
Citation: Tan, A.; Li, Y.; Wang, Y.;

Yang, Y. Global Resource Scheduling

for Distributed Edge Computing.

Appl. Sci. 2023, 13, 12490. https://

doi.org/10.3390/app132212490

Academic Editor: Sven Gotovac

Received: 10 October 2023

Revised: 10 November 2023

Accepted: 14 November 2023

Published: 19 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Global Resource Scheduling for Distributed Edge Computing
Aiping Tan 1 , Yunuo Li 2 , Yan Wang 1,* and Yujie Yang 1

1 College of Information, Liaoning University, Shenyang 110036, China; aipingtan@lnu.edu.cn (A.T.);
yyjfighting@163.com (Y.Y.)

2 Ming Yang Institute, Shenyang 110163, China; liyn@mingyangtech.com.cn
* Correspondence: wang_yan@lnu.edu.cn

Abstract: Recently, there has been a surge in interest surrounding the field of distributed edge com-
puting resource scheduling. Notably, applications like intelligent traffic systems and Internet of
Things (IoT) intelligent monitoring necessitate the effective scheduling and migration of distributed
resources. In addressing this challenge, distributed resource scheduling must weigh the costs associ-
ated with resource scheduling, aiming to identify an optimal strategy amid various feasible solutions.
Different application scenarios introduce diverse optimization objectives, including considerations
such as cost, transmission delay, and energy consumption. While current research predominantly
focuses on the optimization problem of local resource scheduling, there is a recognized need for
increased attention to global resource scheduling. This paper contributes to the field by defining a
global resource scheduling problem for distributed edge computing, demonstrating its NP-Hard
nature through proof. To tackle this complex problem, the paper proposes a heuristic solution strategy
based on the ant colony algorithm (ACO), with optimization of ACO parameters achieved through
the use of particle swarm optimization (PSO). To assess the effectiveness of the proposed algorithm,
an experimental comparative analysis is conducted. The results showcase the algorithm’s notable
accuracy and efficient iteration cost performance, highlighting its potential applicability and benefits
in the realm of distributed edge computing resource scheduling.

Keywords: resource scheduling; distributed systems; edge computing

1. Introduction

The application scope of global resource scheduling in distributed edge computing is
extensive. Existing research predominantly emphasizes optimization objectives such as
maximizing resource utilization, load balancing, minimizing latency, and reducing energy
consumption. However, there is a pressing need for more effective definitions of resource
quality, particularly concerning tasks and data, within the constraints imposed. For instance,
Figure 1a illustrates a scenario within an intelligent traffic system. In such a system, diverse
edge computing nodes are distributed across different regions, monitoring locally owned
traffic resources such as traffic police, rescue vehicles, and ambulances. These nodes submit
real-time resource scheduling requests based on the prevailing traffic situation. In Figure 1a,
both Node B and Node C require Resource 3, and there exist multiple feasible options for
allocating Resource 3 among these nodes. Figure 1a exemplifies a scenario in the field
of Internet of Things (IoT) edge computing. Base Station A receives data from Sensors 1,
Sensor 2, and Sensor 3, and must determine the target base station to which the data from
each sensor should be forwarded. For instance, the decision of where Base Station A should
forward the data from Sensor 1 is crucial. From a global perspective, minimizing latency
becomes the optimization objective, considering that all data are ultimately transferred.
In these scenarios, the consideration of resource quality, akin to resource price, becomes
imperative. The existence of different resource prices further complicates the challenge
posed by the global resource scheduling problem.

Appl. Sci. 2023, 13, 12490. https://doi.org/10.3390/app132212490 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132212490
https://doi.org/10.3390/app132212490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5137-3953
https://doi.org/10.3390/app132212490
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132212490?type=check_update&version=2

Appl. Sci. 2023, 13, 12490 2 of 20

A

B

E

F

C

D

1
2

3

1

4

4

3

2

1 3

4

3

3 4

Edge node Connection Resource request Resource

A1

2 3

2

B

C

D

1

1

3

1

2

BaseStation Connection Wireless Cell Sensor

（a）Intelligent Transportation System （b）IoT Edge Computing

Figure 1. The case of large-scale distributed resource migration and scheduling.

Several scholars have undertaken extensive research on large-scale distributed re-
source migration and dispatching, each based on different application scenarios [1–3].
For instance, Jia et al. [4] proposed a two-layer distributed collaborative evolution (DCE)
architecture with adaptive computing resources for large-scale optimization. Experimental
studies demonstrated that the proposed distributed architecture exhibits high scalability
and efficiency. Askarizade et al. [5] utilized virtualization technology to apply a hybrid
approach to resource management. This technology employs the K average cluster to the
mapper and a micro-genetic algorithm to enhance the ramming method. The research
indicated that KMGA technology effectively reduces energy consumption in data centers
and maintains continuous service quality, providing a favorable compromise. Additionally,
compared with particle swarm optimization (PSO) and similar hybrid technologies based
on genetic algorithms, it minimizes the number of virtual machine migrations and gen-
eration time. Yuan et al. [6] established an intelligent manufacturing workshop resource
dispatch model. They improved non-dominating sorting genetic algorithms (NSGA-II),
selected evaluation functions based on sorting levels and congestion, and introduced a
competitive mechanism. The generation of new groups was based on process and machine-
based random mutation strategies and cross-methods. An improved elite retention strategy,
a variable proportional method to determine probability, and a layered analysis method
to decide the optimal solution were incorporated. The efficacy and superiority of the im-
proved algorithm were validated through benchmark case tests and real-world production
and processing challenges. However, existing research faces certain challenges, mainly
characterized by the following: firstly, a relatively limited focus on global optimization;
secondly, a tendency towards single optimization goals, typically centering on specific
factors like delay and energy consumption; and thirdly, a lack of consideration for dynamic
change parameters during the optimization process.

Current research predominantly centers on proposing optimization scheduling so-
lutions tailored to specific application scenarios, highlighting a need for more extensive
exploration of a unified global scheduling model. This gap is particularly evident in the
following aspects: Firstly, existing optimization models lack generality and a standardized
mathematical definition for the global resource scheduling problem in edge computing.
Secondly, current optimization scheduling methods need to adequately consider resource
diversity and account for constraints on scheduling different qualities of resources. Thirdly,
most research falls under static scheduling and needs to consider dynamic parameter
changes adequately.

Appl. Sci. 2023, 13, 12490 3 of 20

To address these challenges, this paper introduces a global resource scheduling prob-
lem for distributed edge computing and presents a solution algorithm. The primary
motivations for this paper include:

(1) Definition of the global resource scheduling problem: In contrast to existing research,
this paper incorporates two factors into the optimization objective: resource prices
and migration costs. Depending on different application scenarios, migration costs
may include latency and load balancing. Innovative constraints, such as the price
budget constraint, are introduced within the context of resource scheduling. The
paper conducts a computational complexity analysis and proves that the problem
is NP-Hard.

(2) Ant colony optimization (ACO)-based adaptive dynamic scheduling algorithm: Rec-
ognizing the difficulty of solving NP-Hard problems in polynomial time, this paper
proposes an ACO-based adaptive dynamic scheduling algorithm. ACO converges
quickly and is less likely to get stuck in local optima. However, the method’s perfor-
mance is constrained by parameter settings, and ant colony optimization involves
numerous parameters that could be challenging to set manually. Therefore, the paper
leverages a particle swarm optimization (PSO) approach to optimize parameters
during the ACO process, enhancing the reasonableness of parameter settings for
each iteration.

