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Abstract: A new type dissimilar redundant actuation system (NT-DRAS), which is composed of an
electro-hydrostatic actuator (EHA) and an electro-mechanical actuator (EMA), is applied in high
value unmanned aerial vehicles such as the future near space vehicles to improve their reliability
and performance index simultaneously. Further improvement in the flight safety is achieved with
the fault-tolerant control (FTC) technique which deals with system faults. This paper proposes a
novel convex optimization-based fault-tolerant control (CO-FTC) strategy for the NT-DRAS subject to
gradual faults which are included in the state space representation of the system. A convex analysis-
based treatment for system uncertainty caused by gradual faults is applied to determine the control
gain matrix. The existence condition of the control gain matrix is optimized in the linear matrix
inequality (LMI) form. Finally, the determined subsystems based on the novel technique is used to
solve the modeled robust FTC problem. Case studies of NT-DRAS subject to different gradual faults
have been accomplished to illustrate the FTC necessity for NT-DRAS. Furthermore, the effectiveness
of the proposed CO-FTC strategy is validated by comparative analysis of the simulation results.

Keywords: new type dissimilar redundant actuation system; near space vehicle; fault-tolerant control;
linear matrix inequality

1. Introduction

The vehicle actuation system is an essential system used to realize vehicle trajectory
control. The actuation system receives input from the flight control and drives the corre-
sponding control surfaces to keep or adjust the attitude of the vehicle. In order to guarantee
the vehicle safety and further enhance the reliability of a vehicle actuation system, a re-
dundant system is commonly used for actuators and corresponding control surfaces. The
common mode failure in a redundant actuation system, such as loss pressure fault due to
physical damage or oil leakage in a redundant hydraulic actuation system, is a key factor
limiting further enhancement of the system reliability. In order to solve this problem, the
dissimilar redundant actuation system (DRAS) has attracted growing interest in industry
and among researchers [1–4], due to its advantages of high reliability through avoidance
of common mode failures. The most used DRAS is composed of a traditional hydraulic
actuator (HA) and a new electro-hydrostatic actuator (EHA), which is usually used in large
civil aircraft such as the A350 and A400M vehicles. However, for the vehicle with high
power/weight ratio in the military domain such as an unmanned near space vehicle, the
traditional DRAS no longer applies due to the heavy load of the hydraulic system. Con-
sidering the distributed flexible layout advantage of EHA and electro-mechanical actuator
(EMA), this paper proposes a new type dissimilar redundant actuation system (NT-DRAS)
composed of EHA and EMA for the near space vehicles. Meanwhile, to further improve the
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reliability of NT-DRAS, fault-tolerant control (FTC) technique is used to minimize effects
of possible faults and maintain the system performance at a desired level. There are two
types of faults that can occur in NT-DRAS: sudden faults and gradual faults. The sudden
faults typically lead to distinct system performance degradation, resulting in effective fault
identification which can be used to address its side effects [5]. Alternately, gradual faults,
such as oil leakage and flow changes, are difficult to detect and can gradually degrade the
system performance and pose a problem that remains to be effectively solved.

FTC has evolved into two branches: passive fault-tolerant control (PFTC) and active
fault-tolerant control (AFTC). Jiang and Yu [6] have conducted a comparative study of
the two different approaches, and discovered that PFTC can be used to deal with the
predicted faults while AFTC can be used to deal with unknown failures which may lead
to catastrophic consequences. PFTC is typically adopted for designing fixed controllers
with robustness against presumed faults and disturbance, and although it is of limited
fault-tolerant capability, it does not require fault detection and control law reconfiguration.
Niemann and Stoustrup [7] studied the PFTC problem of a double inverted pendulum.
For comparison purposes and for the case of critical faults, they applied AFTC with active
reconfiguration of the control law. They concluded that both PFTC and AFTC can maintain
high stability and level of performance when the system suffers critical faults, but that
AFTC requires real-time fault detection and diagnosis information. For example, Castaldi
et al. [8] used AFTC in vehicle on the precondition of fault detection and diagnosis. Goupil
studied the fault detection and isolation (FDI) and FTC problems in flight control system [9],
and demonstrated the importance of FDI for the effectiveness of AFTC. For the complex
and changing fault cases (including both minor and severe faults) of a system, PFTC and
AFTC can be combined to develop comprehensive FTC strategies in different fault degree
conditions [10]. Tao [11] presented a literature review emphasizing essentiality of the FDI
process in the AFTC design. Consequently, the PFTC approach can be considered to be
a better one when dealing with the reliability of FDI and the fault features in NT-DRAS
systems with only gradual faults.

The robust control techniques are often used to address the FTC problem. For exam-
ple, in order to maintain system performance under severe conditions such as actuator
faults, robust control techniques can be used to develop a linear parameter varying (LPV)
controller [12]. The efficiency of parameter identification with the robust control technique
can be further improved with the adaptive technique [13], in which case the fault modes are
modeled following the fault principles. For example, Tao et al. [14] modeled intermittent
faults as Bernoulli distributed random variables and then designed a passive controller,
while Zhang et al. [15] described the actuator failures as fuzzy discrete-time interconnected
events. However, certain fault modes, such as the referred gradual faults in NT-DRAS, are
difficult to detect because of no obvious fault characterization, and in those cases alternative
fault modeling methods need to be considered.

The FTC with gradual faults and outside disturbance is considered to be equivalent to
the problem of system robustness in this paper. Since the gradual faults in NT-DRAS present
the uncertainty characteristics and are difficult to detect, gradual faults can be considered as
system uncertainty [16]. The system uncertainty due to the gradual faults is different from
the model uncertainty caused by the system identification error: The former one is caused by
the changing gradual faults and can result in the system dynamic performance variant with
adverse influences of different fault degree, while the latter one, under fault-free conditions,
has only a minor adverse influence due to the invariant system parameter errors. The
first type of uncertainty modeling method for system failures is also used in flight control
systems, for example, Yu and Zhang [17] designed a passive fault tolerant controller against
actuator failures. Tao [11] determined that system component failures are often treated as
system uncertainties, and that the robust fault tolerant control can be used to deal with
failure caused by the parameter variations and model uncertainties. Zhou and Zheng [18]
studied a delayed singular system with linear fractional parameter uncertainty using
robust control method. Wang et al. [19] analyzed the robust stability of stochastic delayed
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genetic regulatory networks with polytope and linear fractional parameter uncertainties.
In both of these latter two studies, all of the uncertainties are expressed in the form of
uncertainty matrices, and are assumed to meet certain conditions. However, it is difficult
to find matching conditions for NT-DRAS, and consequently application of the uncertainty
modeling method in NT-DRAS requires some modifications. In Li and Yang’s research [20],
a robust fuzzy adaptive fault tolerant control method was proposed for a class of nonlinear
systems with mismatched uncertainties and actuator faults. The research results indicate
that the proposed method is effective for that particular class of nonlinear system with
severe faults and mismatched uncertainties.

