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Abstract: Closed-form Method for Atmospheric Correction (CMAC) is software that overcomes
radiative transfer method problems for smallsat surface reflectance retrieval: unknown sensor
radiance responses because onboard monitors are omitted to conserve size/weight, and ancillary
data availability that delays processing by days. CMAC requires neither and retrieves surface
reflectance in near real time, first mapping the atmospheric effect across the image as an index (Atm-I)
from scene statistics, then reversing these effects with a closed-form linear model that has precedence
in the literature. Five consistent-reflectance area-of-interest targets on thirty-one low-to-moderate
Atm-I images were processed by CMAC and LaSRC. CMAC retrievals accurately matched LaSRC
with nearly identical error profiles. CMAC and LaSRC output for paired images of low and high Atm-
I were then compared for three additional consistent-reflectance area-of-interest targets. Three indices
were calculated from the extracted reflectance: NDVI calculated with red (standard) and substitutions
with blue and green. A null hypothesis for competent retrieval would show no difference. The
pooled error for the three indices (n = 9) was 0–3% for CMAC, 6–20% for LaSRC, and 13–38% for
uncorrected top-of-atmosphere results, thus demonstrating both the value of atmospheric correction
and, especially, the stability of CMAC for machine analysis and AI application under increasing
Atm-I from climate change-driven wildfires.

Keywords: atmospheric correction; smallsat; harmonization; Landsat; Sentinel 2; scene statistics;
near real time; LaSRC; Sen2Cor

1. Introduction

Imaging smallsat flocks may potentially cover the entire globe during daylight hours
constrained only by cloud cover. The resulting intelligence, surveillance, and reconnais-
sance (ISR) can provide critical support for national security, precision agriculture, conflict
resolution, and monitoring natural disasters from storms, wildfires, and flooding induced
by climate change [1–3]. For these images to be useful for visual interpretation or auto-
mated analysis, the spectral distortion of images from haze and other atmospheric effects
must be removed in a process of atmospheric correction (AC). Zhang et al. [4] provide a
thorough review of existing AC methods.

Closed-form Method for Atmospheric Correction (CMAC) is software nearing
completion for reliable, accurate, and near-real-time surface reflectance (SR) retrieval for
smallsats. CMAC was developed for the AC of the four spectral bands typically found on
smallsats: blue, green, red, and near-infrared, but can be adjusted to allow the AC of any
visible through near-infrared (VNIR) band in near real time. In contrast, the application
of current radiative transfer (RadTran)-based methods for smallsat images includes
delays, potentially by days, in waiting for ancillary data from other satellites [5,6].
CMAC is an empirically derived simplification of AC, a “see it, correct it approach”
made solely with the spectral statistics of each scene and treating atmospheric effects
as a lumped sum rather than the product of gases such as water vapor considered
separately from aerosol and other effects. CMAC does not suffer a loss of utility from
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this simplification: in repeated tests, CMAC is proving accurate and reliable in near real
time across a wide range of environments, including low-spectral-diversity deserts and
water bodies [7]. To ensure maximum data utility, AC can be performed in or near real
time upon image acquisition.

CMAC was introduced in an earlier article by Groeneveld et al. [7], referred to here as
“paper 1”. CMAC is a radical departure for AC because it does not apply RadTran methods
that have been the primary approach for automated satellite imagery [4]. After decades of
intensive effort, two RadTran software applications that are considered the state of the art
and stand out as accounting for the vast majority of AC-treated imagery are Land Surface
Reflectance Code (LaSRC) of the Landsat program [6] and Sen2Cor of the European Space
Agency’s Sentinel 2 program [8]. Data from the sensors of Landsat 8 and 9 and Sentinel
2 have been proposed as the basis for RadTran application for AC of smallsat data, and of
these two satellite systems, LaSRC can be taken to represent the best output possible for
AC of smallsat data using RadTran [5,9].

LaSRC and Sen2Cor can be regarded as representative of the current RadTran state
of the art. As a continuation for comparison to RadTran, CMAC is evaluated here using
the same analyses and metrics applied in paper 1. This workflow employed statistical
metrics of precision and accuracy as well as the general performance of processing time,
repeatability, reliability, and ease for smallsat application. Additionally, qualitative
image-to-image comparisons of CMAC and LaSRC corrections were made using criteria
of clarity, color balance and lack of induced artifacts resulting from the correction.

Before CMAC, RadTran provided the only mathematical basis for fully automated
software to retrieve SR from satellite imagery. RadTran application requires radiance
calibration for each spectral band that is not directly measurable in smallsats because
onboard equipment to do so is omitted to optimize weight and size for economical launch
in flocks. Further complicating this problem are variable changes to the sensor response
of each spectral band that are well known to occur in the orbital environment [10,11].
Such sensor degradation is known to occur episodically, and thus, each smallsat must be
periodically recalibrated to maintain accuracy for both the top-of-atmosphere reflectance
(TOAR) and SR retrieval calculated from it.

Since orbiting smallsat radiance responses are unknown, a method has been offered
for calibration of smallsat radiance to standardize AC from RadTran workflows in a
process of sensor cross-calibration with datasets of harmonized reflectance from S2
and L8/9 [5,9] and following a similar workflow to LaSRC SR retrieval [9]. This AC
pathway is inconvenient because cloud-free and relatively clear atmospheric conditions
are needed to match the necessary data between limited sets of satellite overpasses.
This pathway may also add uncertainty, partially because bandwise sensor responses
for these two satellite standards are not equivalent. More seriously, cross-calibration
can introduce uncertainty through temporally mismatched images due to constantly
changing atmospheric conditions, even when overpass times vary by minutes [7]. To
assure accurate results, such discrepancies require that the workflow for harmonization
be closely monitored and managed.

Automation and ease of application are paramount for the operation of large flocks
of smallsats. Rather than following a radiance-based workflow, CMAC was derived
empirically based on the observed effect of atmospheric transmission upon reflectance.
This reflectance pathway permits bypassing the consideration of sensor radiance for SR
retrieval. Instead, each smallsat can use its pre-launch instrument calibration as the basis
for conversion of the recorded raw radiance to an assumed reflectance following well-
established processing methods [12]. The assumed reflectance can then be converted
to SR estimates through bandwise relationships derived in an automated calibration
procedure that customizes CMAC for each VNIR band of each smallsat.

Every satellite must be calibrated to enable accurate CMAC processing. Once the bands
of a smallsat are calibrated, CMAC SR retrieval can be performed from then on, subject
to periodic recalibration to account for changing sensor response. CMAC research and
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development (R&D) is currently developing calibration software and design of calibration
targets to be constructed. In the interim, sensors are calibrated vicariously using TOAR data
that are paired with corrected images of AOIs with established SR. While far less precise
than applying a calibration target, these temporary workarounds still yield excellent results
for sensors aboard smallsats (tested in-house for Planet cubesats), for S2 (as presented in
paper 1), and as tested here, for L8/9.

CMAC is a new and radical departure from the existing AC technology. The analyses
and results presented here can be cross-checked and verified. Available for download
from the Supplemental Materials are an annotated image gallery that provides ancillary
information related to CMAC and LaSRC AC, a python version of CMAC software
v1.1, live spreadsheets used to develop the tables and figures, shapefiles for polygons
that spatially define pixel data extractions, and a link to a cloud site where readers can
browse, download and test correct images with current CMAC versions for SR retrieval
of Landsat 8/9 or S2.