(3) Comparative analysis with general methods: The paper conducts a comparative
analysis of the proposed algorithm with standard methods, including basic ACO
algorithms, genetic algorithms (GA), and ACO-GA algorithms. The algorithms are
compared in terms of accuracy and iteration cost.

The remainder of this paper is organized as follows: Section 2 presents an overview of
the relevant research work. Section 3 defines the global resource scheduling problem and
analyzes its computational complexity. Section 4 introduces an adaptive dynamic schedul-
ing algorithm based on the ant colony algorithm and utilizes particle swarm optimization
for parameter optimization. Section 5 establishes an experimental platform and conducts a
comparative analysis of algorithm performance. Finally, Section 6 provides a summary of
the work presented in this paper.

2. Related Work

Currently, the research focus in distributed resource scheduling is broad and en-
compasses various domains. These include network data flow scheduling [7], cloud
computing [8], language processing [9], energy scheduling [10], blockchain [11], vehicular
edge computing [12], and other fields [13]. The classification of related research work is
summarized in Table 1.

Table 1. Summary of related work.

Number Category Description Literature

1 Resource scheduling

Resource scheduling is an important research area in edge computing, involving
how to effectively manage and allocate computational resources in distributed
systems to achieve performance optimization, load balancing, and maximized
resource utilization.

[14–23]

2 Routing scheduling

Research in the context of edge computing with a mesh topology focuses on deter-
mining the optimal path for migrating edge computing tasks within a distributed
resource environment. Studies in this area primarily emphasize performance
metrics such as low latency and high reliability.

[24–27]

3 Network scheduling
Network scheduling in edge computing is a critical research area aimed at optimizing
resource management and task scheduling within the edge computing environment
to meet the growing computational demands and enhance user experience.

[28–31]

Appl. Sci. 2023, 13, 12490 4 of 20

(1) Resource scheduling

Shen et al. [14] transformed the multi-virtual machine scheduling problem into a
structured combinatorial optimization problem, approaching it as a reinforcement learn-
ing problem. They introduced a reinforcement learning algorithm with an incremental
reward scheme and a scenario-guided sampling strategy. Goudarzi et al. [15] proposed
an optimization model for computing resource allocation that utilizes cooperative evolu-
tionary computation. This model addresses the joint optimization problem of queue-based
computation offloading and adaptive computing resource allocation. The method ensures
task computation latency for all mobile nodes (MNs) within a time block, optimizes the
total accessibility rates of MNs, and reduces energy consumption for both unmanned
aerial vehicles (UAVs) and MNs, all while meeting the constraints of task computation.
In [16], regional optimization of the irrigation plan is achieved by combining a multiob-
jective algorithm with the exponential efficiency coefficient method. Ref. [17] proposes
several optimization attributes based on high-end equipment development characteristics,
and designs an effective heuristic algorithm. Given that the resource-constrained project
scheduling problem is NP-Hard, three problem neighborhoods are constructed, and a
variable neighborhood search algorithm is developed for problem resolution. Wu et al. [18]
addressed issues in the employee evaluation mechanism of enterprises. They improved the
current evaluation model based on neural networks and analytic hierarchy process, scien-
tifically evaluating the matching degree of employees’ abilities and job requirements. This
is achieved by learning the radial basis function (RBF) neural network model for optimal
employee-job matching and migration. Yuan et al. [19] studied the scheduling method of
dynamic service resources in a cloud manufacturing environment. This method aims at
time, cost, quality, and capacity and establishes an optimal scheduling model for emotional
service resources. ACO is improved, and GA functions are used to optimize the objec-
tive function. A GA-based optimization fusion algorithm is proposed to solve the model.
Wang et al. [20] proposed a distributed particle swarm optimization (PSO) method extended
to large-scale cloud workflow scheduling. This method divides the entire population into
multiple groups, employing the master–slave multigroup distributed model to co-evolve
these groups into a distributed PSO (DPSO) to enhance algorithm diversity. The DPSO
adopts a dynamic group learning (DGL) strategy to balance diversity and convergence.
Jiang et al. [21] proposed a distributed intelligent resource scheduling (DIRS) framework
to minimize the sum of task delay and energy consumption. The scheduling problem
is formulated as a mixed-integer nonlinear programming. Maab et al. [22] proposed an
intelligent metaheuristic optimization model to address the problem of low-quality service
and achieved the optimization of time and precision in task unloading through PSO on
GPU. Zhang et al. [23] introduced a coevolutionary algorithm with function-independent
decomposition (FID). For large-scale problems, the binary code of the original model is con-
verted to integer code to reduce dimensionality, and a new FID is designed to decompose
the problem effectively.

(2) Routing scheduling

Routing scheduling research finds wide-ranging applications in engineering, such as
urban vehicle scheduling and robot path planning in intelligent factories [24]. Jahic et al. [25]
introduced a scheduling model for urban bus charging, considering a heterogeneous fleet
of electric buses with different battery capacities. The optimized scheduling method
aims to minimize the number of buses charged simultaneously, thereby reducing the
peak load. Li et al. [26] proposed a time scheduling method for fixed line-oriented urban
bus departures. They proved the NP-hardness of the scheduling problem, simplified it
as a variant of a k-clustering problem, and provided a practical application of dynamic
programming. Mousa et al. [27] proposed parallelizing particle swarm optimization based
on a graphics processing unit (GPU) to balance cluster sizes and identify the shortest path.

Appl. Sci. 2023, 13, 12490 5 of 20

(3) Network scheduling

Farahbakhsh et al. [28] introduced a context-aware offloading problem for multiple
users based on Bayesian learning automata (BLA). BLA is employed to learn all states and
actions within the network, subsequently enhancing the offloading algorithm. Contex-
tual information is gathered through autonomous management in a monitoring–analysis–
planning–execution loop throughout all offloading processes. Agiwal et al. [29] studied
current 4G–5G interworking solutions, analyzed the practical application feasibility and
challenges of various interworking solutions, discussed the possibility of spectrum sharing
between 4G and 5G wireless networks, and explored the migration path to 5G independent
networks. Son et al. [30] proposed a dynamic resource allocation algorithm for virtual
network functions (VNFs). The algorithm considers the latency requirements of different
applications in the service function chain, allowing delay-sensitive applications to reduce
end-to-end network latency through edge resources. Zhao et al. [31] proposed an adaptive
distributed scheduling algorithm on resource-constrained edge clusters of the Internet of
Things. The algorithm utilizes a convolutional neural network (CNN) to optimize the dis-
tributed resource scheduling problem, using minimum memory occupation as the objective
function. This method adopts a new work scheduling process to improve data reuse and
reduce overall execution delay.

In summary, current research spans various fields, encompassing intelligent grids [32],
smart mining [33], smart factories [34], and more. However, a predominant trend in
current research is the concentration on a singular optimization goal, such as minimizing
delay or finding the shortest path. Different engineering application scenarios present
distinct challenges, and their solution methods vary accordingly. Therefore, the design of
optimization methods should align with specific requirements dictated by the nature of
each application.