Application of a time-invariant controller is typically sufficient and effective in the
case of systems with gradual faults. The controller provides the advantage of a simple
control structure where the controller gains are commonly determined with linear matrix
inequality (LMI) technique and a convex optimization. For example, the work by Chesi [21],
who studied the LMI conditions for time-varying uncertain systems, indicates that LMI
technique is effective for the uncertain systems. Kheloufi et al. [22] designed the observer-
based controller for linear systems with parameter uncertainty. Liao et al. [23] studied the
reliable robust flight tracking control using this technique. In the previously cited research,
the LMI technique is used to realize the pole placement in order to form a stable closed-loop
system and guarantee the system robustness. The major problem in the design of a fixed
fault-tolerant controller by pole placement for NT-DRAS with gradual faults is to identify
adequate representation of the system uncertainty and to determine the solution conditions
using LMI technique.

In this paper, a novel convex optimization-based fault-tolerant control (CO-FTC) strat-
egy is proposed for NT-DRAS subject to gradual faults. The gradual faults are included in
the system’s state space formulation according to the characteristics of the fault modes. The
control gain matrix of the system with uncertainty is optimized by the convex analysis with
solving conditions, which are determined from the subsystems in LMI form. As opposed
to the existing optimization method, the proposed subsystem-based method can be used
without matching conditions on the faults, providing a novel robust optimization treat-
ment for the system with varying gradual faults and results in better system performance
compared with traditional methods. The detailed work of this paper can be summarized
as follows:

(i) Typical gradual faults of NT-DRAS are included in the system’s state space formula-
tion in the form of uncertainty. In order to remove the system uncertainty, specific
subsystems are obtained through convex analysis.

(ii) A constant, time-invariant controller is designed based on LMI conditions, which are
deduced from the subsystems of the original uncertain system. Compared with the
traditional optimization method based on the original uncertain system, the proposed
subsystem-based optimization technique can result in a more feasible time-invariant
control gain under gradual fault conditions.

(iii) The simulation analysis results are provided and observations are discussed. First,
the effects of gradual faults on the system response performance in the time domain
are analyzed based on the pole location. Second, comparative analysis is performed
on the NT-DRAS under moderate fault conditions with the proposed controller and
with the existing guaranteed cost controller.

This paper is organized as follows: Section 1 introduces the background of the pro-
posed NT-DRAS and its FTC problem; Section 2 performs the system modeling under
normal and fault conditions; Section 3 presents a novel model analysis and control gain
optimization methodology; Section 4 gives the specific FTC structure design and control
gain solving algorithm; Section 5 presents simulation analysis results; Section 6 gives
conclusions and recommends the research content to be conducted in the future.

Notation: In this paper, ∆ specifies parameter error, Reλi() is the form of eigenvalue
real part, and w(t) ∈ L2[0, ∞) represents a quadratic differential function.
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2. System Statement

The schematic structure of a NT-DRAS is composed of one EHA and one EMA (see
Figure 1). As shown in Table 1, NT-DRAS can have three operating modes. Under the
normal conditions, only EHA is used to drive the control surface while EMA is in the
passive backup mode. In this operating mode, the chamber of EHA is separated into
low-pressure (blue) and high-pressure (red) volumes, respectively, causing the piston to
move. Meanwhile, EMA is pulled passively by the control surface actuated by EHA.
Consequently, the EMA is considered to be in a no-load mode. This type of active/passive
(A/P) operating mode, known as Mode-1, is the most common. Therefore, the convex
optimization FTC strategy is developed for this operating mode, while Mode-2 is treated
as an alternative one in the AFTC strategy [24]. Mode-3 occurs when the control surface
actuated by the NT-DRAS requires a fast response in order to assist the vehicle to realize
the attitude adjustment, or the control surface is under the high load conditions [25]. In
these conditions, both EHA and EMA are required to jointly actuate the control surface.
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Table 1. Operating modes of NT-DRAS.

Operating Modes EHA Status EMA Status Working Condition

Mode-1: EHAA/EMAP active passive normal
Mode-2: EHAP/EMAA passive active EHA failed
Mode-3: EHAA/EMAA active active high loaded

2.1. Modeling of Mode-1 in Normal Conditions

In Mode-1, EHA is the main working channel, with detailed modeling process given
in this section. The main component and working principle is shown in Figure 2. It can be
seen that in the motor pump section, the bidirectional piston pump, driven by the motor,
connects directly to the motor.
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2.1.1. Modeling of EHA Component

It is assumed that the brushless DC motor is used in this system. The motor armature
and torque balance equations can be given as following, respectively:{

ueha = Ceωeha + Le
die
dt + Reieha

Kmieha = Teha + Jm
dωeha

dt + Bmeωeha
(1)

where ueha, ieha and ωeha are the input voltage, output current and speed of the motor,
respectively; Ce is the back EMF coefficient; Km, Le and Re are the electromagnetic torque
constant, inductance and resistance of the motor respectively; Teha is the output toque of
the motor; Bme is the simplified equivalent damping coefficient of the motor; Jm is the total
moment of inertia of motor and pump.

In the pump-cylinder modeling link, the pump efficiency is assumed as 100%, and
there is no pressure loss between the input and output of the cylinder, and the following
pressure and flow equation can be given as:{

qa = q1, qb = q2
pa = p1, pb = p2

(2)

where p1 and q1 are the pressure and flow of the cylinder inlet, p2 and q2 are the pressure
and flow of the cylinder outlet; pa and qa are the pressure and flow of the pump outlet, pb
and qb are the pressure and flow of the pump inlet.

Since the motor output toque can be regarded as the pump input toque, and the
pump efficiency is assumed as 100%, that means qa = qb, and the following torque balance
equation can be given as:

Teha = VP(pa − pb) = VPPeha (3)

where VP is the pump output of EHA, Peha is the cylinder pressure.
The equation relating the motor speed ωeha to the system velocity

.
xeha and the EHA

cylinder pressure Peha is given as:

VPωeha= Aeha
.
xeha +

Veha
4Eeha

.
Peha + CehalPeha (4)

where Aeha is area of EHA hydraulic cylinder; Veha is volume of EHA hydraulic cylin-
der; Eeha is the volumetric modulus of elasticity; Cehal is leakage coefficient of EHA
hydraulic cylinder.

In the final output force link, the external load on the cylinder, Feha, consists of three
components: inertia and damping loads of EHA, inertia load of the control surface as well
as EMA, and external disturbance, FL, caused by gust, is given as:

AehaPeha = Feha = (meha + mema + md)
..
xeha + (Beha + Bema + Bd)

.
xeha + FL (5)

where Beha, Bema, and Bd are equivalent damping parameters of EHA hydraulic cylinder
pistons, EMA transmission screw, and the control surface, respectively; meha, mema, md
represent equivalent masses of EHA hydraulic cylinder piston, EMA transmission screw,
and the control surface, respectively.
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2.1.2. State Space Form of NT-DRAS in Mode-1

The state variables are defined as x =
[
xeha,

.
xeha, Peha, ωeha

]T, by using the Equations
(1)–(5), the state space representation of system can be derived as:

dxeha
dt =

.
xeha

d
.
xeha
dt = − Beha+Bema+Bd

meha+mema+md

.
xeha +

Aeha
meha+mema+md

Peha − 1
meha+mema+md

FL
dPeha

dt = − 4EehaAeha
Veha

.
xeha − 4EehaCehal

Veha
Peha +

4EehaVP
Veha

ωeha
dωeha

dt = −VP
Jm

Peha − Bme
Jm

ωeha +
Km

JmRe
ueha

(6)

In the state space form, Equation (6) can be represented as:{ .
x(t) = Ax(t) + Bu(t) + Gw(t)
y(t) = Cx(t)

(7)

where u(t) is the system input, y(t) is the system output, w(t) = FL is unknown disturbance.
The state, input, output, and disturbance matrices are presented in Equation (8).