Section 2, the Materials and Methods, consists of five subsections. Section 2.1 describes
how CMAC derives a grayscale raster of atmospheric effect that scales the reversion to
surface reflectance spatially to retrieve surface reflectance across each image as explained
in Section 2.2. Section 2.3 introduces the application of quasi-invariant areas for procedures
of image-to-image comparison to overcome the lack of surface reflectance at the scale and
timing for calibration, evaluation and comparison of the methods. Section 2.4 describes
a method for image-to-image calibration that enables the rapid translation of the method
for other satellites, including smallsats. Finally, Section 2.5 describes four tests that were
conducted to compare CMAC with LaSRC outputs. The results of these four tests are then
reported in Section 3.

2. Materials and Methods

There are two parts to the CMAC workflow. Part 1 generates a grayscale raster of
the atmospheric effect across the image using extracted spectral statistics. In Part 2, the
grayscale brightness is used as a spatial scalar to adjust the degree of correction to be
imposed for SR retrieval from the input TOAR rasters of each band. To apply CMAC,
all sensor bands to be corrected must undergo calibration in a step that determines
coefficients for translation of the atmospheric effect, grayscale brightness, into two
dynamic parameters that guide the retrieval for any level of atmospheric effect. The
CMAC formulation captures the regular mathematical structure of changes to reflectance
driven by atmospheric effects in the form of families of curves. The description of the
CMAC method here draws from greater detail provided in paper 1.

Sentinel 2 (S2) data were selected as the testbed for CMAC R&D, capitalizing on
their cadence, resolution, and high quality. Paper 1 tested the precision and accuracy
of the provisional CMAC version 1.1 software for S2 compared to Sen2Cor software
version 2.11. The AC analysis in paper 1 was applied to seven areas of interest (AOIs),
across 46 images and thousands of extracted statistics. CMAC output was found to be
more precise and accurate than Sen2Cor over a greater range of atmospheric effects. It
required ~91 s for 4-band VNIR AC on a desktop PC (64 GB RAM), a short time span
made possible through the use of scene statistics and a closed-form solution.

The present paper expands CMAC evaluation through:

1. Customizing a Landsat 8 and 9 (L8/9) calibration by reference to the S2 calibration in
a test of a rapid automated method, “master-proxy calibration” (MPC).

2. Measuring the precision and accuracy of CMAC L8/9 SR retrieval generated from MPC.
3. Evaluating whether CMAC SR retrieval matched LaSRC output, thus verifying CMAC

accuracy and stability.
4. Comparing the stability of CMAC and LaSRC as Atm-I of the images increased.
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5. Test correction and comparison of indices derived from CMAC and LaSRC-corrected
images as an indicator of CMAC statistical stability to support machine analysis and
AI under moderate-to-extreme levels of haze.

2.1. Derivation and Scaling of CMAC Surface Reflectance Retrieval Methods

Field spectroscopy applied a portable Analytical Spectral Devices unit to initially
sample vegetation spectra to understand the potential for a vegetation-based SR reference
against which to measure atmospheric effects. The S2 blue band 2 reflectance was
selected for representation of atmospheric effects because it retains sensitivity over
a wide range of atmospheric aerosol content and because its SR remains remarkably
consistent for continuous healthy canopies formed by many different plant species, thus
offering a competent reference against which to judge atmospheric effects. Such maximal
vegetation expression has been given the name “dense dark vegetation” (DDV) and
has been applied to estimate atmospheric effects for AC of Landsat and S2 images [6,9].
An initial concept of blue reflectance to serve as a reference was tested for images
containing continuous DDV cover in the Amazon basin and during summer images in
the intensively cropped regions of the American Midwest. Spectra of such cover were
sampled with non-overlapping grids after applying an NIR threshold to first remove the
low blue reflectance caused by water surfaces. This test application provided a sensitive
portrayal of atmospheric effects where DDV is continuous; however, it was obviously of
limited value where DDV was lacking.

The requirement for DDV to be present in images was bypassed through the assembly
of a model that uses VNIR band statistics as input. The first step in model assembly was
to select alfalfa as a standard because it is a cultivated crop that reaches maximal canopy
expression in a wide range of conditions, whether through irrigation in low-plant-cover
arid climates or watered by rainfall in humid climates. This wide latitude of conditions
supported the sampling of many types of adjacent plant cover to model atmospheric effects
for the entire range of cover from deserts to continuous healthy canopies. The known
spectral statistics of the highest-NDVI alfalfa fields were used as a surrogate ground truth
estimate for blue band surface reflectance.

To assemble the statistically based model, verdant alfalfa fields were identified on
numerous mid-summer images under clear to hazy conditions across a range of arid to
humid climates; these cultivated fields were treated as index plots. Adjacent plots were
identified as subsamples in ranges of cover from none to continuous canopies of whatever
vegetation was present, not necessarily alfalfa, nor cultivated. The spectral band values of
the index plots and their subsamples were extracted, pooled and then used in regression
modeling to predict blue band values of the index samples that were assumed from
relationships generated during earlier steps of spectral canopy measurements.

The model output of the measured atmospheric index is used in subsequent CMAC
calculations to adjust the magnitude of the calculations that remove the atmospheric
effect, thereby delivering SR. This scalar, the predicted blue-band DDV response to the
atmospheric effect, is abbreviated “Atm-I”, and in operation, is estimated by the model
from extracted TOAR spectral data within spatially discrete, non-overlapping sampling
grid cells arrayed across the image. The model provides spatially discrete Atm-I values
that represent the lumped sum atmospheric effect applicable to many surfaces, including
water bodies. The brightness of this grayscale is the driving variable for AC and scales the
degree of correction necessary to reverse the lumped-sum atmospheric effect as shown by
the example in Figure 1.
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Figure 1. A TOAR image of Lake Tahoe in smoke from a regional wildfire on a portion of the
6 September 2021 L8 image tile (a). The Atm-I grayscale developed from the 300 × 300 m grid cells
of the Atm-I model captures in gross detail the haze pattern visible in the TOAR image (b). Bright
ground features in the grayscale partially result from forward scatter of the greater energy reflected
by bright targets as described in paper 1 [7]. The Atm-I of this moderate haze ranged from about
970 to 1240.

2.2. Derivation of the CMAC Equation to Reverse Atm-I

CMAC development began after observation of the response of reflectance data be-
tween clean and hazy images collected across short time spans for the same AOI. The same
pattern of reflectance alteration was observed in every band for the images affected by haze:
in the continuum of dark to bright responses, low reflectance was increased due to aerosol
backscatter, while high reflectance was attenuated. These dark-to-bright responses form
a continuum; between these opposing end member responses, there exists a reflectance
level called the “axis point”, where backscatter and attenuation cancel, and the reflectance
value does not change between TOAR and SR. These observations were translated into
a graphic conceptual model (Figure 2) that inverts and adjusts the well-known empirical
line method [13] into a linear representation of the atmospheric effect at the time of image
capture. The resulting TOAR deviation line encodes the reflectance response for any pixel,
dark to bright, affected by a single level of atmospheric effect. TOAR deviation lines
are uniquely defined by their slope and offset that constitute the two parameters CMAC
requires to reverse the atmospheric effects to retrieve SR. In agreement with the original
observation, as Atm-I increases, backscatter, defined by offset, increases dark reflectance,
and attenuation, defined by both slope and offset, decreases the bright reflectance.
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Figure 2. The CMAC conceptual model graphically expresses the effect upon the reflectance of any
pixel at one level of atmospheric effect. Slope and offset define the TOAR deviation line that crosses
the x-axis at the axis point. This model is appropriate for all VNIR spectral bands.