3. System Formulation
3.1. Problem Definition

The topology of the system is illustrated in Figure 2. Each resource node in the figure
can represent any entity with resources, such as an intelligent edge node or an IoT base
station as shown in Figure 1. Each resource node possesses multiple resources of the same
type, and each resource is characterized by two key attributes 〈C, P〉. Here, C denotes the
quantity of resources the entity owns. If it is a positive number, the entity possesses C
resources; if it is zero or negative, the entity must request at least C resources. The attribute
P represents the resource price. If C > 0, then P signifies the unit price of the resource;
if C ≤ 0, P represents the total resource budget requested. The weight value of the edge
connecting any two nodes represents the contribution value of resource migration between
them. This value primarily reflects factors such as the distance between nodes, migration
history, and other relevant information. The value is automatically updated with each
node resource migration. In Figure 2, nodes A and B are part of the same cell, denoted by
dotted lines, indicating that the distance cost of resource migration (or communication cost
in IoT edge computing applications) between these two nodes is relatively small. As an
illustrative example, consider that node A requires at least three No. 0 resources, with a
total budget of 23. Nodes B, C, and D each possess No. 0 resources, where the unit price of
node D is 9, and node B is 8. If three resources are obtained from either D or B, we have
3× 9 > 23 and 3× 8 > 23, which do not meet the budget requirements. Therefore, only
one part can be selected from D and B. In this example, there are multiple options, such as
migrating 2 No. 0 resources from B and 1 No. 0 resource from C, resulting in a total cost
of 2× 8 + 1× 7 = 23, meeting the budget requirements. Alternatively, we can migrate 1
No. 0 resource from B, C, and D, respectively, resulting in a total cost of 8 + 7 + 9 = 24.
As the number of nodes and resource types increases, when multiple nodes are involved
in resource migration, ensuring the minimum scheduling cost for each node becomes a
challenging global optimization problem.

Appl. Sci. 2023, 13, 12490 6 of 20

0 A

1

2

…

0 B

1

2

…

0 C

1

2

…

0 D

1

2

…

Resource

Resource node

Connection

<2,3> <4,3>

<-3,23>

<0,0>

<0,0>

<2,7>

<3,10>

<0,0> <2,8>

<0,0>

<0,0>

<0,0>

<0,0>

<10,9>

<0,0>

<0,0>

8

7

6

5

0

1

Figure 2. Topology of the problem.

Suppose there are I nodes in total, and each node has the same J resource type. ∀i ∈
{0, 1, . . . , I − 1}, j ∈ {0, 1, . . . , J − 1}, Ci,j represents the quantity of the j-th resource of the
i-th node; Pi,j represents the unit price of the j-th resource at the i-th node.
∀i, i′ ∈ {0, 1, . . . , I − 1} ∧ i 6= i′, Li,i′ represents the migration cost between node i and
node i′. Suppose maxP and maxL are used to represent the upper limit of resource unit
price and migration cost; then the quality of service (QoS) function of node i requesting i′

migration resource j is shown as follows:

Qi,i;(j) =
1

Xi,i′ (j)×Pi′ ,j
maxP × α +

Li,i′
maxL × (1− α)

(1)

where α is a balance factor used to set the importance of price and migration cost according
to user needs, where Xi,j(j) represents the number of resource j migrated from node j to
node i. Li,i′ is not fixed. It includes the migration distance between nodes i and i′, historical
migration records, etc. After each migration, we can modify the value of Li,i′ according
to the results of the previous migration. The modification principles can be determined
according to the actual situation in specific engineering applications. For example, for the
edge computing scenario of intelligent transportation, if the last scheduling effect between
two edge nodes is good, Li,i′ can be increased; otherwise, it can be reduced.

Definition 1. For given I, J, C, P, L, we can define a global resource scheduling problem of dis-
tributed edge computing as follows:

max
I−1

∑
i=0

I−1

∑
i′=0

J−1

∑
j=0

Qi,i′(j)

s.t. ∀Ci,j ≤ 0

I−1

∑
i′=0

Xi,i′(j) ≥ −Ci,j (2)

Pi,j ≥
I−1

∑
i′=0

Xi,i′(j)× Pi′ ,j (3)

Appl. Sci. 2023, 13, 12490 7 of 20

3.2. Computational Complexity Analysis

For given I, J, C, P, L, we use S(I, J, C, P, L) to represent the solution function of the global
resource scheduling problem of distributed edge computing. We have the following theorem:

Theorem 1. Problem S(I, J, C, P, L) is NP-Hard.

Let us prove theorem 1. According to definition 1, we define subproblem S′ of
problem S:

Definition 2. Let J = 1, and in Formula (1), let α = 0, maxL. Therefore, the price P has no
meaning for the objective function Q, so the subproblem S′(I, 1, C, P, L) of problem S can be
described as:

max
I−1

∑
i=0

I−1

∑
i′=0

Qi,i′(0)

s.t. ∀Ci,0 ≤ 0

I−1

∑
i′=0

Xi,i′(0) ≥ −Ci,0 (4)

Pi,0 ≥
I−1

∑
i′=0

Xi,i′(0)× Pi′ ,0 (5)

where Qi,i′(j) =

{
1

Li,i′
Li,i′ 6= 0

0 Li,j = 0

We have the following theorem:

Theorem 2. Problem S′(I, 1, C, P, L) is NP-Hard.

Proof. To prove theorem 2, we need to find a known NP-C problem and then prove that the
problem can be reduced to problem S′. A 0–1 knapsack problem is proposed and proved to
be an NP-C problem [35].

Definition 3. There are N items and a backpack with a capacity of K. The weight of the i-th item is
w[i], and the value is v[i]. The function x[i] = {1, 0} represents whether the item is packed. Then,
the 0-1 knapsack problem is expressed as:

max
N−1

∑
i=0

(v[i]× x[i])

s.t.
N−1

∑
i=0

(w[i]× x[i]) ≤ K (6)

For given N items and knapsack capacity X, we use the function G(N, K, w, v) to
represent the 0–1 knapsack problem. For problem G, any input N, K, w, v, we will convert
it to the input of S′; the principle is as follows:

For problem S′, let I = N + 1, C0,0 = 0, P0,0 = K. ∀i ∈ {1, 2, . . . , I − 1}, let Ci,0 = 1,
Pi,0 = wi−1, L0,i =

1
vi−1

. (F)

We need to prove that the same output can be obtained for questions G and S′:

1 Suppose that the problem S′ obtains an output result X, satisfying Definition 2. Since only
C0,0 ≤ 0, we only consider X0,i′(0). Therefore, ∀i′ ∈ {1, . . . , I − 1}, let x[i′ − 1] = X0,i′(0).

Appl. Sci. 2023, 13, 12490 8 of 20

According to Formula (5) of Definition 2, we have P0,0 ≥ ∑I−1
i′=0 X0,i′(0)× Pi′ ,0. In the in-

put conversion principle(F), we have K ≥ ∑I−1
i′=1 x[i′ − 1]×w[i′ − 1]. Since I = N + 1,

we have K ≥ ∑N−1
i′=0 x[i′]× w[i′], which satisfies the Formula (6) of Definition 3. There-

fore, the output of question S′ can be transformed into the output of question G.
(�)

2 Suppose that the problem G obtains an output result x, satisfying Definition 3. ∀i ∈
{0, 1, . . . , N − 1}, let X0,i+1(0) = x[i]. According to Formula (6), we have ∑N−1

i=0 x[i]×
w[i] ≤ K. In the input conversion principle (F), we have ∑N−1

i=0 X0,i+1(0)× Pi+1,0 ≤ P0,0.
Due to I = N + 1, we have ∑I−1

i=1 X0,i(0)× Pi,0 ≤ P0,0. Because only C0,0 = 0, we have
∑I−1

i′=0 X0,i′(0) ≥ 0 = −C0,0, satisfying Formula (4), Definition 2. Therefore, the output
of question G can be transformed into the output of question S′. (��)

In conclusion, (�) and (��) indicate that problem of G and S′ having the same
output. Because the input conversion process of (F) is completed in polynomial time,
Theorem 2 holds!

