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Abstract: Random prime numbers are an essential resource for many asymmetric cryptographic pro-
tocols. However, despite the emerging popularity of quantum random number generators (QRNGs)
as sources of secure randomness, physical prime number generators have not yet been explored.
In this work, we experimentally implement and characterize a vacuum-based probabilistic prime
number generation scheme with an error probability of 3.5× 10−15 . By removing the quantum source
(QS), an additional scheme based on electronic noise is derived, and a comparative analysis for
increasing prime lengths is made. We observed that the QS significantly outperforms the classical
scheme for small prime generation, where increases up to 585.0% in the diversity of unique primes
obtained are seen. Moreover, we propose a length-agnostic statistical test for prime number sequences
and apply it to the output of the uniformized randomness source, which was successful in revealing
underlying biases in the output prime distributions. The resultant sequences were subsequently sub-
mitted to the NIST statistical test suite, where the quantum and classical sources passed, respectively,
86.96% and 45.34% of the total test set applied.

Keywords: random number generation; probable prime numbers; vacuum fluctuations; electronic
noise; Miller–Rabin probability test

1. Introduction

Random Numbers (RNs) are currently an indispensable component of most cryp-
tographic systems since their security fundamentally relies on using unpredictable keys,
nonces, or seeds [1,2]. For example, random prime number generation has been particularly
important given its role in choosing key pairs for public-key cryptographic protocols such as
RSA or ECC [3]. The security of the former, for instance, relies on the difficulty of factoring
a given public modulus n, which is obtained from the product of two large prime integers,
n = pq. The public key, which is used for encryption, consists of the pair (n, e), where e
is an additional public exponent. In turn, this factor e is related to the private exponent d,
which is part of the private key (n, d) used for decryption. The first step to generate these
key pairs is thus randomly selecting the two large prime factors. These should remain secret
and be unpredictable since recovering them would allow an adversary to compute the
private exponent from the public key [4]. Although often overlooked, choosing an adequate
Random Number Generator (RNG) is thus critically important [5]. If an adversary can
predict any future or past outputs with better accuracy than randomly guessing, security
loopholes are introduced even if the cryptographic protocol itself remains secure [6]. As
a result, the traditional approach of employing high throughput deterministic RNGs, the
so-called Pseudorandom Number Generators (PRNGs), for security-critical applications
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seems increasingly unsound [7,8]. Despite the best algorithmic implementations being able
to output uniformly distributed numbers that pass multiple statistical tests, their output is
inherently periodic and thus can be predicted by adversaries with enough computational
resources [9]. In fact, the applicability of cryptanalytic attacks against PRNGs has progres-
sively been made easier by the increasing computational power and novel techniques such
as Machine Learning (ML), which are capable of independently recognizing the correla-
tions in the RNG output [10,11]. More worryingly, they are particularly susceptible to the
insertion of backdoors [12], and weak cryptographic keys have already been found to still
be widely in use due to poorly implemented PRNGs [13]. Although there are alternative
physical implementations that extract randomness from measuring noisy phenomena, most
of these still rely on classical processes such as atmospheric noise [14–16]. Consequently,
they still simply ground their unpredictability on an incomplete description of the physical
system and can potentially present highly correlated outputs [2]. Indeed, recently, a ML
model was found to be successful in increasing the probability of guessing the outcome of
such a RNG whenever the electronic noise source was prominent [11].

