A Comparative Analysis of Bionic and Neutral Shoes: Impact on Lower Limb Kinematics and Kinetics during Varied-Speed Running
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Shoes
2.3. Experimental Procedure
2.4. Data Collection and Processing
2.5. Statistical Analysis
3. Results
3.1. Shoe Effects
3.2. Velocity Effects
3.3. SPM1D Effects
3.4. Interaction Effects
3.5. Pairwise Comparison Effects
4. Discussions
4.1. Shoe Effects
4.2. Velocity Effects
4.3. SPM1D Effects
4.4. Pairwise Comparison Effects
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richard, V.; Piumatti, G.; Pullen, N.; Lorthe, E.; Guessous, I.; Cantoreggi, N.; Stringhini, S. Socioeconomic inequalities in sport participation: Pattern per sport and time trends—A repeated cross-sectional study. BMC Public Health 2023, 23, 785. [Google Scholar] [CrossRef] [PubMed]
- Van Mechelen, W. Running injuries: A review of the epidemiological literature. Sports Med. 1992, 14, 320–335. [Google Scholar] [CrossRef] [PubMed]
- Hreljac, A. Impact and overuse injuries in runners. Med. Sci. Sports Exerc. 2004, 36, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.W.; Rudins, A. Foot biomechanics during walking and running. Mayo Clinic Proc. 1994, 69, 448–461. [Google Scholar] [CrossRef] [PubMed]
- Relph, N.; Greaves, H.; Armstrong, R.; Prior, T.D.; Spencer, S.; Griffiths, I.B.; Dey, P.; Langley, B. Running shoes for preventing lower limb running injuries in adults. Cochrane Database Syst. Rev. 2022, 8, CD013368. [Google Scholar] [CrossRef] [PubMed]
- Mullen, S.; Toby, E.B. Adolescent runners: The effect of training shoes on running kinematics. J. Pediatr. Orthop. 2013, 33, 453–457. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, C.; Xu, D.; Ugbolue, U.C.; Baker, J.S.; Gu, Y. Biomechanical Characteristics between Bionic Shoes and Normal Shoes during the Drop-Landing Phase: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 3223. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, L.; Kong, Q.; Yu, G.; Yu, H.; Li, J.; Tai, W.-H. The Bionic High-Cushioning Midsole of Shoes Inspired by Functional Characteristics of Ostrich Foot. Bioengineering 2022, 10, 1. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, X.; Zhou, H.; Baker, J.S.; Gu, Y. Prolonged running using bionic footwear influences lower limb biomechanics. Healthcare 2021, 9, 236. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, H.; Quan, W.; Hu, Q.; Baker, J.S.; Gu, Y. Ground reaction force differences between bionic shoes and neutral running shoes in recreational male runners before and after a 5 km run. Int. J. Environ. Res. Public Health 2021, 18, 9787. [Google Scholar] [CrossRef]
- Hunter, J.P.; Marshall, R.N.; McNair, P.J. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J. Appl. Biomech. 2005, 21, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Song, Y.; Cen, X.; Bálint, K.; Fekete, G.; Sun, D. The Implications of Sports Biomechanics Studies on the Research and Development of Running Shoes: A Systematic Review. Bioengineering 2022, 9, 497. [Google Scholar] [CrossRef] [PubMed]
- Hollis, C.R.; Koldenhoven, R.M.; Resch, J.E.; Hertel, J. Running biomechanics as measured by wearable sensors: Effects of speed and surface. Sports Biomech. 2021, 20, 521–531. [Google Scholar] [CrossRef]