Precedence for the linear conceptual model can be found in the literature (Figure 3).
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Figure 3. A figure from Fraser and Kaufmann, 1985 [14].

The conceptual model of Figure 2 was translated into the CMAC equation for a
reversal of the Atm-I effect for each pixel across the scene. The closed form of this solution
allows rapid bandwise AC of each image pixel guided only by the brightness of the
Atm-I grayscale raster. The CMAC equation reverses the atmospheric effect and can be
applied once calibration has established the mathematical relationships translating the
Atm-I grayscale brightness into the TOAR deviation line slopes (m) and offsets (b). This
translation occurs through equations that express two functions derived by pairing the
slope and offset with the driving parameter, Atm-I, observed from many QIA images
obtained under sequentially increasing Atm-I.

CMAC Equation: SR = (TOAR − b)/(m + 1)

2.3. Master Satellite (S2) Calibration and Translating the Calibration to the Proxy L8/9 Satellites

CMAC calibration enables SR retrieval applications for new, proxy satellites through
two possible pathways. Precise calibration can be performed using a purpose-built calibra-
tion target. However, no such target yet exists; hence, vicarious (image-to-image) methods
were employed. Multiple overpasses were averaged to control the uncertainty inherent in
vicarious calibration.

Assessing how each band’s TOAR deviation line slopes and offsets change according
to the driving variable, Atm-I, constitutes CMAC calibration. Though simple in concept,
Atm-I is variable across a wide range of image states from clear conditions to extreme
haze. While calibration could include iterative fitting and testing as different ranges of
Atm-I are recorded, such processing is prohibitively time-consuming for application to the
many calibrations required annually for an expected vast field of imaging smallsats. As
an example of this potentially protracted process, the CMAC S2 calibration alone required
several years of testing and analysis. Fortunately, through observation, the calibrated points
of slope and offset on the driving parameter of Atm-I form families of curves that stack in
Cartesian space according to wavelength. This fact enables master calibration curves to
guide extrapolation of single precise proxy calibration points for the slope and offset of each
band. The existence of this family-of-curves structure demonstrates that atmospheric re-
flectance responses are highly structured. Calibration simply encodes bandwise reflectance
responses to enable reversing the reflectance changes due to atmospheric transmission.

The data to run vicarious calibration was extracted from multiple images of the
Ontario-1 QIA. The first step for the proxy L8/9 calibration was to run the S2 Atm-I
model on the L8/9 images and perform cross-calibration to calculate a relationship that
emulates S2 Atm-I results. This was a necessary step because the relative spectral responses
(RSRs) of the S2 bands are different than those of L8/9; hence, the input and output
statistics from the Atm-I model are different. However, the RSRs of the four VNIR bands of
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these two satellites are sufficiently close that the model derived for S2 also functions for
L8/9 though imperfectly. A linear function resulting from the cross-calibration of same-day
overpasses was added to adjust the S2 Atm-I model output for L8/9 to emulate S2 and
included as a step in the CMAC L8/9 software v1.1L. During these and other analyses,
no overt differences were noted between Landsat 8 and 9 responses, consistent with the
findings from comparison analyses by Gross et al. [15]. Consequently, L8 and L9 were not
considered separately.

A second calibration step for L8/9 was applied to the Ontario-1 data to determine the
slopes and offsets for multiple L8/9 low Atm-I TOAR images. The reflectance distributions
of these images were adjusted through the iterative fitting of slopes and offsets to match
the distributions of a best-available SR estimation from multiple low Atm-I, AC-corrected
images of the Ontario-1 QIA. The Atm-I of each image and resulting proxy slopes and
offsets for each band were averaged to generate single values that were then projected into
the families of S2 slope and offset curves and extrapolated to enable the new L8/9 CMAC
version to function across the entire range of Atm-I. This vicarious CMAC calibration
workflow applied to L8/9, resulted in calibration “v1.1L”, requiring about 6 h to select the
images, extract the data, and perform the calculations.

2.4. Quasi-Invariant Areas for Evaluating Surface Reflectance Retrieval

To have value for atmospheric correction, ground truth must be collected in time and
space over the selected area, and in sufficient quantity across diverse reflectance targets
to constitute statistically valid sampling. Ideally, the sample must define not just single
points of SR but entire distributions. CMAC R&D revealed that the value from comparison
of individual estimates of SR is limited because greater mathematical context is lacking.
The selection of a QIA with a range of reflectance values, low to high, provides reflectance
distributions that convey a great deal more information than monotypic plots. For example,
a single reflectance measurement could be correct while the underlying distribution is
wrong, but not vice versa.

An impediment that exists for calibrating SR retrieval methods or for evaluating their
output is that sets of appropriately scaled ground truth reflectance datasets available for
image snapshots during image capture generally do not exist. Further, due to variable
antecedent conditions and cloud cover, ground truth sampling seldom works well in real
time. Instead, an optimized solution for ground truth is to select targets with known surface
reflectance from archived images rather than from a new collection. For CMAC calibration
and verification, a concept similar to pseudo-invariant targets (PITs) [16] was employed:
quasi-invariant areas (QIAs), defined as an AOI with a variable SR distribution that remains
consistent between image acquisitions over time. QIAs allow investigation of reflectance
distributions under varying atmospheric conditions and also for comparison of SR retrieval
methods. PITs are homogeneous areas containing only one target of known reflectance,
while QIAs can be chosen to contain many separate targets with widely varying reflectances,
hence providing the desired reflectance distributions for calibration and testing.

When using a QIA to evaluate SR retrieval methods, the first step is to define bound-
aries that exclude cover that may change between image dates. Such surfaces generally
consist of vegetation, depressions and bare soil subject to water retention in puddles or
wetted soil. Warehouse and industrial districts are permanent facilities appropriate for
testing across extended periods because they are engineered for the quick drainage of
precipitation and include vegetation management or elimination. Such QIAs were chosen
in the urban area of Southern California (SoCal) east of Los Angeles (Figure 4). QIA bound-
aries were mapped to exclude vacant land potentially containing vegetation that could
grow/senesce during the period of study or present surface conditions of variable wetness
from antecedent rainfall.
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Figure 4. The five QIAs selected for analysis, displayed on a Landsat 8 TOAR image. The QIAs are
named for their municipalities: Ontario-3 (a); Ontario-2 (b); Ontario-1 (c); Rochester (d); and Fontana
(e). Ontario-1 was also used for MPC calibration.