These problems are slowly being addressed by the emergence of Quantum Random
Number Generators (QRNGs), which extract randomness from the probabilistic properties of
quantum measurements [2,17]. Unlike the approaches based on classical noise, their random-
ness source is fundamentally unpredictable to any adversary, thus allowing them to yield
information-theoretically provable randomness [18]. In fact, several different schemes have al-
ready been thoroughly explored, such as measuring amplified spontaneous emission [19,20],
phase laser noise [21,22], photon arrival times [23,24], or the quadrature fluctuations of the
optical vacuum state [25–27]. The latter is particularly promising since it can deliver the high
throughput rates of potentially several hundred Gbps seen for more complex implementa-
tions while requiring a simpler homodyne measurement scheme that can be implemented
with off-the-shelf optical devices [28]. Moreover, obtaining the optical vacuum state can
be done, within a reasonable approximation, by simply blocking the impinging optical sig-
nal, which makes it a source more resilient against environmental perturbations [29]. Due
to the lower number of optical components required, these schemes are also more easily
integrated. Despite often sacrificing the achievable throughput due to challenges such as
the presence of dark currents, these compact schemes are essential to achieve commercially
viable implementations [28,30]. This thus lowers their adoption threshold and allows them to
compete against the traditional pseudorandom solutions. Nonetheless, the output statistical
quality of these schemes should not be assumed by default but corroborated by extensive
characterization. In fact, challenges such as guaranteeing a properly balanced detection
or fluctuations in the classical noise floor can lower the available entropy and introduce
security loopholes [31]. Although fully device-independent solutions exist, these rely on
observing loophole-free Bell inequality violations and thus are tendentiously extremely slow
and difficult to implement [32]. This makes them unfeasible for any practical realization, and
thus, implementations at least partially based on trusted devices are widely used. Therefore,
most schemes are still prone to manipulation by an adversary with even partial access to
the entropy source, and their statistical properties can deviate if the expected environmental
conditions change [33].

Given this, surprisingly, few assessments of the applicability of these generation
schemes for random prime number generation have been made [34]. Random prime num-
bers are typically distilled from the output of a deterministic RNG using provable prime
number generation algorithms such as the Shawe–Taylor random prime routine described
in the Digital Signature Standard (FIPS 186-5) [3]. Alternatively, one can sequentially test
different RNs with either primality-proving algorithms, such as the Pocklington and AKS
tests, or probabilistic approaches such as the Miller–Rabin primality test [4,35]. In either
case, the statistical quality of the retrieved prime number sequence is non-trivially impacted
by the chosen RNG. Despite these routines acting as an additional postprocessing layer
and thus masking some input biases, a highly correlated output can still be present when a
compromised randomness source is used [34].
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In this work, we extend the preliminary analysis made in [34] and proceed with
the statistical validation of a probable quantum prime number generator based on raw
homodyne measurements of vacuum quadrature fluctuations. To evaluate the extent to
which the additional classical entropy impacts the statistical quality of the gathered prime
sequences, we additionally perform a comparative analysis with a purely classical entropy
source derived from the proposed vacuum-based QRNG and present the key merit figures
such as the variation in the diversity of prime numbers obtained and the search times for
different prime lengths. Moreover, a length-agnostic statistical validation approach based
on measuring the frequency of observations in an equiprobable binning of the prime output
distribution is proposed, and the resulting sequences are submitted to the NIST statistical
test suite.

This paper is organized into 4 sections. In Section 2, we describe the experimental
QRNG implementation and the additional probabilistic prime-searching algorithm im-
plemented. In Section 3, the output noise from the quantum source is characterized in
comparison with measurements from the classical scheme, and the prime sequences are
statistically validated. Moreover, the key figures of merit for prime number generation are
compared. Finally, in Section 4, a brief conclusion is presented.

2. Materials and Methods

In this study, to assess the impact of classical entropy contributions in the prime
number generation, we have comparatively analyzed two randomness sources exploring
distinct physical phenomena. The first is the proposed quantum scheme, which performs
quadrature measurements of the vacuum state by employing a homodyne detection scheme.
Here, these normally distributed noise contributions are amplified by a Local Oscillator
(LO) that interacts with the vacuum state in a balanced Beam Splitter (BS) [29]. In practice,
the input port of this BS can simply be blocked to obtain a reasonable approximation of
this optical state. Subsequently, the output beams are detected, and their photocurrents are
subtracted. Thus, ideally, only the shot noise remains, whose variance, σ2