Since it has been proven that S′ is an NP-hard problem, the more complex problem S
must be an NP-hard problem. Theorem 1 holds.

4. Algorithm Design
4.1. Design of Heuristic Algorithm Based on ACO

Since problem S has been proven to be NP-Hard, we choose a heuristic algorithm to
solve this problem. In the heuristic algorithm, this paper chooses the ACO to design.

The ACO is an intelligent heuristic algorithm. It solves some optimization problems
by simulating the process of ants’ foraging in nature. In the whole search process, the ants
will leave pheromones on the path every time they pass through a path. The ants tend to
find the path with high pheromone concentration in the subsequent process. The higher
the concentration of pheromones, the higher the probability that the path will be selected.
The ACO was first proposed to solve the travelling salesman problem (TSP). The process
of implementing TSP with the ACO is as follows: select m ants and n cities, and first give
the initial pheromone concentration on the path as τ0, and then let m ants move from the
random initial city, passing through all cities once and only once, and then update the
pheromone on the path. In the next iteration, the ants will choose a path with a higher
concentration. The probability pk

ij(t) of the k-th and going from the i-th city to the j-th city
at time t can be expressed as follows:

pk
ij(t) =

[τij(t)]

α ·[η]β

∑s∈Nk
i
[τis(t)]

α ·[η]β
j ∈ Nk

i

0 j /∈ Nk
i

(7)

where NK
i represents the next hop node-set, which node i can select in the k-th iteration.

The heuristic information ηij is generally set as 1/dij. Moreover, α is the relative
importance of the pheromones left in the previous iteration, β is used to measure the
importance of heuristic information, and NK

i is the set of possible target cities, that is, the
cities that have not been visited. We use a tour list to preserve the cities that ants have
passed through, that is, cities that can no longer be selected during the selection process.
The pheromone is updated according to the following formulas:

τij(t + n) = (1− ρ) · τij(t) + ∆τij (8)

∆τij =
m

∑
k=0

∆τk
ij

∆τk
ij =

{
Q
Lk

if edge(i, j) its tour
0 otherwise

Appl. Sci. 2023, 13, 12490 9 of 20

where ρ indicates the volatilization rate of the pheromone, then (1− ρ) refers to the extent
to which the pheromone inherits the pheromone at the last time. It is also called the residual
factor. ∆τij represents the increased concentration of pheromones on edges(i, j). Q is a
constant, and Lk represents the length of the path that the k-th ant walked in this iteration.

The traditional ACO is prone to slow convergence and may only obtain the optimal
local solution but not the optimal global solution. Moreover, for the parameters in the
traditional ACO α, β, the parameters obtained through experiments in advance are not
necessarily the optimal parameters.

In this paper, the pheromone concentration on the path composed of every two nodes
at the initial time is the same, which is a constant τ0. Each edge has the same attraction
to ants at the initial time, so the probability of selecting the next node depends on the
distance dij and the price of resources. From a global perspective, for the path with low
scheduling cost, the local shortest path length does not mean it is the optimal result. In
Figure 3, assume that lij1 < lij and ljk < lj1k1 , but lik < lik1 , it can be concluded that the
scheduling cost of each subpath is not necessarily the minimum on the path with the lowest
scheduling cost.

1j
1k

i

j

k

Figure 3. Example of path selection for global optimization and local optimization.

To address the challenge of the traditional ACO potentially converging to a suboptimal
solution in the large-scale distributed resource migration problem, this paper introduces
an enhanced approach. In the first iteration, the standard ACO may quickly converge to
a layout migration result with the lowest cost, potentially overlooking a set of migration
nodes that collectively offer the lowest total scheduling cost. To mitigate this issue, a
modification is made in the first iteration to prevent local nodes with a greedy selection
bias, thus avoiding premature convergence to a suboptimal local solution. The formula for
initializing pheromone distribution in this improved ACO is expressed as follows:

τij(0) =

{
dij×m

n i 6= j
0 i = j

(9)

4.2. Parameter Optimization of the ACO Based on PSO

The ACO algorithm involves several parameters, and the optimization results are
directly influenced by the setting of these parameters. Manually selecting parameter values
does not ensure optimal performance, making it crucial to find a reasonable parameter
configuration before each iteration to enhance algorithm effectiveness. To address this
challenge, this paper introduces a parameter optimization method based on PSO. This
dynamic approach optimizes parameters based on the results of each iteration, providing
an adaptive and efficient means of setting parameters for the ACO algorithm.

The PSO is a phenomenon that simulates birds searching for food. PSO has been widely
used in continuous optimization problems and discrete optimization problems [36–38]. A
population of m particles has its position in the multidimensional search space. The
particles fly at a certain speed to simulate the migration process of birds. When searching
for the target, focus on the best solution in this history search record and update the speed

Appl. Sci. 2023, 13, 12490 10 of 20

and position according to specific rules based on the best record of other particle history
searches in this group.

The position of the d-th (1 ≤ d ≤ m) particle in the i-th particle group is expressed as
xid, whose speed is expressed as vid, and whose best history is expressed as pid. The best
record of all particles in the population is expressed as pgd. The update of particle speed
and position is based on the following two formulas:

vid = ω× vid + c1 × rand()× (pid − xid)

+c2 × rand()×
(

pgd − xid

)
(10)

xid = xid + vid (11)

where ω is the inertia weight, whose value determines how much of the past value of the
particle remains. Whether ω is appropriate can determine whether the final solution is
enough for optimization. c1 and c2 are called learning factors, equivalent to measuring
the speed of particles approaching the optimal solution. The learning factor has the effect
of evaluating itself and learning other particles. rand() is a pseudorandom number in the
interval [0, 1].

In this paper, the parameters α,β of the traditional ACO are optimized by training.
Moreover, a mutation strategy is set so that when the ant selects a new node, the probability
of selecting the next hop node through the pheromone concentration is no longer an
inevitable event but has a certain probability of modifying the probability of selection.

In this algorithm, the total number of Na ants is divided into several populations,
and the number of ants in each population is the same Nsa. Each population maintains
its pheromone matrix, which records the path between each node and the migration cost.
Then, position x and speed v are converted into parameters {α, β}; The PSO is used to
optimize these two parameters after each iteration of the ant colony algorithm as the initial
parameters of the next iteration. The value range of α is set to [1, 2], and the value range of
β is set to [1, 2]. So the lower bound of {α, β} is {1, 1}, and σ is the difference between the
upper and lower bound. Set the range of particle position to [−50, 50] and particle speed to
[−60, 60].

Suppose Xk is the k-th position element of the particle; then, the particle position is
converted into a parameter by the following formula.