Five QIAs were selected within the sidelap region of adjacent L8/9 tiles, in the
Landsat World Reference System-2 path/row 40/36 and 41/36. The AOIs containing
these QIAs are located in the vicinity of the Ontario, California Airport. Three of these
QIAs were also used to evaluate S2 AC reported in paper 1. Twenty-four L8 images
acquired between 2019 and 2022 and seven L9 images acquired in 2022, were selected for
analysis. A list of these images is provided in the Supplemental Materials. The selected
images were displayed and inspected to assure that no gross anthropogenic changes
were visible through the period of analysis, and each was verified to be cloud and cloud-
shadow free. If haze was visible in an image, it was closely inspected to assure even
expression within each QIA. Band 9 was inspected for each image to ensure that no cirrus
was present, since cirrus, though correctable by CMAC, is seldom evenly expressed
across QIA scales of a square kilometer or greater. The selected SoCal warehouse and
industrial areas present mostly rooftops, paved roadways and parking that are well
drained and are sufficiently large so that variability in parked or moving vehicles, or
other individual sub-targets across multiple image-to-image comparisons is reduced to
minor stochastic variation.

As described in paper 1, CMAC v1.1 was calibrated for correction of S2 data using a
warehouse district QIA located north of the international airport in Reno, NV, USA. The S2
calibration, since upgraded through additional imagery and testing of the Reno QIA, is the
basis for the L8/9 calibration used for this paper. This recalibration produced only slight
changes to the S2 master calibration.

2.5. Data Analysis Workflow

The two overarching goals for this paper were as follows: (1) determining whether
CMAC applied to correct L8/9 images provides comparable SR retrievals to LaSRC; (2) eval-
uating the precision, accuracy and consistency of CMAC SR output derived through MPC
in comparison to LaSRC. CMAC performance for v1.1L SR retrieval for L8/9 data is near-
real-time, requiring about one minute per image using a compiled C++ implementation
executed on a desktop PC with 64 GB system RAM.

Thirty-one images were selected and downloaded as standard TOA and LaSRC-
corrected products from USGS EarthExplorer [17]. The TOA radiance product was pro-
cessed to TOAR following the published radiance-to-reflectance conversion workflow [12].
Collection dates for the 31 images were selected to minimize the influence of solar zenith
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angle (SZA) that would alter building shadows in the QIA and the solar irradiance path-
length through the atmosphere. The dates ranged from June 13 to August 11 of 2019, 2020.
2021 and 2022. The scene center SZA ranged between 21.8◦ and 28.0◦.

The same analytics described in paper 1 were applied to the extracted SoCal v1.1L-
treated statistical distributions of each image generated from 21 set percentile increments of
reflectance: 1%, 3%, 5% and in 5% increments to 95%. This data characterization permitted
comparing the distributions for three reflectance “treatments”: uncorrected TOAR and
CMAC and LaSRC SR retrievals. All numerical reflectance values were extracted from the
pixels within QIA shapefiles and scaled by 10,000 following the convention adopted by the
Sentinel 2 program [8]. In the graphical figures that follow, data are listed as DN (digital
number) within the range of 16-bit unsigned integers. Four tests were performed to assess
the performance of CMAC versus LaSRC.

Test 1. Performance statistics of corrected images under low-to-moderate Atm-I:
Data were extracted from the 31 images of the Ontario-1, Fontana, Rochester, Ontario-2,
and Ontario-3 QIAs. These images were obtained under Atm-I conditions that ranged from
relatively clean (Atm-I = 883) to moderate (Atm-I = 1088).

Statistical metrics of the CMAC and LaSRC outputs of reflectance averages, standard
deviations and coefficients of variation (CV% = StDev/Average × 100) were compared
across the suite of images for each of the five QIAs. Error estimates were generated
based on the logical and measurable assumption that images with the lowest Atm-I
values provide best available estimates of true SR. Data distributions from the five
lowest Atm-I images were selected and averaged for each QIA to control uncertainty
in error estimation. These best-available SR estimates for each QIA were treated as
the standard for percent error calculation at each percentile step of each image of each
QIA: % error = (value − standard)/standard × 100). For the error calculation of LaSRC,
the low Atm-I percentile LaSRC averages were used as the appropriate reference stan-
dard. Likewise, the percentile-wise Atm-I averages for CMAC were used as the standard
for assessing CMAC.

Test 2. SR distributions derived under low-to-moderate Atm-I: The CMAC v1.1-L
output was compared to LaSRC output in the form of average cumulative distribution
functions (CDFs) extracted from the images of each QIA for each band. This test was
performed to determine the reproducibility and stability of CMAC and MPC calibration,
and to determine whether CMAC v1.1L measures reflectance of L8/9 data within the same
numerical ranges as LaSRC. This was tested through displays of the average reflectance
distributions of CMAC and LaSRC results compared to TOAR for each band of the 5 QIAs.

Tests 1 and 2 provided a robust sample for analysis of atmospheric correction for
three treatments, TOAR, CMAC and LaSRC, across the 31 images in each of the five QIAs
evaluated in 21 percentile-steps of the reflectance distributions. This sampling provided
9765 separate statistics for each band.

Test 3. Quantitative performance in moderate-to-extreme Atm-I: Atm-I is increas-
ing due to climate change-driven wildfires in many regions around the globe. For
example, smoke from pervasive West Coast, Intermountain Region and Canadian wild-
fires dominates the skies across the American Midwest and much of North America
during each summer growing season at levels that impact imagery-based applications for
precision agriculture and carbon farming. Similarly, extreme anthropogenic emissions
in Southern Asia produce high levels of visible haze that may impact remote sensing
applications through much of the year [18]. Tests 1 and 2 were performed using QIA
targets known to express consistent reflectance through the summer period. However,
the images used captured only low-to-moderate levels of Atm-I. Located in an urbanized
region of Southern California within 60 km of the Pacific Ocean to the west and receiving
onshore southwesterly winds throughout each summer day, the SoCal QIAs offered
no potential to assess AC performance for high levels of Atm-I resulting from wildfire
smoke or other causes.
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Future remote sensing applications are expected to be dominated by automated
applications applying various indices, e.g., NDVI. To answer the question of how the
increasing levels of smoke will affect such applications, Test 3 was formulated to investigate
how such indices, generated from TOAR, CMAC and LaSRC-corrected data, perform under
moderate-to-extreme Atm-I conditions.

In Test 3, CMAC and LaSRC-corrections were compared across low Atm-I that were
assessed first in Tests 1 and 2. Landsat images acquired over British Columbia, Canada,
that were expected to form QIAs with consistent surface reflectance conditions across
yearly snapshot-in-time images were identified exhibiting low Atm-I and high Atm-I.
Sampling was performed for these conditions from clear conditions and from visibly
homogeneous haze in three urban locations: Penticton, Kelowna and Vernon. Polygons
were mapped to enclose visibly homogeneous areas of haze (Figure 5). Landsat images were
selected to support this analysis from three consecutive years within a six day-of-year time
span for each year: 3 August 2021 (smoke-affected L8) and 6 August 2022 (clear L8) and
1 August 2023 (clear L9). The third image was selected to test an assumption underlying
this experimental design: that the conditions affecting peak vegetation expression were
consistent across the annual snapshots during the day-of-year period of image selection.
The peak plant expression in these polygons was not expected to be limited by antecedent
rainfall because of irrigation.