Q, is proportional
to the impinging optical power, PLO:

σ2
Q ∝ qR(λ)PLO∆ f , (1)

where q is the electron’s charge, R(λ) the wavelength-dependent responsivity of the
photodetector and ∆ f its bandwidth [31]. Additional classical noise contributions will
also be inevitably present due to factors such as excess relative intensity noise from an
unbalanced detection or the electronic components in the experimental setup. The latter
component was also separately recorded to obtain a second Classical Source (CS) from the
device’s electronic noise. Since the output of the vacuum-based QRNG contains a mixture
of quantum entropy and potentially correlated classical noise contributions, a Randomness
Extractor (RE) layer is typically required. This stage sacrifices a portion of the biased
output sequence, allowing the scheme to achieve information-theoretically secure and
bias-free RNs [18]. Nonetheless, since our goal is to assess the impact that a predominance
of classical noise has on the prime number output, this stage was not implemented. Instead,
we have simply considered the unprocessed output of the quantum scheme. Consequently,
any correlations presented by the classical RNG will also be displayed by the QRNG
implementation, thus allowing us to quantify the impact of the quantum noise source
on the statistical quality of the prime output. We refer to [31] for a complete theoretical
description of the implemented vacuum-based QRNG and derivation of the expected
variances for all the noise sources considered.

2.1. QRNG Implementation

Figure 1 shows a schematic diagram of the implemented experimental vacuum-based
randomness generation scheme. Here, a 1550.92 nm continuous-wave laser tuned at ap-
proximately 11 dBm is used as the LO, while a Variable Optical Attenuator (VOA) (VOA1)
allows the accurate control of its output power. Moreover, a 80/20 BS (BS1) and an Optical
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Power Meter (OPM) are introduced to monitor the input power at the 50/50 BS (BS2),
which was registered at 5.5 mW. A second VOA (VOA2) was additionally used to obtain a
fine-tuned balanced detection scheme. A balanced receiver (WL-BPD1GA) with an output
bandwidth ranging from 300 kHz to 1 GHz was subsequently introduced to detect and sub-
tract the output optical signals. It contains a Transimpedance Amplifier (TIA) with a gain of
3500 V/W that amplifies the resultant electronic signal. Finally, the output measurements
are sampled at 983.04 MSa/s by the Texas Instruments ADS54J60EVM Analog-to-digital
Converter (ADC) module, which has an acquisition range, R, of ±0.95 V and a resolution,
n, of 16 bits.

LO 80%

Figure 1. Experimental setup of the proposed vacuum-based QRNG. The LO interacts with the
vacuum state in a BS (BS2) with its second input port blocked. Its output signals are subsequently
detected in a balanced homodyne detection scheme and amplified by a high-gain TIA. The resulting
signal is then either directly submitted to the prime-searching algorithm or mapped into a uniform
distribution before a set of 24 Miller–Rabin primality tests is applied.

The digitization of the noise signal also introduces an additional quantization noise
variance that can be determined as δ2

12 , where δ = R
2(n−1) is the bin width of the ADC [27].

Given these experimental conditions, an additional noise variance of 7× 10−5 mV2 can
be expected. Moreover, as specified by the Nyquist sampling theorem, the noise signal
will not be accurately recovered when its bandwidth is larger than half the sampling
frequency. Despite this, here, this condition should not be obeyed since, given a finite signal
bandwidth, any samples taken would necessarily be highly correlated. In fact, under an
ideal TIA response, maximally uncorrelated measurements are only obtained when the
sampling frequency, fs follows [36]:

fs =
2∆ f

j
, ∀j ∈ N, (2)

where ∆ f is the cut-off frequency of the detector’s TIA. Although an optimal sampling rate
was not considered in this implementation, a value lower than 2 GSa/s must nevertheless
be adopted to avoid introducing additional temporal correlations in the homodyne output
signal [34].