A =


0 1 0 0
0 − Beha+Bema+Bd

meha+mema+md

Aeha
meha+mema+md

0

0 − 4EehaAeha
Veha

− 4EehaCehal
Veha

4EehaVP
Veha

0 0 −VP
Jm

−Bme
Jm


B =

[
0 0 0 Km

JmRe

]T

C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


G =

[
0 − 1

meha+mema+md
0 0

]T

(8)

An assumption is made that the above parameters are accurate standard values, so
that there is no system uncertainty in the system model represented in Equation (7).

Remark 1. In the motor link modeling, the electromagnetic time constant can be represented as
T1 = Le/Re, the mechanical time constant can be represented as T2 = Jm/Bme, since T1 << T2,
and considering that the mechanical link is the dominant factor, the motor model can be simplified as
a first-order process by ignoring the armature inductance and the back-EMF link:

ωeha =
1

Jms + Bme

(
Km

Re
ueha − Teha

)
(9)

2.2. Modeling of Mode-1 under Gradual Fault Conditions
2.2.1. System Component and Working Mode-Based Fault Analysis

In operating mode-1, which EHA is in active working mode while EMA is in passive
working mode, EMA and the actuated control surface can be regarded as the load of EHA,
therefore, Bema and Bd can be seen constant; Similarly, the mass of EHA, EMA and the
control surface stay consistent without physical damage, leading the three parameters
meha, mema and md to be constant; As the component of EHA, the area and volume of EHA
hydraulic cylinder also stay consistent without physical damage, leading the parameters
Aeha and Veha to be constant, the pump output VP stay as constant since the pump structure
is fixed designed. Without changing system structure and mass, the total moment of inertia
of motor and pump Jm stay constant. In this paper, the electromagnetic torque constant
Km is also regarded as designed fixed constant. The rest system parameters Cehal, Beha,
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Eeha and Re all have their own changing law caused by corresponding gradual fault types,
which are introduced in the following section.

2.2.2. Gradual Fault Mechanism-Based System Model

The gradual faults of EHA can be classified in the above categories shown in Table 2,
where the faults correspond with relative parameter drift: Fault-1 represents that leakage
coefficient Cehal changes due to the hydraulic cylinder leakage, Fault-2 represents that
damping coefficient Beha changes due to the increasing motion damping, Fault-3 represents
that bulk modulus Eeha changes due to oil deteriorates caused by the air in oil, and Fault-4
represents that Re changes due to its increasing caused by heat production. These types of
gradual faults are difficult to detect and yet result in the system performance degradation.
The relative parameters drift with the gradual fault degrees within limited ranges. Though
similar to the system model uncertainty in fault-free conditions, the gradual faults cause
more severe parameter drift, which can be regarded as gradual faults caused by the system
uncertainty. In order to model these faults in NT-DRAS, uncertainty matrices are used to
describe the parameter uncertainty caused by these faults. The NT-DRAS model of the
mode-1 with gradual faults can be represented in state-space form as:{ .

x(t) = (A + ∆A)x(t) + (B + ∆B)u(t) + Gw(t)
y(t) = Cx(t)

(10)

where ∆A and ∆B are deviations in the original state and input matrices caused by parame-
ter changes due to the gradual faults. It is necessary to state that the gradual faults caused
deviation matrices have more adverse effect compared with the system model uncertainty
under fault-free conditions. There is no ∆C in the above system description, as it is assumed
that all of the sensors are operating normally. The system matrices and the fault module
matrices can be expressed as:

A =


0 1 0 0
0 a22 a23 0
0 a32 a33 a34
0 0 a43 a44


B =

[
0 0 0 b41

]T
∆A =


0 0 0 0
0 ∆a22 0 0
0 ∆a32 ∆a33 ∆a34
0 0 0 0


∆B =

[
0 0 0 ∆b41

]T

(11)

where coefficients of the state and input matrices, A and B, are defined in Equation (8);
∆a22 = −∆Beha/(meha + mema + md) represents damping fault induced factor;
∆a32 = −4∆EehaAeha/Veha is the bulk modulus fault factor;
∆a33 = −[4(∆Eeha)·(∆Cehal)]/Veha represents the bulk modulus as well as the internal
leakage fault factor; ∆a34 = 4∆EehaVP/Veha represents the bulk modulus fault factor;
∆b41 = Km/(Jm∆Re) represents the motor armature resistance fault factor. After making
the following definitions AF = A + ∆A and BF = B + ∆B, the model of NT-DRAS in
Mode-1 can be described as a system with uncertainty in the following form:{ .

x(t) = AFx(t) + BFu(t) + Gw(t)
y(t) = Cx(t)

(12)
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Table 2. Fault types and corresponding coefficient.

Number Illustration The Corresponding Coefficient

Fault-1 Hydraulic cylinder leakage leakage coefficient Cehal
Fault-2 Motion damping increasing damping coefficient Beha
Fault-3 Oil deterioration bulk modulus Eeha
Fault-4 Resistance increasing motor armature resistance Re

3. Analysis of Fault Model by Using Convex Optimization

The gradual faults have more adverse effects on the system performance compared
with the system uncertainty in fault-free conditions. The parameter drift due to the faults
is difficult to identify in a timely manner due to the lack of matching conditions when
designing the controller. Therefore, the existing treatment method of system uncertainty
would not be feasible for the issue discussed in this paper. In order to solve the FTC
problem with system gradual faults, new fault modeling method and FTC gain optimization
techniques are applied in this paper.

3.1. Treatment of the Fault Model Uncertainty

Since this work considers only the gradual faults in NT-DRAS, it is reasonable to
assume that the fault signature in parameter drift form is limited. Hence, upper bounds
|∆A|bound and |∆B|bound for the uncertainty matrices ∆A and ∆B can be defined. To describe
the system with uncertainty using defined upper bounds, two other time independent
factors ρA and ρB are introduced, both of which are random variables from the inter-
val

[
−1, +1

]
. Finally, another form of the original system with gradual faults can be

obtained as:{ .
x(t) = (A + ρA|∆A|bound)x(t) + (B + ρB|∆B|bound)u(t) + Gw(t)
y(t) = Cx(t)

(13)

where 

|∆A|bound =


0 0 0 0
0 |∆a22|bound 0 0
0 |∆a32|bound |∆a33|bound |∆a34|bound
0 0 0 0


|∆B|bound =


0
0
0

|∆b41|bound


(14)

To form a closed-loop system, the state feedback Kxx(t) was usually chosen as a part
of the system input u(t), where Kx is state feedback control gain. Since gradual faults can
affect the pole position, and assuming that the gradual faults are limited, the following
assumption is made as a basis of proof and following conclusions.