Three circular sample areas were mapped around each of the three city polygons
to include and sample irrigation-cultivated crops. For direct comparison between clear
versus smoke-affected conditions, the pixel values for blue, green, red and NIR were
extracted for the three treatments from the three images for the 20 pixels expressing the
highest NDVI values in each sampled circle. The null hypothesis was for no difference
among the three years, confirming that the predisposing environmental conditions were
consistent and that the treatment was effective for SR retrieval. A fair comparison
among the three years was sought through a checklist of conditions to be met to assure
that peak NDVI would be present each year: irrigated crops cultivated in a strongly
Mediterranean-type climate, sampling at the height of the growing season, nearly exact
day-of-year image snapshot times, and relatively large, sampled areas encompassing
numerous cultivated fields. These considerations were expected to isolate the effects of
the smoke haze on the images and for the treatments. The sampled areas are numbered
for reference in Figure 6.

Indices were calculated for average extracted band values of the 20 highest NDVI
pixels in each of the circular AOIs and to assess the relative performance of the three
treatments for three indices, NDVI: NDVI = (NIR − Red)/(NIR + Red) [19] and two
indices based upon the same normalized difference format but with blue and green bands
substituted for the red band, designated here as NDBI and NDGI, respectively. Together,
these three indices provide an indication of the relative utility of AC-processed data to
support automated machine analyses of any kind.

Test 4. Qualitative evaluation in moderate-to-extreme Atm-I: Multiple images repre-
senting moderate-to-extreme Atm-I were selected for correction by CMAC and LaSRC and
visual inspection of the results in comparison to the TOAR view. Color balance and clearing
of haze have been applied during CMAC development as indicators of the quality of image
correction [7] that found clear images were generally close to SR. While not conclusory,
attributes of clarity, natural appearing color balance, and absence of induced artifacts have
proven to be valuable for R&D as a quick confirmation of the quality of the AC. Color
balance can be a competent indicator of which bands are incorrect, presenting two possible
states for the interpretation. As an example, an overly green appearance may indicate that
the green band is over-represented (under-corrected) but also potentially that the blue and
red bands are under-represented (over-corrected).
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Figure 5. The L8 3 August 2021 image (left) was affected by more extreme haze and smoke that settled
into hydrologic drainages, while the 6 August 2022 image (right) was comparatively clear: TOAR
(a,b), CMAC corrected (c,d) and LaSRC corrected (e,f). The polygons along the Okanagan River
represent sampled AOIs. Each was affected by very low Atm-I (clear conditions) in (b); however,
haze is present in other locations of the image.
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Figure 6. TOAR views of the three QIAs selected for statistical examination: 3 August 2021 (column A)
experienced moderate-to-extreme smoke effects, while 6 August 2022 (Column B) was comparatively
clear. In order of increasing Atm-I, from south to north (top to bottom), are the Penticton, Kelowna
and Vernon AOIs. The smaller numbered circles denote sampled areas for statistical examination,
each located over areas of cultivated vegetation.
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3. Results

The CMAC calibration v1.1 for S2 was tested for the direct correction of L8/9 data
without alteration. The two satellite systems are nominally the same, having blue, green,
red and NIR bands but somewhat different RSRs, as shown in Figure 7. The resulting
S2 v1.1 AC-processed images often contain clearly incorrect color balance – RGB color
balance and lack of haze provide competent indications when AC results for RGB bands
are incorrect and which bands may be over- or under-represented. The MPC calibration
performed for this investigation was confirmed via visual inspection to produce acceptable
results (Figure 8).
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Figure 8. The L8 image of Lake Tahoe TOAR and Atm-I grayscale in Figure 1 corrected by CMAC
(a) and LaSRC (b). Wisps of uncorrected haze over the lake in (a) result from scaling issues.

Data generated for Tests 1 and 2 were extracted from the L8/9 images as TOAR or
AC output from CMAC and LaSRC within the QIA shapefile boundaries. These data were
analyzed in spreadsheets. As a precursor to the three tests listed earlier, the provisional
CMAC v1.1-L calibration was developed through the MPC pathway and tested qualitatively
by correcting several relatively high-level Atm-I images. The example CMAC v1.1-L
correction in Figure 8 exhibits elevated Atm-I ranging between 970 and 1240. The CMAC
test correction can be seen to have cleared most of the haze and restored a natural-appearing
color balance. This result provided qualitative assurance that the MPC calibration was
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appropriate for application to process clean-to-moderate Atm-I recorded for the 31 test
images of the five SoCal QIAs.

Although the v1.1-L calibration is acceptable, it is provisional and subject to further
improvement. Figure 8 is instructive: there are obvious features that indicate that the Atm-I
levels exceeded the calibration for both methods. For example, the LaSRC image exhibits
residual haze and a strong green color shift for thicker patches of haze visible in Figure 1,
indicating that Atm-I levels exceeded LaSRC capability—the green shift visible here was
also found for LaSRC-corrected images for all four tests. Residual haze and thin wisps of
uncorrected smoke are visible toward the upper left of Lake Tahoe in the CMAC correction.
Because the scale of these features approaches the 300 m grid cells that mapped the Atm-I
grayscale, the residual haze may be related to spatial resolution. The uncorrected wisps of
haze in Figure 8 are features of the TOAR smoke plume visible in Figure 1a that are not
captured by the Atm-I grayscale (Figure 1b).

Figure 8 illustrates how the trend for increasingly higher resolution in smallsat imaging
can enhance the accuracy and precision for SR retrieval. As spatial resolution increases, the
finer detail from a higher resolution can capture Atm-I. Also, with higher resolutions, pixel
mixing will decrease, and this will enhance spectral diversity, which is important in AI
and other machine analyses; it is a property actively being explored for machine learning
in remote sensing investigations [20], for meteorology [21], and especially for vegetation
diversity as affected by climate change [22–24].

Test 1. Performance statistics of corrected images under low-to-moderate Atm-I:
CV% was estimated from the average and standard deviation of each band for the 31 im-
ages of each QIA. Table 1 provides grand averages of the CV% for L8/9 AC across the
five QIAs that show relatively close agreement of CV% among the three treatments.
Table 1 values exhibit patterns similar to those observed in the corresponding S2 analysis
presented in paper 1: higher CV% (greater dispersion and lower precision) exists at the
upper and lower tails of both distributions. Dispersion increased as band wavelength
decreased—lowest for NIR and highest for blue. Each CV% value in Table 1 represents
an average of 155 values (31 images × 5 QIAs). A comparison of the average CV%
distributions shows that CMAC performed better at the lowest reflectance levels. CMAC
provides higher precision for the low reflectance of the red band and for the moderately
high levels of NIR, both forming the indices for assessing vegetation performance for
precision agriculture, measuring carbon cycling [25,26] and potentially for AI feature ex-
traction [27,28]. The slightly higher dispersion (~1–2%) observed in the central portions
of the CMAC-corrected visible band distributions may result from the relatively cursory
L8/9 calibration.

Table 1. Average CV% as grand averages (n = 155) for the sampled distribution percentiles across the
five QIAs.