To derive the classical randomness source based on the electronic noise measurements,
the LO was simply removed from the experimental setup described, and measurements of
the detector’s electronic noise were recorded. This process also allows us to estimate the
contribution of the classical noise floor to the discretized homodyne signal distribution, M,
and thus quantify the fraction of randomness that can be extracted without compromising
the implementation. A conservative approach is to consider the worst-case conditional
min-entropy, Hmin(M|E), as a lower bound. It quantifies the maximum probability of an
eavesdropper predicting a QRNG outcome, given that the classical noise distribution E
is known with arbitrary precision. Assuming that M and E are independent and follow
identically distributed null-mean Gaussian distributions: [21,37]:

Hmin(M|E) = − log2

[
max

{1
2

[
1 + erf

( emax − R + 3δ
2

σQ
√

2

)]
, erf

( δ

2σQ
√

2

)}]
, (3)
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where R and δ are, respectively, the acquisition range and bin width of the previously
considered ADC module, σQ is the experimentally measured standard deviation of the
quantum noise distribution, and emax is the maximum excursion considered for the clas-
sical noise signal. Here, this parameter was taken as 5σE so that, for any given classical
noise sample, only a low probability, approximately 5.73× 10−7 , of it falling outside the
considered interval [−emax, emax] was observed.

2.2. Prime-Searching Algorithm

Finally, the measurements were submitted to the prime-testing layer, which maps the
output distribution of both schemes into a set of random prime numbers with a given bit
length nprime. Since both randomness sources measure Gaussian-distributed phenomena,
their output distribution will be biased if no further postprocessing is applied. This could
reflect itself on the generation of prime numbers, and thus, their output signals were
also mapped into uniform distributions in an effort to increase their measured entropy.
With that aim, the measurement distributions were divided by an equiprobable binning
algorithm, and 16-bit Gray sequences were attributed to all outcomes falling on a certain
bin [29]. Consequently, uniformly distributed 16-bit RNs are obtained. This step is also
necessary to do a proper comparative analysis of the two sources since the electronic noise
distribution will naturally have a lower variance than the overall homodyne signal, which
includes additional contributions. The CS thus occupies a smaller proportion of the ADC
range and outputs fewer unique codes, which further increases its bias when compared
with the Quantum Source (QS). Nonetheless, to allow an assessment of the impact that this
stage has on the statistical quality of the obtained prime RNs, the scenario where the biased
distributions were directly used has also been considered.

To distill the prime numbers, the 16-bit random output is first converted to its binary
representation. The algorithm then gathers a nprime-bit prime number candidates by parsing
the binary input bitwise until both the Most Significant Bit (MSB) and Least Significant
Bit (LSB) are equal to one [34]. This guarantees that the candidate number is odd and has
the expected bit-length. Naturally, in a practical application, where the generation rate
is a major concern, the MSB and LSB can simply be forced to be unitary while gathering
(nprime − 2)-bit binary sequences from the QRNG output. This would greatly increase the
fraction of the output submitted to the primality test and thus decrease the number of
candidate numbers tested until a prime is found.

A sequence of 24 standard Miller–Rabin primality tests is then applied to the candidate
number as defined by the Digital Signature Standard [3]. Given that a RE layer was
not implemented, the random basis required for each test iteration was obtained from a
Mersenne Twister PRNG. This avoids having to further limit the number of candidate
numbers submitted and guarantees the statistical significance of the primality test even if
correlations exist in the QRNG output. Given the sequence of probabilistic primality tests
applied, the expected probability of false positives for this prime generator can be calculated
as 4−24, thus standing at 3.55× 10−15 For this work, in order to balance between accuracy
and algorithmic speed, a compromise was made in selecting this value. Nevertheless, a
longer sequence of primality tests should be included to meet the security standards set for
cryptographic applications such as RSA key generation [3].