Assumption 1. The gradual faults are assumed to be limited and their effects on the system can be
expressed in the form of the closed-loop system eigenvalues, where the real parts of the eigenvalues
of the fault system change according to the following inequality relationship with respect to the
fault-free system {

|Reλi(|∆A|bound)| < |Reλi(A)|
|Reλi(|∆B|boundKx)| < |Reλi(BKx)|

(15)

In order to determine the controller gains, based on the upper bounds of the uncer-
tainty matrices, the deterministic model needs to be obtained. Here, the extremums of
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ρA and ρB are considered, resulting in four critical subsystems as the boundary condition
models to be used by the LMI technique.{ .

x(t) = (A± |∆A|bound)x(t) + (B± |∆B|bound)u(t) + Gw(t)
y(t) = Cx(t)

(16)

The following section discusses the relationship between the original system with
uncertainty and its four critical subsystems (see Equation (16)).

3.2. Rationality Analysis of Solving Conditions Using Convex Optimization

Since the control gain matrix is regarded as the solution of convex optimization using
LMI technique, therefore, the optimization condition needs to be determined such that the
optimized solution results in the stable system.

To obtain the solving conditions for the control law, the four critical subsystems are
chosen as the controlled plants instead of the original system with uncertainty. Based on
these four specific subsystems, the premise of optimization is determined and then the
solution is obtained using the LMI technique. The FTC law existence condition using this
treatment is at least sufficient, which is stated in Lemma 1.

There are four stable areas of the subsystems under an assumed feedback (see Figure 3).
According to the convex optimization, the optimized stable area of the closed-loop system
will be located at the intersection of the four areas. This corresponds to LMI technique
approach to determine the control gain matrix. In this instance there are four LMIs due
to the multiple solving conditions, which is similar to the conditions presented in [26],
where Huang et al. studied the LPV tracking problem using multiple Lyapunov functions.
Although the solving condition is critical, since the stability region becomes smaller, the
optimized solution will be at least sufficient once its existence is established. The method
proposed in this paper deals with the problem of determining control gains for systems
with uncertainty.
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Lemma 1. If a state feedback control gain matrix Kx can result in a stable system matrix AL +BLKx,
then it also results in a stable uncertain controllable matrix pair

(
A + ∆A B + ∆B

)
, where{

AL ∈
{

A + |∆A|bound, A− |∆A|bound
}

BL ∈
{

B + |∆B|bound, B− |∆B|bound
} (17)
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in which, AL ∈
{

A + |∆A|bound, A− |∆A|bound
}

means that the matrix AL can be chosen as
A + |∆A|bound or A− |∆A|bound, which represent the system’s upper and lower bound matrices
due to gradual faults. Similarly, BL ∈

{
B + |∆B|bound, B− |∆B|bound

}
means that the matrix

BL can be determined as B + |∆B|bound or B− |∆B|bound, which represent the control upper and
lower bound matrices due to gradual faults.

Proof of Lemma 1. See Appendix A. �

4. FTC Structure and Controller Design for NT-DRAS
4.1. FTC Structure for All Fault Process

Since the proposed NT-DRAS may be subject to all faults including gradual types
and sudden types, the whole FTC structure for all fault processes is given in Figure 4.
In the structure, there are PFTC controllers, AFTC controllers and controller switching
mechanisms for NT-DRAS. The switching law is designed based on the output result of
the FDD scheme and a performance evaluation mechanism is first designed to provide
quantitative results for FDD scheme. The index of the following performance evaluation
criterion in Euclid norm form is given as:

eperf(t) = ‖r(t)− y(t)‖2 (18)

where r(t) is the reference signal, while y(t) is the NT-DRAS output. In order to measure
the conservatism of the NT-DRAS under different fault conditions, also when used as FTC
strategies, the mean and maximum value of eperf(t), t ∈ [t1, t2], are also defined in the
following forms and used as the overall performance measures. eperf(t) = 1

t2−t1

∫ t2
t1

eperf(t)dt

eperf−max = max
{

eperf(t), t ∈ [t1, t2]
} (19)
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A preset tracking performance value δ is also given as a threshold, which is used to
determine whether to switch the PFTC controller. When eperf(t) ≤ δ, it means the PFTC
controller is still effective for the gradual fault conditions, once eperf(t) > δ, AFTC controller
should be enabled to maintain the NT-DRAS performance under severe fault conditions.
This paper is dedicated to the PFTC controller design and the AFTC strategy design for
severe faults is listed as future research work.

4.2. Controller Design for NT-DRAS Subjected to Gradual Faults

The FTC problem considered in this paper is to design a controller for NT-DRAS with
gradual faults, similar to the ones discussed in [23,27], such that
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1. Under the gradual fault conditions, the NT-DRAS output Souty(t) tracks the reference
signal r(t) without steady-state error, that is lim

t→∞
e(t) = 0, where e(t) = r(t)− Souty(t),

Sout =
[
1 0 0 0

]
2. The optimized performance to be defined later can be achieved by the designed con-

troller. The corresponding augmented system can be described in the following form.{ .
xaug(t) = Aaugxaug(t) + Baugu(t) + Gaugwaug(t)
yaug(t) = Caugxaug(t)

(20)

where xaug(t) =
[∫

e(t)dt x(t)
]T is the augmented state vector, yaug(t) =

[∫
e(t)dt y(t)

]T
is the augmented output vector, waug(t) =

[
r(t) w(t)

]T is the augmented disturbance

vector, and the corresponding augmented matrices are as follows Aaug =

[
0 −SoutC
0 AF

]
,

Baug =

[
0

BF

]
, Caug =

[
I 0
0 C

]
, and Gaug =

[
I 0
0 G

]
. The output feedback method is used

to design a fault-tolerant controller when it is sufficient to realize some but not all control
performance factors [28,29]. The closed-loop controller is designed using state and output
error integration feedback form as follows, which is essentially a PI controller:

u(t) = Kxaug(t) = Ke

∫ t

0
e(τ)dτ + Kxx(t) (21)

where K =
[
Ke Kx

]
is the fixed gain matrix to be solved by the LMI technique.

Define the linear-quadratic (LQ) cost function as

J =
∫ t

0

(
xT

aug(τ)Qxaug(τ) + u(τ)TRu(τ)
)

dτ (22)

where Q and R are symmetric positive semi-definite and positive definite weighting
matrices, respectively. Then the optimization objective is to design the control input
form (see Equation (21)), so as to minimize the cost function. The following lemmas are
introduced before the control gain matrix theorem is presented in further text.

Lemma 2 (Bounded Real Lemma). For the linear system form derived from Equation (16), and
represented in the following form{ .

x(t) = (AL + BLKx)x(t) + Gw(t)
y(t) = Cx(t)

(23)

the transfer function form G(s) = C(sI−AL − BLKx) can be obtained. For a given performance
index γ : ‖y(t)‖ ≤ γ‖w(t)‖, if a real matrix P = PT > 0 exists and satisfies the following
matrix inequality (AL + BLKx)P + P(AL + BLKx)

T I (CP)T

* −γ2I I
* * −I

 < 0 (24)

then the system form represented by Equation (16) is stable and the transfer function G(s) satisfies
max{‖G(s)‖} < γ.

