CCS

EFF·W − 101.6
πD2

b

) (4)

where µ is the specific sliding friction factor of the drill bit, dimensionless; EFF is the
mechanical efficiency, %; and the other variables are the same as those that were previously
mentioned.

EFF is an indicator that represents the performance of a mechanical system, typically
used to measure losses in energy conversion processes. Mechanical efficiency is usually
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expressed as a percentage, indicating the ratio between the actual output power and
input power. In this experiment, the data from laboratory quasi-triaxial rock mechanic
experiments were used in conjunction with Equation (2). The values were regressed to
obtain the mechanical efficiency. The maximum and minimum mechanical efficiency values
for five neighboring wells (Fu4, Fu9, Fu10, Fu48, and Fu49) based on well logging data
were expressed by the following equation:{

EFFmin = 0.031CCS + 7.932
EFFmax = 0.047CCS + 12.645

(5)

where EFFmin is the minimum mechanical efficiency, %; and EFFmax is the maximum
mechanical efficiency, %. Taking the average of the equation above yields the mechanical
efficiency for the target well:

EFF = 0.039CCS + 10.289 (6)

Mechanical-specific energy can represent drilling efficiency during the drilling process.
At a constant mechanical drilling rate, a smaller mechanical-specific energy indicates that
less energy is required to break a unit volume of rocks, indicating more reasonable drilling
parameters. During the drilling process, the drilling pressure acts on the cutting teeth of
the drill bit, causing them to penetrate the rock for rock breaking. The relationship curve
between the mechanical drilling rate and drilling pressure is shown in Figure 1 [24]. In an
ideal scenario, ROP should exhibit a direct proportionality with WOB, implying that an
increase in WOB should correspondingly enhance the ROP.
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Figure 1. Schematic diagram of WOB, MSE, and ROP.

However, in certain drilling conditions, as described in Stage 3, anomalies may occur.
Instances like encountering bit balling, bottom hole pack-off, or drilling tool vibrations can
lead to additional WOB being applied to the drill bit. Despite the increase in WOB, the
ROP decreases due to the adverse effects of these conditions. This disruption signifies that
the expected relationship of the mechanical-specific energy theory is disturbed in these
specific circumstances. Therefore, in practical drilling operations, it is essential to adapt
flexibly to various challenges to maintain the efficiency and safety of the drilling process.

2.2. ROP Prediction Results

Using the mechanical-specific energy theory, we conducted a mechanical drilling rate
prediction analysis for the deep section of Well 39 in the Fukang Depression, located in
the eastern part of the Junggar Basin. The comparison between the predicted mechanical
drilling rate calculated using Equation (4) and the actual values is shown in Figure 2. It is
evident that there is a significant difference between the mechanical drilling rate predictions
and the real values. Upon comparing the drilling parameters with the measured ROP,
we found that the drilling rate in this section has a negative correlation with the weight
on bit (WOB). However, in the mechanical-specific-energy-based drilling rate prediction
formula, the drilling rate has a positive correlation with WOB. The drilling records indicate
that within the range of 3800–5000 m in Well 39, there was a mud cake at the bottom
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of the well during the drilling process. This caused the drill bit to become stuck and
resulted in a decrease in the drilling fluid’s performance. As a result, it had an impact
on the mechanical drilling rate prediction based on the mechanical-specific energy theory
for this well section, leading to a significant deviation between the predicted and actual
values. Hence, it is evident that the drilling rate prediction based on the Teale model of the
mechanical-specific energy theory is not suitable for challenging subsurface formations in
the Fukang Depression.
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3. ROP Prediction Based on the Random Forest Machine Learning Model
3.1. Principles of the Random Forest Algorithm

Random forest belongs to the Bagging class of ensemble machine learning algorithms.
As shown in Figure 3, ensemble learning involves training multiple weak learners to form
a strong learner. In the Random Forest, the weak model chosen is the CART decision tree.
The Random Forest utilizes bootstrap sampling to collect multiple different subsets of the
original samples for training the decision trees. The final result is obtained by averaging
the predictions of all the decision trees.
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When training an individual CRAT decision tree model, consider a scenario as depicted
in Figure 3. In this scenario, the primary factors influencing mechanical drilling rate are
whether the drilling tool’s rotation speed exceeds 50 r/min. The decision tree divides the
dataset into two groups based on this criterion, grouping data points with rotation speeds
below 50 r/min together. The average of this group represents the tree’s prediction for the
mechanical drilling rate under this condition.