- Fukuchi, R.K.; Fukuchi, C.A.; Duarte, M. A public dataset of running biomechanics and the effects of running speed on lower extremity kinematics and kinetics. PeerJ 2017, 5, e3298. [Google Scholar] [CrossRef] [PubMed]
- Schache, A.G.; Blanch, P.D.; Dorn, T.W.; Brown, N.A.; Rosemond, D.; Pandy, M.G. Effect of running speed on lower limb joint kinetics. Med. Sci. Sports Exerc. 2011, 43, 1260–1271. [Google Scholar] [CrossRef]
- Petersen, J.; Nielsen, R.O.; Rasmussen, S.; Sørensen, H. Comparisons of increases in knee and ankle joint moments following an increase in running speed from 8 to 12 to 16 km·h−1. Clin. Biomech. 2014, 29, 959–964. [Google Scholar] [CrossRef]
- Fredericks, W.; Swank, S.; Teisberg, M.; Hampton, B.; Ridpath, L.; Hanna, J.B. Lower extremity biomechanical relationships with different speeds in traditional, minimalist, and barefoot footwear. J. Sports Sci. Med. 2015, 14, 276. [Google Scholar]
- Joubert, D.P.; Dominy, T.A.; Burns, G.T. Effects of Highly Cushioned and Resilient Racing Shoes on Running Economy at Slower Running Speeds. Int. J. Sports Physiol. Perform. 2023, 18, 164–170. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Sun, D.; Baker, J.S.; Gu, Y. Running speed does not influence the asymmetry of kinematic variables of the lower limb joints in novice runners. Acta Bioeng. Biomech. 2021, 23, 69–81. [Google Scholar]
- Chen, H.; Shao, E.; Sun, D.; Xuan, R.; Baker, J.S.; Gu, Y. Effects of footwear with different longitudinal bending stiffness on biomechanical characteristics and muscular mechanics of lower limbs in adolescent runners. Front. Physiol. 2022, 13, 907016. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, D.; Quan, W.; Ugbolue, U.C.; Sculthorpe, N.F.; Baker, J.S.; Gu, Y. A foot joint and muscle force assessment of the running stance phase whilst wearing normal shoes and bionic shoes. Acta Bioeng. Biomech. 2022, 24, 191–202. [Google Scholar]
- Delp, S.L.; Loan, J.P.; Hoy, M.G.; Zajac, F.E.; Topp, E.L.; Rosen, J.M. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 1990, 37, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Patoz, A.; Lussiana, T.; Breine, B.; Gindre, C.; Hébert-Losier, K. There is no global running pattern more economic than another at endurance running speeds. Int. J. Sports Physiol. Perform. 2022, 17, 659–662. [Google Scholar] [CrossRef]
- Song, Y.; Cen, X.; Chen, H.; Sun, D.; Munivrana, G.; Bálint, K.; Bíró, I.; Gu, Y. The influence of running shoe with different carbon-fiber plate designs on internal foot mechanics: A pilot computational analysis. J. Biomech. 2023, 153, 111597. [Google Scholar] [CrossRef]
- Xu, D.; Cen, X.; Wang, M.; Rong, M.; Gu, Y. Temporal Kinematic Differences between Forward and Backward Jump-Landing. Int. J. Environ. Res. Public Health 2020, 17, 6669. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, H.; Baker, J.S.; István, B.; Gu, Y. An investigation of differences in lower extremity biomechanics during single-leg landing from height using bionic shoes and normal shoes. Front. Bioeng. Biotechnol. 2021, 9, 679123. [Google Scholar] [CrossRef]
- Li, J.; Song, Y.; Xuan, R.; Sun, D.; Teo, E.-C.; Bíró, I.; Gu, Y. Effect of long-distance running on inter-segment foot kinematics and ground reaction forces: A preliminary study. Front. Bioeng. Biotechnol. 2022, 10, 833774. [Google Scholar] [CrossRef]
- Pataky, T.C. One-dimensional statistical parametric mapping in Python. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 295–301. [Google Scholar] [CrossRef]