Blue
Band 02

Green
Band 03

Red
Band 04

NIR
Band 05

Percentile TOAR CMAC LaSRC TOAR CMAC LaSRC TOAR CMAC LaSRC TOAR CMAC LaSRC

1 5.8% 7.1% 25.0% 6.3% 6.3% 8.6% 6.7% 6.6% 7.6% 4.4% 4.7% 4.7%

3 4.6% 5.3% 10.7% 5.6% 5.1% 7.0% 5.8% 5.5% 6.1% 3.9% 4.0% 4.0%

5 4.2% 4.8% 7.7% 5.2% 4.7% 6.3% 5.2% 5.0% 5.6% 3.8% 3.8% 3.8%

10 3.8% 4.3% 5.3% 4.6% 4.4% 5.5% 4.6% 4.5% 4.8% 3.7% 3.9% 3.9%

15 3.5% 4.2% 4.2% 4.3% 4.3% 5.0% 4.2% 4.3% 4.2% 3.7% 4.0% 3.9%

20 3.3% 4.1% 3.6% 4.0% 4.3% 4.7% 3.8% 4.1% 3.9% 3.6% 4.0% 3.9%

25 3.1% 4.2% 3.4% 3.8% 4.4% 4.5% 3.7% 4.2% 3.8% 3.6% 4.0% 3.9%

30 3.0% 4.3% 3.2% 3.6% 4.4% 4.3% 3.5% 4.2% 3.8% 3.5% 4.0% 3.8%

35 2.9% 4.4% 3.2% 3.5% 4.4% 4.2% 3.4% 4.1% 3.7% 3.5% 4.0% 3.8%
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Table 1. Cont.

Blue
Band 02

Green
Band 03

Red
Band 04

NIR
Band 05

Percentile TOAR CMAC LaSRC TOAR CMAC LaSRC TOAR CMAC LaSRC TOAR CMAC LaSRC

40 2.8% 4.5% 3.1% 3.4% 4.5% 4.1% 3.3% 4.1% 3.6% 3.5% 4.0% 3.8%

45 2.7% 4.6% 3.2% 3.4% 4.6% 4.1% 3.3% 4.2% 3.6% 3.5% 4.0% 3.8%

50 2.7% 4.7% 3.3% 3.4% 4.8% 4.1% 3.4% 4.3% 3.8% 3.5% 4.0% 3.8%

55 2.8% 4.9% 3.6% 3.5% 4.9% 4.3% 3.5% 4.5% 3.9% 3.5% 4.1% 3.8%

60 2.9% 5.1% 3.7% 3.7% 5.2% 4.5% 3.6% 4.6% 4.0% 3.5% 4.0% 3.7%

65 3.1% 5.3% 3.9% 3.9% 5.4% 4.6% 3.7% 4.7% 4.1% 3.4% 4.0% 3.7%

70 3.2% 5.5% 4.1% 4.0% 5.5% 4.7% 3.9% 4.9% 4.2% 3.4% 3.9% 3.7%

75 3.3% 5.6% 4.4% 4.0% 5.5% 4.7% 3.9% 4.8% 4.2% 3.7% 4.2% 3.9%

80 3.5% 5.8% 4.9% 4.3% 5.7% 5.0% 4.3% 5.1% 4.7% 4.2% 4.6% 4.5%

85 4.1% 6.5% 6.1% 5.2% 6.6% 6.2% 5.5% 6.1% 6.0% 5.5% 5.8% 5.6%

90 5.1% 7.4% 7.5% 7.4% 8.8% 8.5% 7.8% 8.5% 8.4% 7.2% 7.6% 7.4%

95 5.3% 7.0% 7.0% 6.6% 7.3% 7.2% 6.5% 6.6% 6.6% 5.4% 5.4% 5.3%

The SR retrieval error for each image was estimated from the average distribution of
the five lowest Atm-I images. This low Atm-I average was treated as the best available
estimate of the true SR distribution. These calculations were employed individually in each
QIA as the standard for error estimation of each percentile in the statistical distributions.
To reduce the potential for biasing the comparison, the CMAC low Atm-I average was used
as the standard for CMAC error estimation, and the LaSRC low Atm-I average was used
for LaSRC error estimation.

Like CV%, % error is a statistic normalized through division by average values; hence,
it can be combined for the five SoCal QIAs for an evaluation of the overall error of the two
methods. In Figure 9, % error estimates from each QIA were pooled and plotted according
to their percentile rank. Figure 9 demonstrates that the accuracy achieved using the CMAC
provisional v1.1-L calibration is roughly equivalent to the accuracy of LaSRC. The error
distributions for CMAC shown in Figure 9 closely approximate the error distributions
measured for S2 SR retrieval in Figure 14 of our earlier paper [7].

To further investigate how error may affect the lower end of reflectance that is critical
for AI feature extraction and vegetation indices, the absolute values of the estimated error
were averaged for the reflectance distribution percentiles between 1% and 20% to create
one index value representing the error for each image-QIA combination (n = 155 per band).
These statistics were then pooled across the five QIAs and plotted according to the QIA
median Atm-I (Figure 10). The degree of data scatter increases with Atm-I.

Regression lines for the low-reflectance index values in Figure 10 allow a statistical
comparison of low-reflectance error from the clouds of points. In all four bands, LaSRC
low-reflectance error was greater than CMAC judged in this manner. This disparity was
greatest in the blue band, less in the green band, and even less but still present for the red
band. This same pattern was also apparent in the CMAC-to-Sen2Cor comparison in paper
1, but more pronounced, especially for the blue band. A direct comparison of the same
test reported in paper 1 indicates that LaSRC is more stable at the low end of Atm-I than
Sen2Cor. Given the results of paper 1, this testing indicates that CMAC is more stable and
accurate than Sen2Cor and LaSRC.

The results from the error analysis that are summarized in Figures 9 and 10 here,
and presented in paper 1, provide conclusive proof that the lumped-sum approach for
determining atmospheric effects upon SR retrieval employed through Atm-I in CMAC
has no discernible negative effect upon accuracy, at least in comparison to LaSRC and
Sen2Cor output.
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Figure 10. Low-reflectance indices and regression lines for L8/9 calculated for LaSRC and CMAC.

Test 2. SR distributions derived under low-to-moderate Atm-I: The SR retrieval
values in each QIA were averaged across the 31 images at each of the percentile steps for
the three treatments. The resulting average CDFs are plotted per band in Figure 11 for each
of the five QIAs. This comparison confirms that the CMAC SR retrieval is equivalent to that
of LaSRC. The CMAC average SR retrievals are virtually identical to LaSRC and effectively
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plot one atop the other. Slight disagreement can be seen where the orange display of CMAC
is exposed. Each of these cases occurred in the blue and green bands for complexities of
the CMAC shape that followed from the same shape in the TOAR curves. These results
confirm that CMAC v1.1L output is at least as accurate as LaSRC for low-to-moderate
levels of Atm-I. Furthermore, this result indicates that the MPC based on single precise
points for the translation of the S2 calibration for LaSRC application is appropriate for the
calibration of CMAC for new satellites, and especially flocks of numerous smallsats.
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These reflectance distributions of CMAC and LaSRC plot atop one another in all cases with only
minor discrepancies where the CMAC curves more closely emulate the shape of TOAR.
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Test 3. Quantitative performance of CMAC and LaSRC in moderate-to-extreme
Atm-I: The August 2021 and 2022 British Columbia image pair, taken a year apart, captured
ideal conditions for a comparison of images that were haze-affected compared to relatively
haze-free conditions (Figure 5). The three AOIs selected to support a comparison of CMAC
and LaSRC L8/9 SR retrievals (cities of Penticton, Kelowna, and Vernon) captured a gra-
dient of conditions from moderate to extreme haze effects on the 2021 image. The three
circular AOIs for extraction of pixel statistics around these three cities were mapped to
contain significant proportions of cultivated dense dark vegetation (DDV). Live spread-
sheets for Test 3 containing extracted four-band VNIR pixel values and their statistical
analyses are available for download in the Supplemental Materials. CMAC v1.1L software
can be accessed through a link to cloud-based correction for a verification of the SR retrieval
reported here, and shapefiles are included to support data extraction for this purpose.