As the decision tree model’s other feature variables, such as drilling pressure, vary,
the mechanical drilling rate normally increases with the increase in the drilling pressure.
However, during the drilling process, situations like those illustrated in Stage 3 of Figure 1,
such as bit mud packing, bottom-hole mud packing, and tool vibrations, can lead to
increased drilling pressure and a decrease in the mechanical drilling rate. However, a
mechanical drilling rate model driven by a mechanistic model cannot reflect this anomalous
change in the mechanical drilling rate caused by complex situations. Continuing to use a
traditional mechanical drilling rate model would yield a trend opposite to the actual values.
On the other hand, a data-driven approach, which considers only the mapping relationship
between data points, can capture this anomalous trend in the mechanical drilling rate
and effectively addresses the problem of deep well mechanical drilling rate prediction in
complex situations.

For the sake of facilitating comprehension of this model, further detailed formulaic
explanations regarding the Random Forest can be found in Appendix A.

3.2. Factor Analysis

Parameter correlation analysis and feature importance ranking are important tools for
optimizing the prediction performance of random forest models. They can improve model
performance, reduce feature dimensions, enhance model execution speed, and increase
prediction accuracy. Additionally, they help in understanding the causal relationships
behind the mechanism-based theoretical model.

This study involved a total of 5 training wells (Fu4, Fu9, Fu10, Fu48, Fu49, and
Kangtan1) and 2 test wells (Fu39 and Kangtan2). A total of 50,000 data sets were selected
for the training set, and 10,000 data sets for the test set. Among these wells, Fu4, Fu9, Fu10,
Fu48, and Fu49 belong to the same block, while Kangtan1 and Kangtan2 are located at a
greater distance from the other 5 wells and belong to adjacent blocks. Choosing Kangtan2
well as a test well also served, to some extent, as a test of the generalization ability of the
random forest drilling speed prediction model.

The dataset established for this study comprises a total of 10 feature parameters and
has undergone fundamental statistical description, as illustrated in Table 1.

Table 1. Fundamental statistical description for the dataset.

Count Mean Std Min Max

SPP/MPa 50,000 22.5680 2.9507 11.18 25.64
Torque/KN·m 50,000 7.2473 2.7384 4.18 20.51

WOB/KN 50,000 50.7053 26.3114 10 201
RPM 50,000 109.6535 37.3567 46 185

ECD/g·cm−3 50,000 1.4658 0.1457 1.03 1.82
Viscosity/s 50,000 88.3048 22.3630 12 152
INF/L·s−1 50,000 47.2738 4.7340 24.74 58.26

OUTF/L·s−1 50,000 39.4409 5.9599 22.79 56.45
Pump Speed 50,000 133.8123 36.3426 68 192
ROP/m·s−1 50,000 19.1330 16.2476 0.37 130.43

First, the relationships between the engineering parameters, such as annular pressure,
torque, drilling pressure, rotation speed, equivalent density, viscosity, inlet flow rate, outlet
flow rate, total pump speed, and ROP, were analyzed. Pearson’s correlation coefficients
were used to assess the strength of linear relationships between the parameters, as shown
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in Figure 4. The results indicate that the drilling fluid equivalent density and viscosity are
negatively correlated with ROP, while torque, rotation speed, drilling fluid flow rate, and
pump speed are positively correlated with ROP. This is consistent with our understanding
based on the traditional mechanistic models. However, there is a negative correlation
between the drilling pressure and ROP, which is inconsistent with the mechanistic model’s
understanding. The main reason for this discrepancy is the occurrence of complex situations,
such as mud packs or drilling tool vibrations in difficult drilling sections. This also explains
the opposite trend between the ROP predicted by the mechanical-specific energy model in
Fu39 well, as shown in Figure 2.
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Feature importance ranking is of great significance in data analysis and machine
learning. It helps us to understand data and models and make more informed decisions.
Importance ranking explains the prediction results of a model, providing information
about which features have a greater impact on the model’s output. This is crucial for
understanding the decision-making process of the model and why it makes specific predic-
tions. In some cases, feature importance ranking can be used to identify potential issues
or anomalies.

In this study, feature importance rankings and their impact percentages on the drilling
speed for two test wells provided by the random forest model were combined with
mechanistic models to explain the degree of coupling between model predictions and
actual results.

An analysis of the factors affecting the drilling speed in well Fu39 is shown in Figure 5.
The main factors influencing the drilling speed of this well are the drilling fluid equivalent
density, annular pressure, inlet flow rate, and pump speed, with the drilling fluid equivalent
density having the highest feature importance share, around 0.39.