In this work, we have chosen this approach of probabilistic primality testing due to,
despite introducing the possibility of false positives, being much faster than deterministic
algorithms, thus making the generation of large prime numbers feasible. Disregarding the
test algorithmic complexity, a lower bound for the theoretically possible prime generation
rate of this scheme, N, can be given by taking the asymptotic approximation for the
prime-counting function, π(x) ≈ x

log x [4], yielding:

N(in primes/s) ≈ G
2

nprime − 2
nprime(nprime − 1) log 2

(4)



Appl. Sci. 2023, 13, 12619 6 of 18

where G is the maximum throughput of the implementation in bit/s. This yields a reason-
able approximation for G � nprime. The real performance is naturally much lower since it
depends on the computational power available and decreases with the O(24 log3 nprime)
algorithmic complexity of the primality test [4].

3. Results and Discussion

A sequence of 1 G noise samples was acquired for each of the randomness sources
considered and used in the noise characterization presented in Section 3.1. As previously
mentioned, each of these datasets was then considered in two different scenarios: directly
in its biased form or after mapping them into a uniform distribution. By taking them in
their binary representation, four distinct sequences of random bits were obtained. For each
case, only the first 1 GB was submitted to the prime-searching algorithm. Consequently,
in all cases, the segment of binary data used in prime number generation directly results
from the first 500 M acquired samples from the respective noise source. All the described
postprocessing was implemented on an Intel i9-10900k Central Processing Unit (CPU) for
increasingly large prime numbers. To assess the performance variation of the scheme, the
algorithm was implemented for prime lengths of 32, 64, 128, 256, and 512 bits. Given the
fixed size of its binary input, the total amount of prime numbers yielded by the algorithm
will decrease with the prime length. Consequently, when directly comparing the figures of
merit obtained for different prime lengths, only the first 10 M prime numbers of each case
were considered.

3.1. Noise Characterization

In the conditions previously described, a Quantum-to-classical Noise Ratio (QCNR) of
at least 11.7 dB was always observed, which highlights the high noise clearance obtained.
Over 1× 109 samples, a classical noise floor of 1.04× 10−6 V2 was evaluated, while an
average variance of 1.64× 10−5 V2 was seen for the homodyne signal. As can be seen
in Figure 2a, both noise sources follow the expected null-mean Gaussian distribution.
After applying the binning algorithm, as can be seen in Figure 2b, these output signals
appear to be successfully mapped to the same set of output codes. Nonetheless, both
sets seem to significantly deviate from the theoretically expected uniform distribution,
whose probability density function is represented by the dashed line. This is additionally
corroborated by the fact that both datasets conclusively fail a Chi-square goodness-of-fit test
with null p-values, thus rejecting the null hypothesis that the measurements observed arise
from a uniform distribution. Consequently, we verify that the simple binning algorithm is
not completely successful in suppressing all the underlying biases of the raw RNG output.
This illustrates the importance of implementing the RE layer in a fully fledged practical
application. Despite this, the CS seems to present a greater deviation than the raw QRNG
output, which may be a consequence of the increased entropy introduced by the QS.

In Figure 3a,b, the normalized autocorrelation coefficients for 10 M measurements
calculated over a delay of 200 samples can be seen, respectively, for the raw and uniformized
dataset. For a sequence of this size, these values should be normally distributed around
a null average value with a standard deviation of 3.16× 10−4 , which is here represented
by a black-dashed line. Although the coefficients for the uniformized output stay within
the expected standard deviation in both scenarios, this clearly contrasts with the case
seen for the raw sequences presented in Figure 3a. Here, the QS clearly shows significant
correlations for delays up to 60 samples, which can be mostly attributed to the TIA [36].
Meanwhile, we confirm the highly correlated nature of the CS output, which clearly shows
the unreliability of using electronic noise for randomness generation. Consequently, we
expect the raw CS to perform significantly worse at prime number generation.
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Figure 2. Distribution of 100 M samples of homodyne noise and classical noise taken (a) before
and (b) after the binning algorithm was applied. This equiprobable binning maps both Gaussian
distributions to the same output space. The black-dashed line represents the theoretical expected
probability density function.
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Figure 3. Autocorrelation coefficients for 10 M classical and homodyne noise samples, calculated
before (a) and after (b) the binning algorithm was applied. The black-dashed line represents the
theoretical standard deviation expected.