- de David, A.C.; Carpes, F.P.; Stefanyshyn, D. Effects of changing speed on knee and ankle joint load during walking and running. J. Sports Sci. 2015, 33, 391–397. [Google Scholar]
- Gardner, J.K.; Zhang, S.; Paquette, M.R.; Milner, C.E.; Brock, E. Gait biomechanics of a second generation unstable shoe. J. Appl. Biomech. 2014, 30, 501–507. [Google Scholar] [CrossRef]
- Van Mechelen, W.; Hlobil, H.; Zijlstra, W.; De Ridder, M.; Kemper, H. Is range of motion of the hip and ankle joint related to running injuries? Int. J. Sports Med. 1992, 13, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Ferber, R.; Hreljac, A.; Kendall, K.D. Suspected mechanisms in the cause of overuse running injuries: A clinical review. Sports Health 2009, 1, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.L.; Dalley, A.F. Clinically Oriented Anatomy; Wolters Kluwer India Pvt Ltd.: Gurugram Haryana, India, 2018. [Google Scholar]
- Delp, S.L.; Hess, W.E.; Hungerford, D.S.; Jones, L.C. Variation of rotation moment arms with hip flexion. J. Biomech. 1999, 32, 493–501. [Google Scholar] [CrossRef]
- Ireland, M.L.; Willson, J.D.; Ballantyne, B.T.; Davis, I.M. Hip strength in females with and without patellofemoral pain. J. Orthop. Sports Phys. Ther. 2003, 33, 671–676. [Google Scholar] [CrossRef]
- Schache, A.G.; Dorn, T.W.; Williams, G.P.; Brown, N.A.; Pandy, M.G. Lower-limb muscular strategies for increasing running speed. J. Orthop. Sports Phys. Ther. 2014, 44, 813–824. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Qiu, Q.-E.; Chen, S.-H.; Chen, B.-C.; Lv, X.-T. Effects of unstable shoes on lower limbs with different speeds. Phys. Act. Health 2019, 3, 82–88. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Shen, S.Q.; Baker, J.S.; Gu, Y.D. Effects of different hardness in bionic soles on lower limb biomechanics. J. Biomim. Biomater. Biomed. Eng. 2018, 39, 1–12. [Google Scholar] [CrossRef]
- Tatiana, S.; Ryom, K. The Association between Physical Activity and Mental Health among Danish Women Aged 16–34 Years. Phys. Act. Health 2023, 7, 217–228. [Google Scholar] [CrossRef]
- Gu, Y.; Lu, Y.; Mei, Q.; Li, J.; Ren, J. Effects of different unstable sole construction on kinematics and muscle activity of lower limb. Hum. Mov. Sci. 2014, 36, 46–57. [Google Scholar] [CrossRef]
- Liu, R.; Qian, D.; Chen, Y.; Zou, J.; Zheng, S.; Bai, B.; Lin, Z.; Zhang, Y.; Chen, Y. Investigation of normal knees kinematics in walking and running at different speeds using a portable motion analysis system. Sports Biomech. 2021, 1–14. [Google Scholar] [CrossRef]
- Baxter, J.R.; Novack, T.A.; Van Werkhoven, H.; Pennell, D.R.; Piazza, S.J. Ankle joint mechanics and foot proportions differ between human sprinters and non-sprinters. Proc. R. Soc. B Biol. Sci. 2012, 279, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Rhoden, C.L.; Joyce, J. Positive Affectivity Influences Subjective Age and Daily Moving in Older Adults. Phys. Act. Health 2023, 7, 255–269. [Google Scholar] [CrossRef]
- Oestergaard Nielsen, R.; Aagaard Nohr, E.; Rasmussen, S.; Sirensen, H. Classifying running-related injuries based upon etiology, with emphasis on volume and pace. Int. J. Sports Phys. Ther. 2013, 8, 172–179. [Google Scholar]