According to the mechanistic model, the choice of the appropriate drilling fluid density
can make it easier for the drill bit to penetrate the subsurface, reducing the risk of the drill
bit becoming stuck or failing. Therefore, the selection of equivalent density is crucial for
maintaining a stable drilling process. In the model, this means that we should pay close
attention to the equivalent density because it has a significant impact on the drilling speed
and can significantly change the drill bit’s penetration into the formation.
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Other important factors include the annular pressure, inlet flow rate, and pump speed.
Annular pressure refers to the pressure of the drilling fluid inside the wellbore, which
affects the cuttings’ transport and wellbore stability. Adequate annular pressure helps to
maintain wellbore stability and prevents issues like wellbore collapse and bit sticking. Inlet
flow rate refers to the speed at which the drilling fluid enters the wellbore through the drill
bit and affects the cuttings’ removal efficiency. A sufficient inlet flow rate can effectively
remove cuttings from the wellbore, preventing wellbore blockages and improving drilling
efficiency. An inadequate inlet flow rate may lead to cuttings’ accumulation at the bottom
of the wellbore, reducing the drilling efficiency and potentially causing sticking. Pump
speed refers to the rate at which the drilling fluid is pumped, directly impacting inlet flow
rate and bottom hole pressure. Appropriate pump speed ensures an adequate inlet flow
rate, maintains the required bottom hole pressure, and improves the drilling efficiency.

Therefore, during on-site drilling operations, various parameters, especially those
predicted as important by the model, should be considered comprehensively to ensure a
safe and efficient mechanical drilling process. An inadequate parameter configuration can
lead to drilling accidents, wellbore collapse, sticking, and other issues, increasing the risks
and costs of drilling operations.

A feature importance analysis of the factors influencing the drilling speed in well
Kangtan2 is shown in Figure 6. The main factors affecting the drilling speed of this
well are the drilling fluid equivalent density, standpipe pressure, viscosity, and drilling
pressure, with the drilling fluid equivalent density having a feature importance share of
over 0.6, significantly higher than the importance level of well Fu39. Through laboratory
experiments on core samples taken at the same depth from both wells, it was found that the
reservoir rock permeability in well Kangtong2 is higher. Additionally, according to the log
interpretation data, this well has a complex formation pressure system, strong formation
heterogeneity, and highly variable geological characteristics. It is influenced by factors
such as the presence of argillaceous rocks, burial depth, and tight lithology. As a result, it
exhibits a stronger dependence on the drilling fluid equivalent circulation density (ECD).
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3.3. Prediction Results and Model Performance Evaluation

In this paper, a prediction model was constructed using the random forest regression
algorithm. Logging data, including standpipe pressure, torque, drilling pressure, rotary
speed, equivalent density, viscosity, inlet flow rate, outlet flow rate, total pump speed,
and drilling speed, were used to train the relationship between engineering parameters
and ROP.

To visually evaluate the performance of the prediction model, a comparison was made
between the predicted ROP and the actual values for the two test wells. Additionally,
evaluation metrics were introduced to assess the model’s performance.

The mean squared error (MSE) is a common metric used to measure the goodness
of fit of a prediction model [25]. It quantifies the average squared difference between
predicted values and the actual values in the dataset. The objective of minimizing MSE
is to find model parameters (e.g., in the case of a random forest, the tree structures) that
make the MSE as small as possible [26]. This means that the model attempts to find the
best parameter combination to minimize the total squared difference between its predicted
values and the actual target values. During the training process of the random forest
model, the objective function used to minimize the mean squared error (MSE) between the
predicted and actual values is set to the MSE itself, resulting in the smallest MSE between
the predicted and actual values.

In this paper, the model’s performance was evaluated using the R-squared (R2) value,
expressed as follows:

R2 = 1− ∑m
i (ŷi − yi)

∑m
i (y− yi)

(7)

where m represents the number of data points; yi is the actual drilling rate value; ŷi is the
predicted drilling rate value; and y is the mean drilling rate.

Figure 7 represents the drilling speed prediction results for well Fu39. It can be
observed that the predicted ROP closely matches the actual values, and the overall trend
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is consistent. The R-squared (R2) value reaches 0.94, indicating a good overall prediction
performance. Moreover, for the abnormally low-speed sections at well depths of 3950–4300
m and 4700–5000 m, the random forest model is also capable of capturing the unusual
ROP trends effectively. This is an achievement that traditional mechanism-driven ROP
prediction models cannot accomplish.
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The well Kangtan2 is located far away from the other training wells and has a longer
test interval, resulting in greater fluctuations in the mechanical drilling rate compared to
Well Fu39. The mechanical drilling rate prediction results for Kangtan2 are illustrated in
Figure 8. Although there is some deviation between the predicted results and the actual
drilling rate in the relatively high-speed interval of 2000–3500 m, the model effectively
captured the fluctuation trend of the mechanical drilling rate, yielding an R2 value of 0.83
and demonstrating a good overall prediction performance. This also confirms the strong
generalization capability of the data-driven mechanical drilling rate prediction model based
on the random forest model.
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4. Discussion

In this study, a random forest model was utilized to predict the ROP in the complex
subsurface formations of Fukang. The following are some key discussion points:

An analysis was conducted on algorithms such as ELM (extreme learning machine),
ANN (artificial neural network), SVR (support vector regression), and LS-SVR (least squares
support vector regression) to identify their limitations in predicting ROP. Furthermore,
the advantages of machine learning algorithms in predicting ROP in complex deep sub-
surface formations were explained. These advantages include their suitability for han-
dling large-scale datasets and their capability to capture complex nonlinear relationships
between parameters.