Although the RE layer was not implemented, a quantum min-entropy of 8.39 bit
was calculated for the QRNG implementation through the evaluation of Equation (3).
At the chosen sampling rate, an information-theoretically secure implementation would
support a maximum output rate of approximately 8.25 Gbps. This high throughput allows
the implementation of a fast prime generation scheme. For example, as can be assessed
through Equation (4), a theoretical prime generation rate of 180.0 M primes per second
could be expected for 32-bit primes. Naturally, this does not consider the algorithmic
complexity of the prime-testing layer, and significantly lower rates would be seen in a
real-time implementation. Moreover, as expected, this rate decreases for prime numbers
with longer bit-lengths since, according to the prime number theorem, the density of primes
for any given value x is asymptotically 1

log(x) [4]. Consequently, the probability of the RNG
outputting a prime number decreases for larger bit sizes. For example, for a length of
512 bit, the expected output rate is 11.6 M primes per second.
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3.2. Figures of Merit

Given the input noise previously characterized, the total number of primes found over
the entire 1 GB dataset for each of the scenarios considered is represented in Figure 4a. Here,
the solid line represents a lower bound for the total number of primes found estimated
through Equation (4). Here, it should be noted that the total number of primes found
should asymptotically approximate this bound for increasing bit-lengths in agreement with
the approximation taken for the prime-counting function in Section 2.2. As theoretically
expected, this figure consistently decreases for larger prime lengths but remains relatively
constant across the four scenarios for each prime length. A notable exception can be seen
for the 32-bit prime output. Here, the normally distributed sources yield significantly fewer
numbers than the uniformized scenarios. In fact, for the raw CS and QS cases, a total
of 187.9 M and 191.7 M numbers were, respectively, obtained, representing decreases of
3.89% and 1.94% when compared with the average of 195.5 M seen across the uniformized
scenarios. This reduction can naturally be explained by the biased input distribution of
the raw randomness sources and is consistent with the smaller variance of the CS, which
implies a smaller probability of yielding extreme candidate numbers.

Despite this, this performance difference is not seen in the time that it takes to find
each prime, which stays consistent across the four datasets considered. Instead, the search
time exponentially increases with the prime length as described by the decreasing genera-
tion rate, expressed in Equation (4), and the algorithmic complexity of the Miller–Rabin
primality test. Figure 4b clearly illustrates this. For instance, although finding each prime
took an average of 108.8 µs across all cases considered, 1019.2 µs were necessary for a length
of 512 bit, highlighting the challenge of achieving physical RNG schemes able to deliver
prime lengths suitable for cryptographic applications.
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Figure 4. (a) Total number of primes found, and (b) the respective average search time required, with
increasing prime sizes for each of the randomness sources considered. In the former, the solid line
represents the estimated lower bound for the total number of prime numbers generated. All the
values obtained are additionally represented for each case.