- Schache, A.G.; Lai, A.K.; Brown, N.A.; Crossley, K.M.; Pandy, M.G. Lower-limb joint mechanics during maximum acceleration sprinting. J. Exp. Biol. 2019, 222, jeb209460. [Google Scholar] [CrossRef] [PubMed]
- Dorn, T.W.; Schache, A.G.; Pandy, M.G. Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance. J. Exp. Biol. 2012, 215, 1944–1956. [Google Scholar] [CrossRef]
- Debaere, S.; Delecluse, C.; Aerenhouts, D.; Hagman, F.; Jonkers, I. Control of propulsion and body lift during the first two stances of sprint running: A simulation study. J. Sports Sci. 2015, 33, 2016–2024. [Google Scholar] [CrossRef]
- Kyröläinen, H.; Belli, A.; Komi, P.V. Biomechanical factors affecting running economy. Med. Sci. Sports Exerc. 2001, 33, 1330–1337. [Google Scholar] [CrossRef]
- Williams, D., III; Welch, L.M. Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility. Braz. J. Phys. Ther. 2015, 19, 421–428. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, D.; Quan, W.; Liang, M.; Ugbolue, U.C.; Baker, J.S.; Gu, Y. A pilot study of muscle force between normal shoes and bionic shoes during men walking and running stance phase using opensim. Actuators 2021, 10, 274. [Google Scholar] [CrossRef]
- Yu, P.; He, Y.; Gu, Y.; Liu, Y.; Xuan, R.; Fernandez, J. Acute effects of heel-to-toe drop and speed on running biomechanics and strike pattern in male recreational runners: Application of statistical nonparametric mapping in lower limb biomechanics. Front. Bioeng. Biotechnol. 2022, 9, 821530. [Google Scholar] [CrossRef]
- Murr, S.; Pierce, B. How aging impacts runners’ goals of lifelong running. Phys. Act. Health 2019, 3, 71–81. [Google Scholar] [CrossRef]
- Liew, B.X.; Morris, S.; Netto, K. Joint power and kinematics coordination in load carriage running: Implications for performance and injury. Gait Posture 2016, 47, 74–79. [Google Scholar] [CrossRef] [PubMed]
Joint | Variables | Shoes | V | p | ||||
---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | S | V | S × V | |||
Hip | ROM (°) | A | 38.88 ± 3.50 | 43.19 ± 5.33 | 43.97 ± 4.39 | F = 9.476 | F = 27.946 | F = 6.539 |
B | 29.22 ± 6.24 ac | 35.94 ± 5.70 ab | 43.30 ± 6.60 bc | p < 0.001 * | p < 0.001 * | p = 0.031 * | ||
Peak angular velocity (rad s−1) | A | 2.28 ± 1.29 | 2.04 ± 1.19 | 1.03 ± 1.34 | F = 2.615 | F = 1.626 | F = 1.047 | |
B | 2.57 ± 1.33 | 2.17 ± 1.48 | 2.29 ± 1.43 | p = 0.05 * | p = 0.206 | p = 0.358 | ||
Peak moment (N m kg−1) | A | −3.18 ± 0.59 c | −3.53 ± 0.60 | −3.96 ± 0.62 c | F = 0.305 | F = 7.076 | F = 0.003 | |
B | −3.28 ± 0.47 c | −3.62 ± 0.51 | −4.04 ± 0.98 c | p = 0.583 | p = 0.002 * | p = 0.997 | ||
Maximum power (W) | A | 9.43 ± 2.52 c | 11.03 ± 2.43 b | 13.68 ± 2.34 bc | F = 0.923 | F = 18.594 | F = 0.024 | |
B | 9.93 ± 2.13 c | 11.48 ± 2.19 b | 14.43 ± 2.15 bc | p = 0.341 | p < 0.001 * | p = 0.977 | ||
Positive Work (J kg−1) | A | 0.66 ± 0.18 c | 0.82 ± 0.21 b | 1.15 ± 0.22 bc | F = 0.172 | F = 21.872 | F = 0.402 | |
B | 0.72 ± 0.17 c | 0.88 ± 0.17 | 1.10 ± 0.29 c | p = 0.680 | p < 0.001 * | p = 0.671 | ||
Negative Work (J kg−1) | A | −0.13 ± 0.09 | −0.12 ± 0.08 | −0.08 ± 0.08 | F = 0.761 | F = 0.597 | F = 0.216 | |
B | −0.14 ± 0.10 | −0.13 ± 0.10 | −0.12 ± 0.11 | p = 0.472 | p = 0.443 | p = 0.806 | ||
Knee | ROM (°) | A | 34.01 ± 4.07 | 33.65 ± 4.94 | 28.58 ± 6.05 | F = 0.025 | F = 4.057 | F = 0.680 |
B | 34.08 ± 4.28 | 32.07 ± 5.37 | 30.72 ± 5.34 | p = 0.874 | p = 0.023 * | p = 0.511 | ||