Through the mean square error (MSE) evaluation, we validated the performance of
the random forest model developed in this study. The evaluation results indicate that the
model demonstrates a high accuracy and reliability in predicting ROP.

The importance ranking of features within the model was analyzed. This helps us
to understand which subsurface properties play a critical role in predicting ROP. Feature
ranking indicates that, in the deep well sections of the Fukang Depression in the eastern
Junggar Basin, variables such as the equivalent density, annular pressure, inflow rate, and
pump speed may significantly influence ROP. Mechanistic explanations of these important
parameters were also provided.

The model’s performance is still constrained by data quality and feature selection. Ad-
ditionally, geological conditions and drilling operations may vary across different locations
and times; thus, the model may need customization to adapt to specific drilling scenarios.

To enhance the accuracy of ROP predictions further, future research can explore
the integration of more complex subsurface attributes, including seismic data and core
analysis. Moreover, research can focus on developing tailored prediction models for
different geological conditions.

5. Conclusions

We established a mechanistic drilling speed prediction model based on the mechanical-
specific energy theory. We also explained the limitations of the model in predicting ROP
in complex geological formations and pointed out that the model cannot account for the
anomalous conditions caused by engineering factors, which makes it unsuitable for deep
and complex formations.

We developed a data-driven random forest model, which demonstrated high accuracy
and generalization capabilities in drilling speed prediction.

We emphasized the critical role of subsurface properties in ROP and provided valuable
insights for future drilling projects.

We further highlighted some limitations of the model, including data quality and
geological variability. However, the model provides a valuable tool for optimizing drilling
operations, reducing costs, and enhancing safety.
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Appendix A

To help readers understand the model, the formulas involved in the random forest
algorithm are explained below:

Exhaustive search is used to select the split variable and split point when training
the CART decision tree. It involves iterating through each feature and its values to find
the optimal feature combination. The evaluation criterion for the split variable and split
point is represented by the impurity of the resulting nodes, which is the weighted sum of
impurities G

(
xi, vij

)
in each child node. The equation is as follows:

G
(
xi, νij

)
=

nle f t

Ns
H
(

Xle f t

)
+

nright

Ns
H
(

Xright

)
(A1)

where xi is the variable to be split, and vij is the corresponding split value. nle f t, nright, and
Ns represent the number of training samples in the left, right, and current child nodes after
the split, respectively. Xle f t and Xright are the training sample sets for the left and right
child nodes, respectively. H(X) denotes a function to measure the impurity of a node.

Different impurity functions are generally used for classification and regression tasks.
In this study, the mean squared error (MSE) was used as the impurity function for ROP
regression prediction. The calculation formula is as follows:

H(Xm) =
1

Nm
∑

i∈Nm

(yi − ym)
2 (A2)

where ym is the average value of the target variable for the current node’s samples; and yi
is the predicted value for the current node’s samples.

Tree models can also quantify feature importance, which indicates the extent to which
a feature influences the prediction results. In a random forest, the importance of a feature is
the average importance across all decision trees. In this study, the Gini index was used as
the evaluation metric to measure feature importance. The calculation formula is as follows:

GIm = ∑|K|
k=1,k′ 6=k pmk pmk′ = 1−∑|K|

k=1 p2
mk (A3)

where GIm represents the Gini index of node m, k represents the number of classes, and
pmk represents the proportion of class k in the node.

The importance of the feature Xj at node m, as the change in the Gini index before
and after branching, is expressed by:

VIM(Gini)
jm = GIm − GIl − GIr (A4)

where VIM(Gini)
jm represents the change in the Gini index before and after branching; and

GIl and GIr represent the Gini indices of the two new nodes after branching.
Assuming the random forest model has n trees, then:

VIM(Gini)
j = ∑n

i=1 VIM(Gini)
ij (A5)

where VIM(Gini)
ij represents the importance of the feature Xj in the i tree; and VIM(Gini)

j
represents the sum of importance of feature Xj over all trees.
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After normalizing, the feature importance score can be obtained as shown in the
following formula:

VIMj =
VIMj

∑n
i=1 VIMi

(A6)

where VIMj represents the normalized importance score of feature Xj across all trees in
the random forest model.
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