Remark 2. The parameter γ represents the robust performance of the system and describes the
quantitative relationship between the disturbance w and the system output y. The inequality
max{‖G(s)‖} < γ means that the influence of the disturbance w on the system output y is limited
in the gain level γ [30].
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Lemma 3 (Reciprocal Projection Lemma) [31]. Let P be any given positive definite matrix. The
following statements are equivalent:

1. ψ + ζ + ζT < 0;

2. The LMI problem

[
ψ + P−

(
S + ST

)
ζT + ST

ζ + S −P

]
< 0 is feasible with respect to S, where

ψ and ζ are a symmetric matrix and a general matrix, respectively.

Lemma 4 (Schur Complement Lemma) [32]. For the given symmetric matrix S =

[
S11 S12
ST

12 ST
22

]
,

the following three statements are equivalent:

1. S < 0;
2. S11 < 0, S22 − ST

12S−1
11 S12 < 0;

3. S22 < 0, S11 − S12S−1
22 ST

12 < 0.

The considered fault-tolerant controller with fixed structure and external disturbance,
is in the state and output error integration feedback form (see Figure 5), realizing the pole
placement and guaranteeing the robust performance. In order to solve for the controller
gain, the determinate fault degree bounds and the anti-disturbance level are chosen for the
proposed LMI algorithm. The existence conditions of the fault-tolerant controller gain are
given in the form of the following theorem.
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Theorem 1. Consider the closed-loop augmented system with uncertainty (see Equation (20)). For a
given scalar γ > 0 in Lemma 2, and for all nonzero disturbance inputs w(t) ∈ L2[0, ∞) , choose Q
and R as weighting matrices of linear quadratic (LQ) index, and define a symmetric positive definite
matrix P = X−1, and other appropriately dimensioned common matrices V, N and G. If these

matrices can make the LMI conditions (see (A12)) hold, where in (A12), AaugL =

[
0 −SoutC
0 AL

]
,

BaugL =

[
0

BL

]
, then the closed-loop system with uncertainty (see Equation (20)) can obtain the

upper bound for performance indices in the following form

J < xT
aug(0)Pxaug(0) + γ2

∫ t

0
wT

aug(τ)waug(τ)dτ (25)
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The control gain matrix of the fault-tolerant controller for the closed-loop system can be
determined as K = NoptimalV−1

optimal, where Noptimal and Voptimal are the optimal solutions to the
four LMIs (see (A12)).

Proof of Theorem 1. See Appendix B. �

5. Simulation Analysis
5.1. System Parameters for Fault Scenarios
5.1.1. Coefficient Setting and System Performance Analysis

To illustrate the necessity of the FTC, a NT-DRAS with different gradual fault sce-
narios(single fault conditions and all faults in combination ones) is used for simulation
study and analysis, where the system parameters are the same as in [25]. Then the system
matrices in normal conditions can be determined. Typical gradual faults of EHA have been
discussed in Section 2.2. Since these gradual faults are considered to be of limited range and
for design of the baseline robust time-invariant fault-tolerant controller, different matrices
changing bounds need to be determined. The variation ranges of the relative parameters
are chosen based on their standard values and the rationality can be verified by using pole
analysis method as shown in Table 3.

Table 3. Parameter variation ranges.

Fault Types Variation Ranges of the Relative Parameters

Fault-1 Cehal : 0.1× 10−10 → 1.0× 10−10 [(m3/s)/Pa]
Fault-2 Beha : 1.0× 104 → 1.0× 105 [Ns/m]
Fault-3 Eeha : 8.0× 108 → 5.0× 108 → 8.0× 107 [Pa]
Fault-4 Re : 0.245→ 0.275 [Ω]

As the upper bound of the gradual faults increases, pole positions under different
fault conditions demonstrate tendency of moving towards imaginary axis (see Figure 6a),
indicating that the system response is degraded by the gradual faults. Also, the circles
indicate pole distribution areas under different fault conditions, thus demonstrating a
tendency for convergence. It is necessary to point out that under the fault conditions, not
only that the poles move towards the imaginary axis, but some of them are also moving
away from the real axis, resulting in oscillatory system response. There is relationship
between pole locations and the severity of the system fault (see Figure 6b). The dominant
poles corresponding to system fault are obtained by the dominant pole analysis method.
The third and fourth ones are taken as the dominant poles due to the relationship between
the pole position and the system performance. The results are shown in Figure 6b, where
arrows in the horizontal direction show the increase in the system fault, and the vertical
arrows show the corresponding change in the position of the closed-loop poles. The four
subfigures indicate that the dominant poles move towards the imaginary axis as the fault
increases. In this process, the changing trajectory of Eeha coefficient relevant dominant
pole exhibits nonlinear characteristics, an inflection point occurs in the vicinity of value
5.0× 108, and system performance before and after the inflection point should be analyzed
and simulated.
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5.1.2. Single Fault Effect Analysis under Closed-Loop System Conditions

It can be seen from Figure 6b that, the changing law of Fault-1, Fault-3 and Fault-4,
shows consistency, while the changing law of Fault-2 shows nonlinear characteristics with
an obvious inflection point. Therefore, two sets of simulation results, before and after the
inflection point are performed.

By using the performance evaluation algorithm shown in Equations (18) and (19),
to calculate the quantized value, the start and end times are set as t1 = 0 and t2 = 8, all
evaluation results are shown in Table 4. The increasing of the eperf(t) value indicates the
gradual fault effectiveness of the system performance degradation. It can be figured out
that the oil leakage of the cylinder is a fault type with the greatest impact.

Table 4. System performance evaluation values under different single fault conditions without FTC
(before the inflection point of fault-3 pole position trajectory).

Fault Types eperf(t)
¯
e perf(t) eperf−max

Normal 0.2723 0.0001429 0.03
Fault-1 0.3631 0.0002581 0.03
Fault-2 0.3142 0.0001954 0.03
Fault-3 0.2728 0.0001432 0.03
Fault-4 0.2865 0.0001598 0.03

Only the final output displacement is used to evaluate the tracking performance here.

