A Diagnostic Method for the Saturable Reactor Core Looseness Degree of Thyristor Converter Valves
Abstract
:1. Introduction
2. Vibration Mechanism of Saturable Reactors
3. Saturable Reactor Core Looseness Experiment
3.1. Experiment Platform
3.2. Experimental Process and Data Collection
4. Diagnostic Method for Saturable Reactor Core Looseness Degrees
4.1. Synchrosqueezed Wavelet Transform
4.2. Convolutional Neural Network
4.3. Diagnosis Process for Iron Core Looseness
- (1)
- Set different core looseness degrees on the experimental platform. Collect vibration signals under varying operating conditions and denoise them.
- (2)
- Select appropriate mother wavelet functions and related parameters. SST is used to convert the vibration signals into two-dimensional images. These images are divided into training sets, validation sets and testing sets.
- (3)
- Construct a CNN model using the time–frequency spectrum of iron core vibration signals under different looseness degrees as input and construct a class matrix of iron core looseness as output. Configure the network parameters for training.
- (4)
- Use the validation set to test the trained CNN model. If it does not meet the recognition accuracy requirements, return to step 3 and change the parameters.
- (5)
- Finally, the testing sets are used to verify the performance of the trained model.
5. Experiment Validation and Discussion
5.1. Identification Results for the Iron Core Looseness Degree
5.2. Recognition Effects Comparison for Different Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Li, L.; Zhang, J.; Gao, C. Vibration and noise reduction of HVDC anode saturable reactor by polyurethane damping elastomer. Int. J. Appl. Electromagn. Mech. 2018, 58, 261–273. [Google Scholar] [CrossRef]
- Jin, M.; Pan, J. Effects of insulation paper ageing on the vibration characteristics of a transformer winding disk. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3560–3566. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, C.; Li, L.; Feng, Y.; Liu, Y. Study for Influence of Harmonic Magnetic Fields on Vibration Properties of Core of Anode Saturable Reactor in HVDC Converter Valve System. IEEE Access 2021, 9, 24050–24059. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, G.; Chen, B.; Wang, Y. Vibration Signal Augmentation Method for Fault Diagnosis of Low-Voltage Circuit Breaker Based on W-CGAN. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Duan, R.; Wang, F. Fault Diagnosis of On-Load Tap-Changer in Converter Transformer Based on Time–Frequency Vibration Analysis. IEEE Trans. Ind. Electron. 2016, 63, 3815–3823. [Google Scholar] [CrossRef]
- Moghadasian, M.; Shakouhi, S.M.; Moosavi, S.S. Induction motor fault diagnosis using ANFIS based on vibration signal spectrum analysis. In Proceedings of the 2017 3rd International Conference on Frontiers of Signal Processing (ICFSP), Paris, France, 6–8 September 2017; pp. 105–108. [Google Scholar]
- Yu, J.; Zhou, X.; Lu, L.; Zhao, Z. Multiscale Dynamic Fusion Global Sparse Network for Gearbox Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Sun, M.; Bai, X.; Zhang, W.; Ye, L. Jointed Task of Multi-scale CNN Based Power Transformer Fault Diagnosis with Vibration and Sound Signals. In Proceedings of the 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 30 April 2023; pp. 1761–1765. [Google Scholar]
- Xuntao, S.; Ran, H.; Mingyu, O.; Lei, Y.; Qingpai, K.; Weiwei, W.; Kairan, L. A Method for Remaining Useful Life Prediction of Transformer Based on the CNN-LSTM Networks. In Proceedings of the 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nanjing, China, 27–29 May 2022; pp. 64–69. [Google Scholar]
- Wu, Z.; Liu, B.; Wu, L.; Ma, S.; Ren, B.; Su, J.; Hou, Y. Analysis of GIS Mechanical Vibration Signal Based on EMD Algorithm. In Proceedings of the 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), Beijing, China, 10 July 2016; pp. 853–857. [Google Scholar]
- Wenlan, G.; Dajian, L.; Zhangting, Y. Application research of the voiceprint imaging technology in substation patrol. In Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 27 September 2020; pp. 290–293. [Google Scholar]
- Sun, Y.; Liu, B.; Wen, X. Research on intelligent fault diagnosis method for rolling bearings based on multi-feature fusion of CWT-2D-CNN. In Proceedings of the 2023 IEE 16th International Conference on Electronic Measurement & Instruments (ICEMI), Harbin, China, 9–11 August 2023; pp. 235–239. [Google Scholar]