Table 2 provides a summarization of the results for the NDVI and NDVI-like indices
calculated from the extracted data of moderate-to-extreme Atm-I (3 August 2021) versus
relatively low Atm-I (6 August 2022). Data from the low-Atm-I image of 2023 (1 August) are
included for comparison to the 2022 data. Table 2 cells contain the results from averaging
the band values extracted for the 20 highest NDVI per circular sampled area (Figure 6)
that were, in turn, averaged and used to calculate the indices presented. As mentioned
previously, the lower the Atm-I, the closer the SR retrieval data are to true surface reflectance.
Data from 2023 and 2022 (low Atm-I), agreed closely, as do the index values between CMAC
and LaSRC for 2023 and 2022, confirming that true surface reflectance between these two
dates was consistent, that surface reflectance for the 2021 smokey condition was likely
equivalent to 2022 and 2023, and that the experimental design was appropriate.

Table 2. NDVI and related indices calculated from the extracted British Columbia data. The shaded
row is from low Atm-I 2023 data for comparison to 2022, showing close agreement. Average error
values were −22.7% for TOAR, 0.4% for CMAC and −9.9% for LaSRC.

TOAR CMAC LaSRC

Penticton Atm-I NDVI NDBI NDGI NDVI NDBI NDGI NDVI NDBI NDGI

2021 1002 0.741 0.584 0.641 0.899 0.910 0.831 0.840 0.847 0.756

2022 807 0.851 0.709 0.747 0.913 0.937 0.841 0.913 0.908 0.834
2023 841 0.827 0.691 0.726 0.898 0.926 0.835 0.883 0.878 0.810

2022 v. 2021 error −13% −18% −14% −2% −3% −1% −8% −7% −9%

TOAR CMAC LaSRC

Kelowna Atm-I NDVI NDBI NDGI NDVI NDBI NDGI NDVI NDBI NDGI

2021 1133 0.691 0.522 0.591 0.909 0.909 0.839 0.820 0.847 0.725

2022 805 0.839 0.692 0.735 0.902 0.930 0.835 0.904 0.902 0.824
2023 816 0.824 0.680 0.722 0.891 0.904 0.819 0.897 0.903 0.823

2022 v. 2021 error −18% −25% −20% 1% −2% 1% −9% −6% −12%

TOAR CMAC LaSRC

Vernon Atm-I NDVI NDBI NDGI NDVI NDBI NDGI NDVI NDBI NDGI

2021 1428 0.602 0.448 0.514 0.911 0.926 0.850 0.802 0.837 0.663

2022 805 0.848 0.722 0.746 0.902 0.926 0.830 0.904 0.902 0.824
2023 839 0.827 0.706 0.718 0.894 0.921 0.815 0.880 0.879 0.790

2022 v. 2021 error −29% −38% −31% 1% 0% 2% −11% −7% −20%

As in Test 1, the clean 2022 indices can be treated as having been calculated from the
true surface reflectance for the calculation of % error for the comparison to the smoke-
affected indices of 2021. These calculations applied the equation presented in the Materials
and Methods (% error = (value − standard)/standard × 100). The calculated CMAC
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error remained consistent under conditions of increasing Atm-I and even showed a slight
reduction. From these results, CMAC correction can therefore be judged as reliable for
applications utilizing NDVI or similar indices, AI feature extraction and various other
machine analyses. Likewise, error propagation in the visible L8/9 bands was found to
be lower than LaSRC for low reflectance in Test 1 (Figure 10). This stability is reflected in
CMAC’s superior performance for the Test 3 indices generated under moderate-to-extreme
levels of Atm-I.

The high degree of error of the TOAR data in Table 2 provides strong quantitative
evidence for why surface reflectance retrieval is important. Given that far more smallsat
images are now being generated than is practicable for analyst attention, accurate AC
assumes a critical role to prepare image data for automated analyses. If performed correctly,
a by-product of an AC processing step is image clarity. While existing methods can already
achieve this result, they require analyst-proctored software and considerable attention
to produce admittedly approximate output [29]. CMAC can provide both in one near-
real-time operation upon image download. An independent GIS-based application is
planned for fine tuning severely impacted images, is an application described in the context
of extreme Atm-I that affected Payette, Idaho and Davenport Iowa, USA, examples in
the image gallery that supports Test 4. This secondary processing could be reserved for
application to the most severely atmospherically affected images where tolerances for SR
retrieval can be overwhelmed by the associated uncertainties. This application would
incorporate the calibrated CMAC relationships adjusted by the analyst.

From repeated data correction and observation of the magnitude of Atm-I generated
by the CMAC process, it is apparent that the extreme Atm-I levels measured in and around
Vernon, BC can be expected to be episodic and due directly to coherent smoke plumes
relatively close to the wildfire. Given the record levels of wildfire activity in North America
in recent years, moderate levels of Atm-I resulting from dispersed smoke, such as those
recorded for Penticton and Kelowna, can be expected to dominate the skies across much
of North America during each growing season (spring through late fall). As indicated
by Table 2, this trend for increasing Atm-I can seriously impact LaSRC NDVI values and
render TOAR NDVI unusable for precision agriculture and other automated applications.

Test 4. Qualitative results of image comparisons.
Approximately 60 L8/9 images from a wide range of conditions and locations have

been downloaded and processed for CMAC development and for quantitative verification
of the v1.1L calibration. Approximately 40 more images have been downloaded and
processed for qualitative observation to compare LaSRC and CMAC results. Six of these
images that are instructive for improving the state of the art were selected for presentation.
This short image gallery can be downloaded from the Supplemental Materials. In none of
the approximately 100 total comparisons were the results from LaSRC an improvement
over the image appearance from CMAC application.

4. Discussion

CMAC is a new method for atmospheric correction with no touchpoint for comparison
to existing methods except through an evaluation of AC performance. While the CMAC
workflow bears little resemblance to radiative transfer-based methods such as LaSRC, it
could not have been developed without the prior pioneering work in surface reflectance
retrieval that developed it for Landsat [30] and applications applied to Sentinel 2 [31].
Likewise, CMAC R&D was only made possible through analyses of copious high-quality
imagery from the European Space agency’s Sentinel 2 program and the U.S. Geological
Survey and NASA-supported Landsat program.

CMAC is based upon observations of the response of atmospherically transmitted
reflectance. The empirical line method was adapted, inverted and adjusted to become
the CMAC conceptual model that estimates a linear relationship expressing the deviation
of surface reflectance to TOAR reflectance. The CMAC conceptual model is a linear
representation of the effect from an atmospheric state upon the reflectance of all pixels, dark
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to bright, in the visible-through-NIR spectrum. Precedence exists in the remote sensing
literature for such an approach [14].