The system state response when only a single fault occurs is given in Figure 7. Com-
pared with the normal state, among the four fault modes, the Fault-1 can have the greatest
effect on the system performance (see Figure 7a): Under this type fault condition, in order to
track the given step signal command order, even as the motor speed reaches its maximum
value (see Figure 7d), the cylinder pressure can only reach a low level (see Figure 7c),
leading the system output velocity to slow down to the slowest degree (see Figure 7b);
The Fault-2 can have a secondary effect on the system performance (see Figure 7a): in
order to track the given step signal command order, the motor speed also reaches a high
level (see Figure 7d); however, since the motion damping increases, the cylinder pressure
reaches the highest level due to the reverse motion damping caused force (see Figure 7c),
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but can only have a faster system output velocity (see Figure 7b); The Fault-4 can also
have obvious effect on the system performance (see Figure 7a): the EHA motor resistance
increases due to heat production caused high temperature, leading to the motor speed
decreasing significantly (see Figure 7d), and the cylinder pressure and the system output
velocity also decrease eventually (see Figure 7b,c); The Fault-3 have the minimal effect
on the system performance (see Figure 7a): Figure 7a,b,d show that the system output
state almost have the same performance level as the system under normal state conditions.
However, the cylinder pressure is at a low level due to the bulk modulus changes caused
by oil deterioration (see Figure 7c).
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To analyze the nonlinear characteristic of the Fault-3 effect, another set of simulation 
results is shown in Figure 8 with the evaluation results in Table 5, in which the remaining 
fault modes (Fault-1, 2 and 4) are set as the same with the first simulation scenarios. When 
the Fault-3 dominant pole position across the inflection point, leading the bulk modulus 
value to the lowest level, the motor speed and the final system displacement output have 
slight performance degradation compared with the system under normal state (see Figure 
8a,d and Table 5, in which the ( )perfe t  value changed to 0.2757 compared with the original 
0.2728 in Table 4). However, the cylinder pressure is at a relatively low level with obvious 
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Figure 7. System state response under single fault conditions (before the inflection point of S4 location
trajectory): (a) System displacement response; (b) System output velocity response; (c) System
cylinder pressure response; (d) Motor speed response.

To analyze the nonlinear characteristic of the Fault-3 effect, another set of simulation
results is shown in Figure 8 with the evaluation results in Table 5, in which the remaining
fault modes (Fault-1, 2 and 4) are set as the same with the first simulation scenarios. When
the Fault-3 dominant pole position across the inflection point, leading the bulk modulus
value to the lowest level, the motor speed and the final system displacement output
have slight performance degradation compared with the system under normal state (see
Figure 8a,d and Table 5, in which the eperf(t) value changed to 0.2757 compared with the
original 0.2728 in Table 4). However, the cylinder pressure is at a relatively low level with
obvious fluctuations, and the system output velocity is significantly higher than the normal
state with also obvious fluctuations.
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Table 5. System performance evaluation values under different single fault conditions without FTC
(after the inflection point of fault-3 pole position trajectory).

Fault Types eperf(t)
¯
e perf(t) eperf−max

Normal 0.2723 0.0001429 0.03
Fault-1 0.3631 0.0002581 0.03
Fault-2 0.3142 0.0001954 0.03
Fault-3 0.2757 0.0001432 0.03
Fault-4 0.2865 0.0001598 0.03

Only the final output displacement is used to evaluate the tracking performance here.

The two dominant closed-loop poles symmetrically distributed can be used to define
the system performance range. First, define the largest interval matrix of the performance

degradation due to the gradual faults as ψmax = diag
[

Re(S3)
Re(S3)

,
Re(S4)
Re(S4)

]
, where S3, S4 are the

dominant closed-loop poles of the system under the Mode-2 (EHAP/EMAA) operating
mode. Then, divide the largest interval matrix of performance degradation into (m− 1)
intervals to form m system performance status. The first interval matrix represents the
system performance under normal conditions, which can be described as ψ1 = diag[1, 1].
Therefore, the (k− 1) interval degradation matrix corresponding to the (k− 1) level degree
of fault is ψk = diag[ψk3, ψk4]

T = ψ1 − (k− 1) (ψ1−ψmax)
m−1 , k = 1, . . . , m. Integrating the

(k− 1)th eigenvalues, the system matrix under the relative fault condition can be obtained
as Λk = ψkΛ1, k = 1, . . . , m. Then the transfer function and the corresponding state space
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form system with different gradual faults level can be obtained. In this paper, the largest
interval matrix is divided into three intervals, resulting in the four system performance
status: (a) system in normal conditions, (b) system with minor fault conditions, (c) system
with moderate fault conditions, and (d) system with major fault conditions, respectively.
Using the above fault level determination principle, the system matrices changing bounds
for the minor fault and moderate fault can be calculated and shown in the last two rows of
Table 6.

Table 6. NT-DRAS system parameters with different fault upper bound scenarios.

Fault Degree System Status System Matrices Control Matrices

Degree-1 Normal system A =


0 1 0 0
0 −31.408 2.0704× 10−6 0
0 −3.20× 1010 −5.9864× 102 5.8776× 1013

0 0 −9.9472× 10−5 −1.0× 102

 B =


0
0
0

456.63



Degree-2 Minor failure |∆A|1bound =


0 0 0 0
0 28.169 0 0
0 0.11× 1010 1.7959× 102 1.7633× 1013

0 0 0 0

 |∆B|1bound =


0
0
0

11.6233



Degree-3 Moderate failure
bound |∆A|2bound =


0 0 0 0
0 70.423 0 0
0 0.22× 1010 3.5978× 102 3.5266× 1013

0 0 0 0

 |∆B|2bound =


0
0
0

23.2466



Remark 3. Since the proposed FTC strategy in this paper focused on gradual faults under certain
range, and obtained the optimized PFTC control gain by using convex optimization technique,
for the system with minor fault conditions (performance status (b)), or for more severe moderate
fault conditions (performance status (c)) when the FTC effect can have requested system tracking
performance, it is applicable. Unfortunately, for the system with major fault conditions (performance
status (d)), the solved control gain would have limited effect; therefore, another AFTC strategy
(switching to Mode-2 quickly and smoothly) should be studied in the future work, as the situation is
no longer discussed in this paper.

The previous analysis of pole distribution as a function of the fault severity leads to a
conclusion that even gradual faults can affect the pole distribution. The system response
performance is discussed in the following section, and the rationale for the necessity to
develop PFTC strategy under gradual fault conditions is presented.

5.2. Analysis of Gradual Fault Effects in Time-Domain

The effects of gradual faults of different severity levels and different command inputs
are presented and discussed in this section. The system response to a square-wave input
and a sine-wave are studied, and the results, displacement response and the tracking error,
are presented (see Figure 9). The minor fault upper bounds matrices are set as stated in
Table 6. The system response to the square-wave input and the response to the compound
sine-wave input indicate that, under the minor fault conditions, the tracking performance
decreases slightly and the tracking errors increase compared with the system response
under normal operating conditions.
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To calculate the quantized value under integrated fault conditions, the start and end 
times are set as 1 0t =  and 2 20t = , all evaluation results are shown in Table 7. It can be 
seen that with the fault degree increasing, the quantized value ( )perfe t  also shows an in-
creasing trend. Under minor fault conditions, the value increases 102% compared with 
normal state by calculation, while under moderate fault conditions it increases 134%. Since 
gradual faults have apparent impacts on the system performance and it is difficult to de-
tect the specific fault mode, the NT-DRAS cannot work as effectively for a system under 

Figure 9. Tracking responses under minor fault conditions: (a1,a2) Displacement response to square-
wave input; (b1,b2) Displacement response to compound sine-wave input.

The system response is also analyzed under the condition of a moderate fault (see
Figure 10), where the upper bound matrices are set as shown in Table 6. The same square-
wave input and the compound sine-wave are used to analyze the system response. The
main difference between the system responses under different fault levels is that under
moderate fault conditions, tracking performance decreases faster while tracking errors
increase to a higher degree compared with those under normal conditions.
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square-wave input; (b1,b2) Displacement response to compound sine-wave input.