{α, β} = Rmin + σ ∗ Xk − Xmin
Xmax − Xmin

(12)

The traditional PSO is improved, and ω is optimized to make it dynamic.

vid = ω(t) × vid + c1 × rand()× (pid − xid)

+c2 × rand()×
(

pgd − xid

)
(13)

where ω(t) = (ωini−ωend)(Gk−g)
Gk+ωend

.
Parameter Gk is the maximum number of iterations, ωini is the initial inertia weight,

and ωend is the inertial weight value when the number of iterations reaches the maximum.
Dynamic ω can achieve better results than fixed values and has more search options.
Moving in a specific direction in parameter updating is not easy, but it has more significant
opportunities to search unknown fields.

4.3. Improvement of Selection Probability

To solve the problem that the ACO can easily fall into the local optimum and converge
to a local solution quickly, we propose the idea of selective mutation. Set a variation
index (VI). Random variation will occur when the probability of selecting the next node is

Appl. Sci. 2023, 13, 12490 11 of 20

more significant than VI. She mutates the selection probability, which is half of the original
probability, and the selection probability of other nodes should also be changed accordingly.
The probability formula for selecting the next node is:

pk
ij−new(t) =

{
pk

ij(t)×
1

1+ δ
t

pk
ij(t) > VI

pk
ij(t) otherwise

(14)

where pk
ij(t) refers to the probability of selecting the next node, while pk

ij−new(t) refers to the
probability of selecting the next node after selection and variation. δ indicates the probabil-
ity decay rate of the next node. t represents the current number of iterations. After selecting
one node changes, the probability of selecting other nodes will be normalized accordingly;
that is, the probability distribution of the final roulette selection can be obtained.

According to the Formula (14), when the value of t is minimal, that is, in the first
few iterations, the value of pk

ij(t) has a significant attenuation. With the increasing value
of t, the probability of selecting the next node will be closer to the original unchanged
probability. The advantage of this is that when the number of iterations is small, it can
better weaken the probability of selecting the next node so that the algorithm has better
breadth and randomness when searching for nodes and avoid quickly entering the optimal
local value. With the increase in the number of iterations, the probability of modifying the
selection of the next node becomes smaller and smaller and converges faster. It can ensure
the breadth of ants searching for nodes and accelerate the speed of searching for the global
approximate optimal solution.

This approach is not entirely blind and random to find new results, which cannot
be called a random search. Because this selection mutation operation only weakens the
probability that the path with too much influence is selected, rather than discarding this
probability, it makes up the defect that the algorithm converges to the optimal local solution
too quickly.

4.4. Pheromone Updating and Improvement

The improvement of pheromone updating rules and pheromone incremental updating
rules interact. The traditional ACO for pheromone incremental updating rules converges
too slowly. The reason is that the pheromone updating is too slow, which makes the
algorithm unable to converge to the path at a low cost quickly. After analyzing the original
pheromone incremental update, Formula (8), even though the cost of different nodes
on the path is very different, the pheromone increment calculated by the formula is not
significantly different. It is meaningless to choose a better path and cannot change the
final selection strategy. Therefore, some improvements have been made to Formula (8) to
increase the difference of pheromone increments on the path with significant cost difference
so that it has a more vital ability to select multiple paths. The improved formula is as follows:

∆τk
ij =

{
Q

eLk−Avg if edge(i, j)in its tour
0 otherwise

(15)

where Q is constant; Lk is the length of the current path; Avg is the average cost of all
ants’ paths in this round. When the cost of an ant’s path is small, the concentration of the
pheromone update is greater than that of Q. Furthermore, when the cost of an ant’s path is
high, the concentration of the pheromone update is much smaller than that of Q, which
can highlight the difference in the pheromone update value and increase the convergence
speed of the algorithm. We have improved the pheromone updating rule to prevent the
algorithm’s convergence rate from exceeding expectations.

τij(t + n) = (1− ρ)× τij(t) + ρ× ∆τij (16)

In Algorithm 1, the heuristic algorithm flow designed in this paper is as follows:

Appl. Sci. 2023, 13, 12490 12 of 20

1. Initialize the parameters, randomly generate the parameters of the particle swarm
(including the speed and position of each particle), and convert the parameters
into {α, β}.

2. Initialize the pheromone and other parameters of the ACO; set Nsa ants of each ant
population on these nodes.

3. Make all ants in each ant population search for all nodes according to Formula (14).
Select the target node to apply for resources, modify the scheduling table, and calculate
the total cost of scheduling resources.

4. Calculate the total scheduling cost of each population scheduling resource, and record
the ant path corresponding to the optimal scheduling cost. The optimal scheduling
generation value is used as the fitness value of the particle. The particle with the
optimal fitness value selected is the best record of the current iteration number of the
population. Update the best record of each particle’s history and the best record of the
population’s history. After updating the speed and position according to Formula (13),
convert the position parameters to new {α, β} according to Formula (12). Update the
value of pheromone according to Formula (16).

5. If the number of iterations has reached the target number of iterations, stop the
iteration; if the number of iterations does not meet the requirements, re-execute
step (3).

Algorithm 1 Adaptive dynamic migration algorithm for large-scale distributed resources.

Require: Large-scale distributed network P
Ensure: Resource scheduling optimization scheme R

1: Initialize parameters of particle swarm vid, xid, tabuk, Nsa
2: {α, β} < −vid, xid
3: for k < − 1 to Nsa do
4: for i in P do
5: ant k choose next park
6: modify taboo list tabuk of ant k
7: if L(i) < L(known− best) then
8: replace best route
9: L(best) < − L(i)

10: Shortest route < − L(i)route
11: end if
12: activity of pheromone updating is executed
13: activity of vid,xid updating is excuted
14: end for
15: R updating is excuted
16: end for
17: Return R

5. Experimental Analysis

Given the characteristics of the global resource scheduling problem in distributed edge
computing, dataset preprocessing is essential to better reflect the model’s characteristics and
structure. A dataset was constructed, comprising 50 nodes located in different positions.
To assess the algorithm’s performance, several algorithms were employed for comparison,
including the greedy algorithm [39], the basic ant colony optimization (ACO) [40], the
genetic algorithm (GA) [41], and the hybrid ACO-GA algorithm (H3AGA) [42]. The
selective mutation ACO (SMACA), proposed in this paper, is then compared against
this dataset.

The current operations on this dataset include two aspects:

1. Accuracy comparison
To validate the accuracy of the algorithm proposed in this paper, a comparison is
made based on the objective function values of the scheduling results obtained by

Appl. Sci. 2023, 13, 12490 13 of 20

different algorithms. A higher objective function value after scheduling indicates that
the results of this algorithm are closer to the optimal solution.

2. Iteration cost comparison
The iteration cost of the algorithm refers to the number of iterations, serving as a
crucial performance metric. We establish the iteration times of different algorithms
under the same target conditions for comparison.

3. Throughput analysis
The topology of this experiment consists of 50 nodes, with connections between
each pair of nodes, forming a graph-like data structure. The edges between any two
nodes have weights, which carry different meanings in various application scenarios.
As illustrated in Figure 1, in the context of IoT edge computing, the edge weights
can represent latency, whereas in the intelligent transportation scenario, the edge
weights may denote distance. The weights of edges play a crucial role in the results of
task migration scheduling. This experiment primarily focuses on the system’s task
processing throughput, represented by the ratio of successfully scheduled tasks within
a unit of time.

Table 2 shows the algorithm parameter setting information of this experiment.

Table 2. The parameter setting of the experiment.