CMAC provides spatial estimates of atmospheric effect that are calculated by a model
that applies scene statistics to estimate an atmospheric index, Atm-I. Through this model,
Atm-I magnitude represents the blue band reflectance of hypothetical DDV plus the
backscatter from the atmosphere. Atm-I values form a grayscale whose brightness provides
a spatially discrete scalar to adjust the CMAC conceptual model. The combination of this
conceptual model and the Atm-I model constitute the workflow that retrieves SR from
TOAR. A third step calibrates each band’s sensor response to Atm-I. Calibration measures
the slopes and offsets for the dynamic linear responses driven by Atm-I that exist for each
sensor band. The calibration workflow results in curves of slope and offset to Atm-I that
can then translate the Atm-I grayscale into a linear expression for atmospheric effect upon
any pixel’s TOAR, from dark to bright. These three separate parts allow CMAC to reverse
the atmospheric effect and retrieve an SR estimate individually for each band of each pixel
of a calibrated satellite using only two inputs: TOAR and the Atm-I that caused it.

The CMAC calibration for L8/9 was derived from single points per band in application
of master-proxy calibration that extrapolates single precise points for the range of Atm-I
that can be encountered. The extrapolation was guided by the shapes of master curves of
the slope and offset of each band driven by Atm-I that form families of curves of similar
shape that nest together and stack in Cartesian space according to their wavelength. The
L8/9 data were treated as the proxy while the highly calibrated S2 families of curves were
treated as the master. This calibration generated the CMAC v1.1L software’s SR retrieval
from the L8/9 TOAR presented in this paper.

Presently, calibration is applied vicariously through fitting slopes and offsets of mul-
tiple images to match known SR distributions. While this procedure was approached
with programmatic steps, because such vicarious fitting incorporates uncertainty, multiple
images were applied and the resulting slopes, offsets and Atm-I parameters were averaged
to control the uncertainty. When fully operational, CMAC will, instead, apply a calibration
target to achieve highly precise and fully automated calibration for potential application to
an unlimited field of smallsats. The efficiency of this workflow is expected to ensure that
high volumes of smallsats can be calibrated and periodically recalibrated to counter the in-
evitable but unpredictable episodic degradation of sensor response that is the consequence
of the orbital environment [11].

The accepted state-of-the-art LaSRC software was applied by the Landsat program
and served as a milestone for judging the performance of CMAC SR retrieval. LaSRC uses
ancillary data from MODIS [6] to represent atmospheric effects. Instead, CMAC uses scene
statistics to bypass the need for ancillary data to enable image processing immediately
upon download. This difference, plus the economy for data processing in the CMAC
workflow, may support multiple ISR objectives. For example, a real-time edge application
with CMAC residing in-satellite and lagging by several seconds can correct an image as it
is scrolled into memory by the pushbroom scanner. A digital image cleared of haze could
then be transmitted to first responders or warfighters with only seconds of latency.

LaSRC and CMAC SR retrievals are compared here for 31 images obtained from a
commonly encountered range of atmospheric effects. A comparison of the results showed
that the CMAC and LaSRC SR retrievals were virtually identical for low-to-moderate
levels of Atm-I. SR retrieval was also studied for moderate-to-extreme levels of Atm-I
through comparisons of British Columbia images from three consecutive years under
comparable environmental conditions and roughly commensurate SR distributions. Two
images captured clear conditions and the third was impacted by a range of Atm-I wildfire
smoke. Extracted data for the four VNIR bands processed by CMAC and LaSRC for
the three years were combined into three normalized difference indices. These indices
demonstrated that CMAC SR retrieval remains competent to support machine analysis and
AI as Atm-I transitions from low to extreme effects. Judged through the nine index values
calculated, CMAC contained −3% to 2% error (average 0.4%). Comparatively, LaSRC
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errors indicate a bias for increasing under correction at moderate-to-extreme levels of
Atm-I, varying from −6% to −20% (average −9.9%).

Although it is well known that atmospheric correction is a necessary step in image
processing for most applications, smallsat data purveyors may be tempted to omit this step
if they find application of the RadTran AC and the harmonization pathway to be complex,
inconvenient, or to provide insufficient accuracy. However, the overwhelming volume
of images currently generated by smallsats can only be evaluated through automated
machine analysis workflows and/or AI, and this data overload will only grow as more
imaging smallsats are brought online. Against the need for automated image analysis,
the results presented in Table 2 offer the best argument for why AC is a crucial step in
image processing: data left as uncorrected TOAR incorporated significant uncertainty
that increased the apparent error 13% to 38% as Atm-I increased. Depending upon the
application, such high levels of error are likely unacceptable.

Test results of CMAC for the 30 m pixel, L8/9 data and higher-resolution 10 m pixel
S2 data, provided confirmation that CMAC accuracy and precision will increase as pixel
spatial resolution increases. This enhancement is due to higher granularity for Atm-I
assessment and reduced pixel-mixing effects.

As can be appreciated from the results of these analyses, current state-of-the-art LaSRC
functions relatively well for images that are not highly affected by the atmosphere, but
it is limited for images affected by higher levels of Atm-I. However, with each passing
year, climate change is intensifying and causing increasing wildfire incidence and mag-
nitude [32]. Smoke haze can cover most of North America for weeks at a time [33] and
elevated wildfires are now occurring over large pan-boreal regions [34]. Wildfire smoke
has a significant impact upon all applications of satellite imagery, a ready example being
precision agriculture’s reliance upon vegetation indices that are highly affected by variable
atmospheric effects [35], a finding corroborated by the Test 3 NDVI results.

The intent for CMAC development has been its application to serve the smallsat
industry. Likewise, LaSRC, widely regarded as state-of-the-art in AC, has been tasked for
SR retrieval from smallsat data [5] through a radiance harmonization pathway [5,9]. Paper
1 examined S2 data using the same testing procedures as those employed in this paper;
those results and those presented here found that LaSRC provided SR retrieval with greater
accuracy than Sen2Cor. CMAC retrieved SR that was remarkably consistent with LaSRC
for low-to-moderate Atm-I, but with greater accuracy at higher levels of Atm-I. These
results confirm that CMAC is application-ready for optical satellites, including numerous
members of smallsat flocks.

5. Conclusions

CMAC was specially developed for smallsat applications to provide accurate and
precise SR retrieval and rapid calibration to enable its use. CMAC is empirically derived,
and though it is a significant simplification compared to state-of-the-art RadTran appli-
cations, Sen2Cor and LaSRC, it provides accuracy and stability for fully automated SR
retrieval over ranges of atmospheric effects from clear to extreme, doing so in near real
time. CMAC can be applied to calibrate and perform SR retrieval with commensurate or
better accuracy for smallsats, as demonstrated in this paper and paper 1. With continued
research and development, CMAC may address the goal of accurate AC of smallsat data
for all environments and all times of the day, limited only by cloud cover.

6. Patents

Currently, one CMAC patent is granted. Two additional patent applications are
pending before the US Patent Trade Office, with one of these filed internationally through
the Patent Cooperation Treaty (International Search Report—language approved as filed).
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sheets Test 3; 3a Shapefiles for British Columbia index study; 3b Spreadsheets Test 3; 3—Python Code for
CMAC v1.1L; and 4—Image Gallery (Test 4). Landsat 8/9 data can be browsed, selected, and corrected by
CMAC v1.1L to assist these analyses through this link: https://strato.advancedremotesensing.com/app.
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