To calculate the quantized value under integrated fault conditions, the start and end
times are set as t1 = 0 and t2 = 20, all evaluation results are shown in Table 7. It can be seen
that with the fault degree increasing, the quantized value eperf(t) also shows an increasing
trend. Under minor fault conditions, the value increases 102% compared with normal state
by calculation, while under moderate fault conditions it increases 134%. Since gradual
faults have apparent impacts on the system performance and it is difficult to detect the
specific fault mode, the NT-DRAS cannot work as effectively for a system under the fault
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conditions as under the normal conditions. Hence, it can be concluded that an appropriate
FTC strategy should be developed and implemented.

Table 7. System performance evaluation values under integrated fault conditions without FTC.

Fault Conditions eperf(t)
¯
e perf(t) eperf−max

Normal 0.4307 0.0000771 0.03
Minor fault 0.8721 0.0003205 0.03

Moderate fault 1.0098 0.0004153 0.03
Square-wave signal is used to evaluate the tracking performance here.

5.3. Simulation Results Using FTC Strategies

In this section, different FTC strategies are presented and respective simulation results
are used to analyze the system response. The system model with moderate failure is used in
the following analysis, where the corresponding matrices are presented in Table 6. Different
FTC methods are used to form a closed-loop system and compare the control effects. Since
the gradual faults are considered in the NT-DRAS, the FTC target should be maintaining the
system robust performance under gradual fault conditions. Meanwhile, the FTC controller
should be with a fixed structure as well as an efficient and effective control gain, which can
not only save the control resources but also ensure the system reliability during the FTC
process. Based on the above consideration, two fault-tolerant control methods analyzed in
this section are guaranteed cost control (GCC) method [33] and CO-FTC method proposed
in this paper.

Remark 4. GCC method is robust control design method for system with considered uncer-
tainty [33]. The method is suitable for the following uncertain system:

.
x(t) = (A + ∆A)x(t) + (B + ∆B)u(t) (26)

A cost function in the following form

J =
∫ t

0

(
xT(τ)Qx(τ) + u(τ)TRu(τ)

)
dτ (27)

was defined to deal with the uncertain matrices, [∆A ∆B] = DF[E1 E2], where matrices D and
E describe the structure information. The corresponding control gain form is given as an LMI
condition (see (19)), where X and W are positive matrices, then for a given positive scalar ε, and if
the LMI holds, then, the state feedback guaranteed cost control law can be designed as K = WX−1

where the cost has upper bound J ≤ x−1
0 X−1x0.

From Remark 4, it is shown that GCC is a fault-tolerant control gain design method
based on state feedback, where weighting matrices Q and R are chosen to decrease defined
cost functional. As opposed to the GCC, the proposed OP-FTC uses not only state feedback
but also the output error integration feedback to design the control law. In order to remove
the system uncertainty, new conditions, based on convex analysis, are deduced and the
control gain matrix determined from the corresponding LMIs. The comparison between the
two methods applied to the system under the same moderate failure is shown in Figure 11.
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Figure 11. Tracking responses under moderate fault conditions using PFTC approaches: (a1,a2) Dis-
placement response with square-wave input; (b1,b2) Displacement response to compound sine-
wave input. 

The system response to a square-wave and to a compound sine-wave input is com-
pared for the cases when the GCC method and the proposed OP-FTC method are applied 
(see Figure 11). The results indicate that both GCC and OP-FTC methods can improve the 
tracking performance of the system with moderate fault with respect to both the square-
wave and the compound sine-wave inputs. The Figure 11(a1,b1) show the local details of 
tracking performance for both control methods. The simulation results indicate that the 
system under moderate fault and with the proposed CO-FTC control method can track 
the command input better then when using the GCC control method: To track the square-
wave reference signal, the rising time using the proposed CO-FTC control method is about 
1 s while the rising time using the GCC control method is about 2 s (see Figure 11(a1)). 
Meanwhile, the tracking error former control method converges faster than the error us-
ing the latter control method (see Figure 11(a2)). To track a compound sine-wave reference 
signal, using the former control method, the tracking performance has less time lag and 
smaller peak error compared with it using the later control method (see Figure 11(b1,b2)). 
The tracking performance under different fault conditions by using both GCC and CO-
FTC are quantized and shown in Table 8. Under minor fault conditions, the quantized 
tracking performance error has 26.25% reduction by using GCC method, while it has 35.09% 
reduction by using CO-FTC method. Under moderate fault conditions, the quantized 
tracking performance error has 34.56% reduction by using GCC method, while it has 43.18% 
reduction by using CO-FTC method. This result indicates that the proposed CO-FTC 
method has better fault tolerant effectiveness compared to GCC control method, and the 
compared advantage is increasingly obvious with the gradual faults increasing. 
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Figure 11. Tracking responses under moderate fault conditions using PFTC approaches: (a1,a2)
Displacement response with square-wave input; (b1,b2) Displacement response to compound sine-
wave input.

The system response to a square-wave and to a compound sine-wave input is com-
pared for the cases when the GCC method and the proposed OP-FTC method are applied
(see Figure 11). The results indicate that both GCC and OP-FTC methods can improve the
tracking performance of the system with moderate fault with respect to both the square-
wave and the compound sine-wave inputs. The Figure 11(a1,b1) show the local details of
tracking performance for both control methods. The simulation results indicate that the
system under moderate fault and with the proposed CO-FTC control method can track the
command input better then when using the GCC control method: To track the square-wave
reference signal, the rising time using the proposed CO-FTC control method is about 1 s
while the rising time using the GCC control method is about 2 s (see Figure 11(a1)). Mean-
while, the tracking error former control method converges faster than the error using the
latter control method (see Figure 11(a2)). To track a compound sine-wave reference signal,
using the former control method, the tracking performance has less time lag and smaller
peak error compared with it using the later control method (see Figure 11(b1,b2)). The
tracking performance under different fault conditions by using both GCC and CO-FTC are
quantized and shown in Table 8. Under minor fault conditions, the quantized tracking per-
formance error has 26.25% reduction by using GCC method, while it has 35.09% reduction
by using CO-FTC method. Under moderate fault conditions, the quantized tracking perfor-
mance error has 34.56% reduction by using GCC method, while it has 43.18% reduction by
using CO-FTC method. This result indicates that the proposed CO-FTC method has better
fault tolerant effectiveness compared to GCC control method, and the compared advantage
is increasingly obvious with the gradual faults increasing.

Table 8. System performance evaluation values under integrated fault conditions by using FTC.