Id Algorithm Parameter

1 ACO τ = 1, ρ = 0.2, α = 1, β = 2, m = 50, T = 1000

2 GA The crossing probability value is set as 0.75, the variation probability is 0.05,
the population size is 1000, and the chromosome length is 50.

The accuracy of the algorithm is assessed based on the objective function value. A
higher objective function value indicates better accuracy for the algorithm under the same
iteration number. In Figure 4, the x-axis represents the iteration number of the algorithm,
while the y-axis represents the objective function value of different algorithms under the
same iteration number. In the initial iterations, the accuracy of the GA is notably lower than
the other three algorithms. However, with a gradual increase in the number of iterations,
the accuracy of the GA improves. Compared with the three algorithms, the SMACA
proposed in this paper demonstrates significantly better convergence speed than the ACO
and H3AGA. It approaches the maximum target value at the fastest rate. With the increase
in the number of iterations, the objective function value of the ACO continues to rise,
and its convergence time is the longest among the ant colony algorithms. The H3AGA
converges before the 400th iteration, while the SMACA requires about 200–300 iterations to
converge. In summary, the SMACA can substantially reduce the iteration time cost, exhibits
the fastest convergence, and has a notable advantage in accuracy. This experimental result
is attributed to SMACA dynamically adjusting when selecting the next node and balancing
the convergence rate during pheromone updates. The result of the greedy algorithm is
independent of multiple iterations, making it incomparable with other heuristic algorithms
in terms of convergence speed and accuracy.

Because the results of a single experiment may need to be more accurate due to
randomness, this paper will repeat each experiment 20 times. The results of 20 experiments
will be displayed in a boxplot, as shown in Figure 5. The abscissa in the figure represents
different algorithms, and the ordinate represents the objective function value. In the
statistics of large samples, the experimental results of the GA are very dependent on the
randomness of mutation and the population size. The highest value of the GA algorithm
is 2.04, the lowest value is 1.88, with a difference of 0.16. In contrast, SMACA has a
highest value of 2.07 and a lowest value of 2.04, resulting in a difference of only 0.03. The
experimental results of the ACO and H3AGA are evenly distributed. Compared with other
algorithms, the experimental results of SMACA are more concentrated and less random.
Therefore, the algorithm proposed in this paper has excellent stability.

Appl. Sci. 2023, 13, 12490 14 of 20

0 100 200 300 400 500
Iters

1.7

1.8

1.9

2.0

2.1

2.2

Be
ne

fit

Experiment Analysis
GA
ACO
H3AGA
SMACA

Figure 4. Comparison of algorithm minimum cost.

Experiment Analysis
1.85

1.90

1.95

2.00

2.05

2.10

Be
ne

fit

GA
ACO
H3AGA
SMACA

Figure 5. Distribution of multiple experimental results of different algorithms.

In the quest for the minimum scheduling cost, the criterion for assessing the merits
of an algorithm is its ability to approach the actual minimum value. Due to the problem’s
large scale and other complexities, obtaining the true minimum value might be impractical.
Therefore, a new concept, precision, is introduced here. Precision is defined as the difference
between the minimum value obtained by the algorithm and the smaller minimum value
obtained by the next iteration. A smaller difference indicates a closer approximation to
the minimum value. Consequently, when various algorithms achieve the same accuracy,
the algorithm requiring fewer iterations is closer to the actual minimum value. Applying
this criterion to the problem at hand, we can formulate the following principle: when the

Appl. Sci. 2023, 13, 12490 15 of 20

iteration times of various algorithms are equal, the algorithm with a smaller accuracy is
considered better.

Due to the inherent uncertainty in the results of the GA, a precise comparison cannot
be made. This paper focuses on comparing the accuracy of the other three algorithms.
Figures 6 and 7 depict the actual performance comparison of each algorithm in two dif-
ferent formats. The x-axis represents the number of iterations, and the y-axis represents
the precision value of the algorithm. As the number of iterations increases, the accuracy
value of each algorithm improves. In Figure 6, as the number of iterations increases, the
performance differences among different algorithms become more apparent. When the
iteration count reaches 400, the precision differences between the SMACA algorithm and
the other two algorithms are 130 and 180, respectively. Throughout the iterations, the
accuracy of the SMACA consistently surpasses that of the ACO and H3AGA. It can achieve
lower accuracy values with fewer iterations, indicating that the SMACA exhibits superior
convergence speed.

0 100 200 300 400 500
Iters

0

100

200

300

400

500

600

700

800

Ac
cu

ra
cy

Experiment Analysis
ACO
H3AGA
SMACA

Figure 6. Accuracy comparison plot of different algorithms.

100 200 300 400 500
iters

0

100

200

300

400

500

600

700

800

ac
cu

ra
cy

Experiment Analysis
ACO
H3AGA
SMACA

Figure 7. Accuracy comparison histogram of different algorithms.

Appl. Sci. 2023, 13, 12490 16 of 20

The number of nodes is a crucial factor influencing the algorithm’s performance. This
paper conducts a comparative experiment on algorithm performance under different node
numbers. In Figure 8, the x-axis represents the number of clusters (each cluster contains
multiple nodes), and the y-axis represents the migration cost. As the number of nodes
increases, the cost of resource migration also increases. This is because, with an increase
in the number of nodes, the resource scheduling of any node is determined based on the
objective function and constraint conditions, not only considering nodes that are close to
each other. Therefore, this increase in cost is inevitable. When the number of nodes is 40,
the difference between the SMACA algorithm and other algorithms is most significant,
with the cost of the GA algorithm reaching 10,000. Compared with other algorithms, the
SMACA proposed in this paper demonstrates superior performance in terms of average
migration cost. The changing trend of the interval distance for each curve in Figure 9
indicates that the convergence time of the four algorithms is the same when the node
size is small. However, with an increasing number of nodes, the advantages of SMACA
become more apparent, making it more suitable for large-scale datasets. The improvement
in pheromone updating rules significantly expands the difference in pheromone updating
amounts on paths with different costs. This makes it easier to choose paths with low costs,
greatly optimizing the convergence speed of the algorithm.

10 20 30 40
Node_num

2000

4000

6000

8000

10,000

12,000

Co
st

Experiment Analysis
GA
ACO
H3AGA
SMACA

Figure 8. Cost comparison of different algorithm scales.

In the throughput experiment, we recorded the total number of task scheduling
executions within the same time interval (one minute) (the ratio of scheduled tasks to the
total number of tasks). As the execution results of heuristic algorithms such as ACO exhibit
a certain degree of randomness, this study repeated the same set of experiments 20 times.
The boxplot tool was used for statistical analysis of the experimental data. Figure 10 shows
the results of the throughput experiment.

As shown in Figure 10, among the four compared algorithms, the proposed SMACA
algorithm exhibits superior throughput. This is primarily attributed to the algorithm in
this paper optimizing the ACO parameters through PSO, leading to a higher scheduling
success rate and fewer iterations, resulting in higher throughput within a unit of time.
Additionally, the stability of the SMACA algorithm is the highest, as indicated by the
concentrated experimental result data. This suggests that the algorithm proposed in this

Appl. Sci. 2023, 13, 12490 17 of 20

paper has a higher probability of achieving favorable scheduling results when dealing with
different application scenarios.

10 20 30 40 50
Node_num

0

2

4

6

8

10

Co
nv

er
ge

nc
e

tim
e/

s

Experiment Analysis
GA
ACO
H3AGA
SMACA

Figure 9. Comparison of convergence time of different algorithms based on scale.