- Ahsan, M.; Bismor, D. Advanced Fault Diagnosis in Rotating Machines Using 2D Grayscale Images with Improved Deep Convolutional Neural Networks. In Proceedings of the 2023 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 11 August 2023; pp. 77–82. [Google Scholar]
- Guo, J.; Wang, X.; Zhai, C.; Niu, J.; Lu, S. Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 2384–2387. [Google Scholar]
- Yuan, J.; Yao, Z.; Zhao, Q.; Xu, Y.; Li, C.; Jiang, H. Dual-Core Denoised Synchrosqueezing Wavelet Transform for Gear Fault Detection. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Tong, C.; Zhao, Z. Matching Synchrosqueezing Wavelet Transform and Application to Aeroengine Vibration Monitoring. IEEE Trans. Instrum. Meas. 2017, 66, 360–372. [Google Scholar] [CrossRef]
- Zhou, C.; Xiong, X.; Liu, R. Nonstationary Fault Feature Extraction of Rotating Machinery Using the Synchrosqueezed Wavelet Transform. In Proceedings of the 2017 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Shanghai, China, 16–18 August 2017; pp. 431–437. [Google Scholar]
- Liu, Y.P.; Lai, T.Y.; Liu, J.S.; Wei, X.G.; Pei, S.T. Vibration Voiceprint Characteristics and Looseness Detection Method of UHVDC Converter Valve Saturable Reactor. Trans. China Electrotech. Soc. 2023, 38, 1375–1389. [Google Scholar]
- Tong, B.; Qingxin, Y.; Rongge, Y.; Lihua, Z.; Changgeng, Z. Research on stress characteristics of shunt reactor considering magnetization and magnetostrictive anisotropy. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Yabumoto, M.; Arai, S.; Kawamata, R.; Mizokami, M.; Kubota, T. Recent development in grain-oriented electrical steel with low magnetostriction. J. Mater. Eng. Perform. 1997, 6, 713–721. [Google Scholar] [CrossRef]
- Daubechies, I.; Lu, J.; Wu, H. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef]
- Hall, P.D. A historical perspective on evaluation in foundations. In Foundations and Evaluation: Contexts and Practices for Effective Philanthropy; Braverman, M.T., Constantine, N.A., Slater, J.K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 27–50. [Google Scholar]
- Cun, Y.L.; Boser, B.; Denker, J.; Henderson, D.; Jackel, L. Handwritten digit recognition with a backpropogation network. In Advances in Neural Information Processing Systems; Touretzky, D., Ed.; Morgan Kaufmann: Burlington, MA, USA, 1990. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
Parameter | Value |
---|---|
Current peak | 270 A, 335 A, 465 A, 600 A, 730 A, 865 A, 1000 A, 1130 A, 1280 A |
Vibration sensor frequency response range | 3 Hz~30 kHz |
Data collection sampling frequency | 1 MHz |
a. screw bolt off (SO) | Tension belt screw removed |
b. total looseness (TL) | Tension belt screw torque: 0 N·m |
c. extreme looseness (EL) | Tension belt screw torque: 6 N·m |
d. slight looseness (SL) | Tension belt screw torque: 8 N·m |
e. normal state (NS) | Tension belt screw torque: 10 N·m |
Methods | Parameter Scale | Average F1 Value | Minimum F1 Value |
---|---|---|---|
SST + CNN | 44.1 k | 0.9306 | 0.8569 |
CWT + CNN | 44.1 k | 0.8946 | 0.8139 |
SST + LeNet | 61.8 k | 0.9014 | 0.8335 |
SST + AlexNet | 56.8 M | 0.9182 | 0.7922 |
SST + VggNet | 134.2 M | 0.8176 | 0.5882 |
SST + ResNet | 23.5 M | 0.7737 | 0.5571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, L.; Wei, X.; Sun, T.; Zhang, X. A Diagnostic Method for the Saturable Reactor Core Looseness Degree of Thyristor Converter Valves. Appl. Sci. 2023, 13, 12568. https://doi.org/10.3390/app132312568
Zheng L, Wei X, Sun T, Zhang X. A Diagnostic Method for the Saturable Reactor Core Looseness Degree of Thyristor Converter Valves. Applied Sciences. 2023; 13(23):12568. https://doi.org/10.3390/app132312568
Chicago/Turabian StyleZheng, Lin, Xiaoguang Wei, Tianshu Sun, and Xiaolong Zhang. 2023. "A Diagnostic Method for the Saturable Reactor Core Looseness Degree of Thyristor Converter Valves" Applied Sciences 13, no. 23: 12568. https://doi.org/10.3390/app132312568
APA StyleZheng, L., Wei, X., Sun, T., & Zhang, X. (2023). A Diagnostic Method for the Saturable Reactor Core Looseness Degree of Thyristor Converter Valves. Applied Sciences, 13(23), 12568. https://doi.org/10.3390/app132312568