Fault Conditions eperf(t)
¯
e perf(t) eperf−max

Item Original GCC CO-FTC Original GCC CO-FTC
Normal 0.4307 \ \ 0.0000771 \ \ 0.03

Minor fault 0.8721 0.6432 0.5661 0.0003205 0.0002274 0.0001405 0.03
Moderate fault 1.0098 0.6608 0.5738 0.0004153 0.0002382 0.0001445 0.03

Square-wave signal is used to evaluate the tracking performance here.
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6. Conclusions

In this paper, a novel CO-FTC strategy has been proposed for NT-DRAS subject to
gradual faults, where the gradual faults are described as the parameter drift with upper
bound value. In applying the pole analysis method and evaluating the performance
response in the time domain, the effectiveness of FTC for NT-DRAS with gradual faults is
demonstrated. Since gradual faults are difficult to detect in a timely manner, NT-DRAS
with gradual faults is modeled with uncertainty, and a CO-FTC strategy is proposed to
design a fixed controller to improve the system performance. The control gain matrix of
the fixed controller was optimized by LMI technique to realize the optimal pole placement.
The proposed CO-FTC proves to be effective when dealing with gradual faults such as
leakage and flow changes, which are difficult to detect in NT-DRAS. However, once these
types of faults increase to a higher degree of severity, fault detection and diagnosis (FDD)
information can be obtained through appropriate AFTC strategies, which are more efficient
in dealing with serious fault conditions.
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Appendix A

If AL + BLKx is Hurwitz stable, which means all the eigenvalues of the matrix have
negative real parts Reλi(AL + BLKx) < 0. The congruence of the matrix AL + BLKx by
transformation matrix T1 does not change the eigenvalues

T−1
1 (AL + BLKx)T1 = ΛL +

(
B̂LK̂x

)
(A1)

where T−1
1 is the inverse matrix of T1. Since ΛL +

(
B̂LK̂x

)
is the diagonal form of the

matrix AL + BLKx, it leads to Reλi
(
ΛL +

(
B̂LK̂x

))
< 0. Following the concrete forms of

matrices AL and BL in Lemma 1, another form of the real parts of these eigenvalues can be
rewritten as

Re[λi(A)± λi(|∆A|bound) +λi
(
BK̂x

)
± λi

(
|∆B|boundK̂x

)]
< 0 (A2)

According to Assumption 1, even if the maximum value condition of the above
formula is chosen, it still holds that

maxRe[λi(A)± λi(|∆A|bound)+ λi
(
BK̂x

)
± λi

(
|∆B|boundK̂x

)]
= −|Reλi(A)|+ |Reλi(|∆A|bound)| −

∣∣Reλi
(
BK̂x

)∣∣+ ∣∣Reλi
(
|∆B|boundK̂x

)∣∣ < 0
(A3)

Similarly, to feedback the pair matrix
(
A + ∆A B + ∆B

)
with Kx and then congruence

it with another transformation matrix T2, then the eigenvalues of the transformation result
can be obtained as

Reλi(A + ∆A + (B + ∆B)Kx)
= Re[λi(A) + ρA × λi(|∆A|bound) +λi(BKx) + ρB × λi

(
|∆B|boundK̂x

)] (A4)
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where ρA and ρB are random variables as time independent factors(see Section 3.1). Since
the two variables ρA ∈ [−1,+1] and ρB ∈ [−1,+1], the following inequality can be
obtained as

Re[λi(A) + ρA × λi(|∆A|bound) +λi(BKx) + ρB × λi
(
|∆B|boundK̂x

)]
<− |Reλi(A)|+ |Reλi(|∆A|bound)| −

∣∣Reλi
(
BK̂x

)∣∣+ ∣∣Reλi
(
|∆B|boundK̂x

)∣∣ (A5)

From the Formulas (A3)–(A5), it can be deduced that

Reλi(A + ∆A + (B + ∆B)Kx)
< maxRe[λi(A)± λi(|∆A|bound) +λi

(
BK̂x

)
± λi

(
|∆B|boundK̂x

)] (A6)

Therefore, the following inequality is obtained to illustrate the conclusion, which is
proven as follows:

Reλi(A + ∆A + (B + ∆B)Kx) ≤ Reλi
(
ΛL +

(
B̂LK̂x

))
< 0 (A7)

This is the end of proof for Lemma 1.

Appendix B

According to [23,27], the sufficient condition for the existence of the fault-tolerant
controller with the constraints of linear quadratic (LQ) performance can be restated as

(
Aaug + BaugK

)TP + P
(
Aaug + BaugK

)
+ Q + KTRK +

(
1

γ2

)
PGaugGT

augP < 0 (A8)

Using Lemma 3 and choosing ψ = Q+KTRK+
(

1
γ2

)
PGaugGT

augP, ζ = P
(
Aaug +BaugK

)
,

this sufficient condition can be transformed into the following form by using Lemma 4.Q + KTRK +
(

1
γ2

)
PGaugGT

augP + P−
(

¯
S +

¯
S

T)
ST +

(
Aaug + BaugK

)TP

S + P
(
Aaug + BaugK

)
−P

 < 0 (A9)

By a congruence transformation matrix
[

V 0
0 X

]
with V = S−1 and X = P−1, the

following form can be further deduced.[
VTQV + VTKTRKV +

(
1

γ2

)
VTPGaugGT

augPV + VTPV−
(
V+VT) X + VT(Aaug + BaugK

)T(
Aaug + BaugK

)
V + X −X

]
< 0 (A10)

By multiple applications of Lemma 4 and by defining N = KV and M = PV, the deduced
form can be transformed into the final form as follows:

−
(
V+VT) X+VTAT

aug+NTBT
aug VT MTGT

aug VT NT

* −X 0 0 0 0
* * −X 0 0 0
* * * −γ2I 0 0
* * * * −Q−1 0
* * * * * −R−1


< 0 (A11)

Since the matrices Aaug and Baug have uncertain modules AF and BF respectively,
therefore, the final deduced LMI form cannot be solved. Applying Lemma 1, which is
intended to remove uncertainty based on the convex analysis and proof, the uncertain
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modules can be replaced with their boundary forms AL and BL. Consequently, the solvable
LMI forms can be obtained as follows:

−
(
V+VT) X+VTAT

L+NTBT
L VT MTGT

aug VT NT

* −X 0 0 0 0
* * −X 0 0 0
* * * −γ2I 0 0
* * * * −Q−1 0
* * * * * −R−1


< 0 (A12)

Since the control law form (see Equation (21)) is chosen to stabilize the augmented
system (see Equation (20)), using the treatment method similar to the one used in [27] it
can be substituted into the LQ cost function form and result in:

J =
∫ t

0 xT
aug(τ)

(
Q + KTRK

)
xaug(τ)dτ

< −
∫ t

0 xT
aug(τ)

[(
Aaug + BaugK

)TP +P
(
Aaug + BaugK

)
+
(

1
γ2

)
PGaugGT

augP
]
xaug(τ)dτ

= −
∫ t

0

[( .
xaug(τ)−Gaugwaug(τ)

)TPxaug(τ) + xT
aug(τ)P

( .
xaug(τ)−Gaugwaug(τ)

)
+xT

aug(τ)
(

1
γ2

)
PGaugGT

augPxaug(τ)
]
dτ

≤ −
∫ t

0 d
(

xT
aug(τ)Pxaug(τ)

)
+ γ2

∫ t
0 wT

aug(τ)waug(τ)dτ

= xT
aug(0)Pxaug(0) + γ2

∫ t
0 wT

aug(τ)waug(τ)dτ

(A13)

This is the end of proof for Theorem 1.
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