GA ACO H3AGA SMACA
Different Comparative Algorithms

0

20

40

60

80

100

Th
ro

ug
hp

ut
(%

)

Figure 10. Throughput comparative experiment.

Based on the experimental results mentioned above, SMACA demonstrates superior
performance in the adaptive migration of large-scale distributed resources.

Appl. Sci. 2023, 13, 12490 18 of 20

6. Conclusions

This paper explores the application of adaptive dynamic migration in large-scale
distributed resources, aiming to overcome current research limitations. The principal con-
tribution lies in the formulation of a mathematical model for a resource scheduling problem
in distributed edge computing. The computational complexity of this problem is analyzed,
providing evidence that it is NP-Hard and applicable to various scenarios. To tackle this
challenge, the paper proposes a solution algorithm based on ACO, complemented by
an optimization method using PSO. In the experimental section, the proposed methods
are thoroughly assessed for performance, revealing that the algorithm introduced in this
paper adeptly addresses the stated problem. A key advantage is the ability to achieve
near-optimal results with a reduced number of iterations. Furthermore, the algorithm
demonstrates robust stability, with minimal errors observed across multiple experiments.
These findings suggest that the algorithm is well-suited for diverse scenarios.

The paper primarily focuses on mathematical modeling and complexity analysis
for complex engineering problems. While the algorithm utilizes basic PSO to enhance
ACO, improvements in ACO steps are made to address large-scale distributed resource
scheduling. However, optimal solution guarantees remain a challenge, and future work
should explore algorithm design enhancements for optimal solutions.

Author Contributions: Writing—original draft preparation, A.T. and Y.L.; writing—review and
editing, Y.W.; data curation, Y.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported in part by National Key R&D Program of China (2019YFB1406002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stray, V.; Moe, N.B.; Vedal, H.; Berntzen, M. Using objectives and key results (OKRs) and slack: A case study of coordination in

large-scale distributed agile. TechRxiv 2021. [CrossRef]
2. Kang, P.; Deng, H.; Wang, X. Research on Multi-Equipment Collaborative Scheduling Algorithm under Composite Constraints.

Processes 2022, 10, 1171. [CrossRef]
3. Deshmukh, S.; Thirupathi Rao, K.; Shabaz, M. Collaborative learning based straggler prevention in large-scale distributed

computing framework. Secur. Commun. Netw. 2021, 2021, 8340925. [CrossRef]
4. Jia, Y.H.; Chen, W.N.; Gu, T.; Zhang, H.; Yuan, H.Q.; Kwong, S.; Zhang, J. Distributed cooperative co-evolution with adaptive

computing resource allocation for large scale optimization. IEEE Trans. Evol. Comput. 2018, 23, 188–202. [CrossRef]
5. Askarizade Haghighi, M.; Maeen, M.; Haghparast, M. An energy-efficient dynamic resource management approach based

on clustering and meta-heuristic algorithms in cloud computing IaaS platforms. Wirel. Pers. Commun. 2019, 104, 1367–1391.
[CrossRef]

6. Yuan, M.; Li, Y.; Zhang, L.; Pei, F. Research on intelligent workshop resource scheduling method based on improved NSGA-II
algorithm. Robot. Comput.-Integr. Manuf. 2021, 71, 102141. [CrossRef]

7. Zhang, R.; Shi, W. Research on workflow task scheduling strategy in edge computer environment. J. Phys. Conf. Ser. 2021,
1744, 032215. [CrossRef]

8. Rjoub, G.; Bentahar, J.; Abdel Wahab, O.; Saleh Bataineh, A. Deep and reinforcement learning for automated task scheduling in
large-scale cloud computing systems. Concurr. Comput. Pract. Exp. 2021, 33, e5919. [CrossRef]

9. Li, B.; Pang, R.; Sainath, T.N.; Gulati, A.; Zhang, Y.; Qin, J.; Haghani, P.; Huang, W.R.; Ma, M.; Bai, J. Scaling end-to-end models
for large-scale multilingual ASR. In Proceedings of the 2021 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), Cartagena, Colombia, 13–17 December 2021; pp. 1011–1018.

10. Muhtadi, A.; Pandit, D.; Nguyen, N.; Mitra, J. Distributed energy resources based microgrid: Review of architecture, control, and
reliability. IEEE Trans. Ind. Appl. 2021, 57, 2223–2235. [CrossRef]

11. Liu, S.; Hennequin, S.; Roy, D. Enterprise Platform of Logistics Services Based on a Multi-Agents Mechanism and Blockchains.
IFAC-PapersOnLine 2021, 54, 825–830. [CrossRef]

http://doi.org/10.36227/techrxiv.16892161.v2
http://dx.doi.org/10.3390/pr10061171
http://dx.doi.org/10.1155/2021/8340925
http://dx.doi.org/10.1109/TEVC.2018.2817889
http://dx.doi.org/10.1007/s11277-018-6089-3
http://dx.doi.org/10.1016/j.rcim.2021.102141
http://dx.doi.org/10.1088/1742-6596/1744/3/032215
http://dx.doi.org/10.1002/cpe.5919
http://dx.doi.org/10.1109/TIA.2021.3065329
http://dx.doi.org/10.1016/j.ifacol.2021.08.097

Appl. Sci. 2023, 13, 12490 19 of 20

12. Liu, L.; Feng, J.; Mu, X.; Pei, Q.; Lan, D.; Xiao, M. Asynchronous Deep Reinforcement Learning for Collaborative Task Computing
and On-Demand Resource Allocation in Vehicular Edge Computing. IEEE Trans. Intell. Transp. Syst. 2023, 1–14. [CrossRef]

13. Masdari, M.; Gharehpasha, S.; Ghobaei-Arani, M.; Ghasemi, V. Bio-inspired virtual machine placement schemes in cloud
computing environment: taxonomy, review, and future research directions. Clust. Comput. 2020, 23, 2533–2563. [CrossRef]

14. Sheng, J.; Hu, Y.; Zhou, W.; Zhu, L.; Jin, B.; Wang, J.; Wang, X. Learning to schedule multi-NUMA virtual machines via
reinforcement learning. Pattern Recognit. 2022, 121, 108254. [CrossRef]

15. Goudarzi, S.; Soleymani, S.A.; Wang, W.; Xiao, P. UAV-Enabled Mobile Edge Computing for Resource Allocation Using
Cooperative Evolutionary Computation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 5134–5147. [CrossRef]

16. Guo, D.; Olesen, J.E.; Manevski, K.; Ma, X. Optimizing irrigation schedule in a large agricultural region under different hydrologic
scenarios. Agric. Water Manag. 2021, 245, 106575. [CrossRef]

17. Cui, L.; Liu, X.; Lu, S.; Jia, Z. A variable neighborhood search approach for the resource-constrained multi-project collaborative
scheduling problem. Appl. Soft Comput. 2021, 107, 107480. [CrossRef]

18. Wu, Y.; Sun, X. Optimization and simulation of enterprise management resource scheduling based on the radial basis function
(RBF) neural network. Comput. Intell. Neurosci. 2021, 2021, 9754050. [CrossRef]

19. Yuan, M.; Cai, X.; Zhou, Z.; Sun, C.; Gu, W.; Huang, J. Dynamic service resources scheduling method in cloud manufacturing
environment. Int. J. Prod. Res. 2021, 59, 542–559. [CrossRef]

20. Wang, Z.J.; Zhan, Z.H.; Yu, W.J.; Lin, Y.; Zhang, J.; Gu, T.L.; Zhang, J. Dynamic group learning distributed particle swarm opti-
mization for large-scale optimization and its application in cloud workflow scheduling. IEEE Trans. Cybern. 2019, 50, 2715–2729.
[CrossRef]

21. Jiang, F.; Dong, L.; Wang, K.; Yang, K.; Pan, C. Distributed resource scheduling for large-scale MEC systems: A multiagent
ensemble deep reinforcement learning with imitation acceleration. IEEE Internet Things J. 2021, 9, 6597–6610. [CrossRef]

22. Envelope, M.; Envelope, M.; Envelope, M. Task offloading using GPU-based particle swarm optimization for high-performance
vehicular edge computing. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 10356–10364.