Peak angular velocity (rad s−1) | A | 4.22 ± 0.73 | 4.87 ± 1.01 | 5.12 ± 1.03 | F = 3.101 | F = 4.330 | F = 0.139 | |
B | 3.73 ± 0.80 | 4.20 ± 1.28 | 4.81 ± 1.41 | p = 0.084 | p = 0.018 * | p = 0.871 | ||
Peak moment (N m kg−1) | A | 2.11 ± 0.40 | 2.22 ± 0.24 | 2.18 ± 0.30 | F = 0.028 | F = 0.340 | F = 0.054 | |
B | 2.14 ± 0.46 | 2.19 ± 0.39 | 2.22 ± 0.33 | p = 0.868 | p = 0.713 | p = 0.947 | ||
Maximum power (W) | A | 11.89 ± 3.54 | 14.17 ± 2.84 | 13.95 ± 4.28 | F = 0.186 | F = 1.231 | F = 0.306 | |
B | 13.07 ± 4.06 | 13.53 ± 3.51 | 14.71 ± 4.70 | p = 0.668 | p = 0.300 | p = 0.738 | ||
Positive Work (J kg−1) | A | 0.44 ± 0.11 | 0.49 ± 0.12 | 0.45 ± 0.15 | F = 0.102 | F = 0.220 | F = 0.528 | |
B | 0.44 ± 0.14 | 0.44 ± 0.11 | 0.47 ± 0.13 | p = 0.751 | p = 0.804 | p = 0.593 | ||
Negative Work (J kg−1) | A | −0.25 ± 0.07 | −0.28 ± 0.07 | −0.26 ± 0.06 | F = 1.123 | F = 1.074 | F = 0.183 | |
B | −0.22 ± 0.07 | −0.25 ± 0.09 | −0.25 ± 0.07 | p = 0.294 | p = 0.349 | p = 0.834 | ||
Ankle | ROM (°) | A | 37.93 ± 4.45 | 40.28 ± 5.23 | 35.23 ± 5.93 | F = 33.570 | F = 0.479 | F = 5.294 |
B | 27.01 ± 6.11 | 26.94 ± 6.93 | 33.28 ± 6.06 | p < 0.001 * | p = 0.622 | p = 0.008 * | ||
Peak angular velocity (rad s−1) | A | 9.15 ± 3.25 | 9.80 ± 3.88 | 10.14 ± 4.06 | F = 0.064 | F = 0.608 | F = 0.170 | |
B | 9.56 ± 3.36 | 9.29 ± 3.16 | 10.96 ± 4.24 | p = 0.802 | p = 0.548 | p = 0.844 | ||
Peak moment (N m kg−1) | A | −2.82 ± 0.38 | −3.09 ± 0.40 | −3.27 ± 0.36 | F = 2.829 | F = 3.975 | F = 0.046 | |
B | −2.68 ± 0.49 | −2.88 ± 0.52 | −3.04 ± 0.54 | p = 0.098 | p = 0.025 * | p = 0.955 | ||
Maximum power (W) | A | 14.40 ± 2.64 c | 17.89 ± 4.16 | 19.21 ± 4.31 c | F = 0.723 | F = 10.938 | F = 0.836 | |
B | 12.85 ± 3.11 c | 15.72 ± 3.37 | 20.22 ± 6.16 c | p = 0.399 | p < 0.001 * | p = 0.439 | ||
Positive Work (J kg−1) | A | 0.84 ± 0.13 | 1.00 ± 0.17 | 1.01 ± 0.19 | F = 15.079 | F = 10.565 | F = 2.824 | |
B | 0.61 ± 0.18 c | 0.71 ± 0.14 b | 0.98 ± 0.26 bc | p < 0.001 * | p < 0.001 * | p = 0.068 | ||
Negative Work (J kg−1) | A | −0.59 ± 0.13 | −0.70 ± 0.16 | −0.73 ± 0.19 | F = 4.342 | F = 8.373 | F = 0.868 | |
B | −0.46 ± 0.12 c | −0.61 ± 0.15 | −0.71 ± 0.15 c | p = 0.042 * | p = 0.001 * | p = 0.426 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Chen, H.; Zheng, Z.; Xu, Y.; Sun, D.; Liang, M.; Lv, Y. A Comparative Analysis of Bionic and Neutral Shoes: Impact on Lower Limb Kinematics and Kinetics during Varied-Speed Running. Appl. Sci. 2023, 13, 12582. https://doi.org/10.3390/app132312582
Pan J, Chen H, Zheng Z, Xu Y, Sun D, Liang M, Lv Y. A Comparative Analysis of Bionic and Neutral Shoes: Impact on Lower Limb Kinematics and Kinetics during Varied-Speed Running. Applied Sciences. 2023; 13(23):12582. https://doi.org/10.3390/app132312582
Chicago/Turabian StylePan, Jiayan, Hairong Chen, Zhiyi Zheng, Yining Xu, Dong Sun, Minjun Liang, and Yihao Lv. 2023. "A Comparative Analysis of Bionic and Neutral Shoes: Impact on Lower Limb Kinematics and Kinetics during Varied-Speed Running" Applied Sciences 13, no. 23: 12582. https://doi.org/10.3390/app132312582
APA StylePan, J., Chen, H., Zheng, Z., Xu, Y., Sun, D., Liang, M., & Lv, Y. (2023). A Comparative Analysis of Bionic and Neutral Shoes: Impact on Lower Limb Kinematics and Kinetics during Varied-Speed Running. Applied Sciences, 13(23), 12582. https://doi.org/10.3390/app132312582