23. Zhang, X.; Du, K.J.; Zhan, Z.H.; Kwong, S.; Zhang, J. Cooperative Coevolutionary Bare-Bones Particle Swarm Optimization With
Function Independent Decomposition for Large-Scale Supply Chain Network Design With Uncertainties. IEEE Trans. Cybern.
2019, 50, 4454–4468. [CrossRef] [PubMed]

24. Sajid, M.; Mittal, H.; Pare, S.; Prasad, M. Routing and scheduling optimization for UAV assisted delivery system: A hybrid
approach. Appl. Soft Comput. 2022, 126, 109225. [CrossRef]

25. Jahic, A.; Plenz, M.; Eskander, M.; Schulz, D. Route scheduling for centralized electric bus depots. IEEE Open J. Intell. Transp. Syst.
2021, 2, 149–159. [CrossRef]

26. Li, H.; Wu, X.; Kun, P.K.; Hou U, L. Near-optimal fixed-route scheduling for crowdsourced transit system. In Proceedings of the
2021 IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 19–22 April 2021; pp. 2273–2278.

27. Mousa, M.H.; Hussein, M.K. Effcient UAV-Based MEC Using GPU-Based PSO and Voronoi Diagrams. Comput. Model. Eng. Sci.
2022, 133, 413–434.

28. Farahbakhsh, F.; Shahidinejad, A.; Ghobaei-Arani, M. Multiuser context-aware computation offloading in mobile edge computing
based on Bayesian learning automata. Trans. Emerg. Telecommun. Technol. 2021, 32, e4127. [CrossRef]

29. Agiwal, M.; Kwon, H.; Park, S.; Jin, H. A survey on 4G-5G dual connectivity: road to 5G implementation. IEEE Access 2021,
9, 16193–16210. [CrossRef]

30. Son, J.; Buyya, R. Latency-aware virtualized network function provisioning for distributed edge clouds. J. Syst. Softw. 2019,
152, 24–31. [CrossRef]

31. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. Deepthings: Distributed adaptive deep learning inference on resource-constrained iot
edge clusters. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2348–2359. [CrossRef]

32. Hu, J.; Liu, X.; Shahidehpour, M.; Xia, S. Optimal operation of energy hubs with large-scale distributed energy resources for
distribution network congestion management. IEEE Trans. Sustain. Energy 2021, 12, 1755–1765. [CrossRef]

33. Zhang, Y.; Wu, J.; Liu, M.; Tan, A. TSN-based routing and scheduling scheme for Industrial Internet of Things in underground
mining. Eng. Appl. Artif. Intell. 2022, 115, 105314. [CrossRef]

34. Peng, Y.; Ning, Z.; Tan, A.; Wang, S.; Obaidat, M.S. A Delay-Sensitive Multibase-Station Multichannel Access System for Smart
Factory. IEEE Syst. J. 2022, 17, 188–199. [CrossRef]

35. Hartmanis, J. Computers and intractability: a guide to the theory of np-completeness (michael r. garey and david s. johnson).
Siam Rev. 1982, 24, 90. [CrossRef]

36. Jian, J.R.; Chen, Z.G.; Zhan, Z.H.; Zhang, J. Region Encoding Helps Evolutionary Computation Evolve Faster: A New Solution
Encoding Scheme in Particle Swarm for Large-Scale Optimization. IEEE Trans. Evol. Comput. 2021, 25, 779–793. [CrossRef]

37. Xia, X.; Gui, L.; Yu, F.; Wu, H.; Zhan, Z.H. Triple Archives Particle Swarm Optimization. IEEE Trans. Cybern. 2019, 50, 4862–4875.
[CrossRef] [PubMed]

38. Li, J.Y.; Zhan, Z.H.; Liu, R.D.; Wang, C.; Zhang, J. Generation-Level Parallelism for Evolutionary Computation: A Pipeline-Based
Parallel Particle Swarm Optimization. IEEE Trans. Cybern. 2020, 51, 4848–4859. [CrossRef] [PubMed]

39. Edmonds, J. Matroids and the greedy algorithm. Math. Program. 1971, 1, 127–136. [CrossRef]

http://dx.doi.org/10.1109/TITS.2023.3249745
http://dx.doi.org/10.1007/s10586-019-03026-9
http://dx.doi.org/10.1016/j.patcog.2021.108254
http://dx.doi.org/10.1109/TAES.2023.3251967
http://dx.doi.org/10.1016/j.agwat.2020.106575
http://dx.doi.org/10.1016/j.asoc.2021.107480
http://dx.doi.org/10.1155/2021/6025492
http://dx.doi.org/10.1080/00207543.2019.1697000
http://dx.doi.org/10.1109/TCYB.2019.2933499
http://dx.doi.org/10.1109/JIOT.2021.3113872
http://dx.doi.org/10.1109/TCYB.2019.2937565
http://www.ncbi.nlm.nih.gov/pubmed/31545754
http://dx.doi.org/10.1016/j.asoc.2022.109225
http://dx.doi.org/10.1109/OJITS.2021.3096115
http://dx.doi.org/10.1002/ett.4127
http://dx.doi.org/10.1109/ACCESS.2021.3052462
http://dx.doi.org/10.1016/j.jss.2019.02.030
http://dx.doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.1109/TSTE.2021.3064375
http://dx.doi.org/10.1016/j.engappai.2022.105314
http://dx.doi.org/10.1109/JSYST.2022.3162724
http://dx.doi.org/10.1137/1024022
http://dx.doi.org/10.1109/TEVC.2021.3065659
http://dx.doi.org/10.1109/TCYB.2019.2943928
http://www.ncbi.nlm.nih.gov/pubmed/31613789
http://dx.doi.org/10.1109/TCYB.2020.3028070
http://www.ncbi.nlm.nih.gov/pubmed/33147159
http://dx.doi.org/10.1007/BF01584082

Appl. Sci. 2023, 13, 12490 20 of 20

40. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
41. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
42. Liu, J.; Xu, S.; Zhang, F.; Wang, L. A hybrid genetic-ant colony optimization algorithm for the optimal path selection. Intell.

Autom. Soft Comput. 2017, 23, 235–242. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1007/BF00175354
http://dx.doi.org/10.1080/10798587.2016.1196926

	Introduction
	Related Work
	System Formulation
	Problem Definition
	Computational Complexity Analysis

	Algorithm Design
	Design of Heuristic Algorithm Based on ACO
	Parameter Optimization of the ACO Based on PSO
	Improvement of Selection Probability
	Pheromone Updating and Improvement

	Experimental Analysis
	Conclusions
	References