A more relevant figure of merit than the overall number of primes obtained is the
diversity of the prime output sequences since it allows the identification of a prevalence
of repeated outputs. Here, to allow a comparison between all sources and prime lengths
considered, we have taken 10 M prime numbers from each case and compared the number
of unique values. In fact, while for larger primes, every output is unique across all cases
considered, this is not true for the 32 and 64-bit lengths. As seen in Figure 5a, the diversity
of primes is particularly low for the 32-bit case, where the number of unique values is only
a small fraction of the total. As with what was seen in the overall number of primes, for
the unprocessed randomness sources, this observation can be expected since, due to the
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normally distributed input noise, certain ADC codes have a higher probability of being
observed. For smaller primes, which are constituted from fewer samples, this significantly
reduces the diversity of candidate numbers seen, and thus, the probability of observing
repeated prime numbers increases. This is obviously more easily observed in the 32-bit
case, where every candidate number is only obtained from 2 ADC samples. However, the
same phenomena can be seen for the 64-bit prime sequence represented in Figure 5b.
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Figure 5. Number of unique primes observed for each of the randomness sources considered. Values
were evaluated for 10 M primes with lengths of (a) 32 bits and (b) 64 bits. Additionally, all the values
obtained are represented for each case.

The uncorrelated nature of the QS shows here an immediate advantage, yielding
approximately 827.5% more unique RNs than the classical case. In fact, this difference
cannot be explained by the higher noise variance of the homodyne signal. Although
uniformizing the input noise clearly increases the diversity of primes for the classical
scheme, the uniformized QS still outperforms it by an order of magnitude. Indeed, we
observe an additional gain of 585.0% that cannot be solely attributed to the biased
distribution of the unprocessed randomness sources. Nevertheless, at least for the 32-bit
case, the diversity of primes remains low even for the uniformized QS, confirming the
underlying bias revealed in Section 3.1 for both sources considered. Given that, in reality, the
QS is a mixture of quantum noise and classical contributions, these can also be attributed to
the CS. Despite this, it would be important to assess this figure of merit after implementing
an adequate RE layer.

For completeness, in Table 1, we also present the variation in the diversity of prime
numbers taken for the entire 1 GB total number of primes generated across different noise
sources, which are also reflected in the values calculated. Here, the behavior previously
described can still be observed, and, notably, the diversity variation for the 64-bit case is
much more pronounced than in the first 10 M values. Finally, it should be noted that, in
total, the raw CS yielded only 0.056% of the entire set of 32-bit prime numbers. On the
other hand, both the QS and the uniformized CS were much more successful, generating
approximately 0.53% of all possible outcomes. Meanwhile, the uniformized QS showed
an even greater performance increase, outputting nearly 5% of all 32-bit prime numbers,
which clearly illustrates its superiority.
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Table 1. Difference (expressed in %) in the diversity of prime numbers found, when compared with
the CS and uniformized CS cases, for the QS, uniformized CS, and uniformized QS schemes. In each
case, all the prime numbers found in the entire 1 GB dataset were considered. Data from [34].

Prime Length
(Bit)

QS
(CS)

Uniformized CS
(CS)

Uniformized QS
(CS)

Uniformized QS
(Uniformized CS)

32 890.7 837.1 8749.0 844.3
64 53.7 33.4 54.0 15.5

3.3. Statistical Validation

As a simple assessment of the statistical quality of the prime number sequences
obtained, the distribution of 10 M samples was plotted for increasing lengths in each of the
four cases considered. To illustrate these results, the 32-bit prime output is represented for
the CS and QS cases, respectively, in Figure 6a,b. The distributions seen for all other lengths
evaluated can be found in Figure A1 from Appendix A. As can be seen, the distribution
significantly improves after applying the binning algorithm and uniformizing the input
noise. In fact, both the raw CS and QS distributions appear to be clustered around certain
values in the domain of possible outcomes, presenting prominent peaks in the number of
counts. Meanwhile, the uniformized sources approach the desired uniform distribution
among all possible outcomes. As seen in Figure A1, this behavior remains remarkably
consistent across all prime lengths, with the outcome distribution following the same
recognizable pattern. Given this, the raw noise sources appear to not be suitable for safe
prime number generation and will be excluded from the following analysis. Additionally,
as is exemplified in Figure 6c, we see an additional improvement of the prime distribution
when the QS is considered .
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Figure 6. Cont.
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Figure 6. Representative output distribution of 10 M 32-bit prime numbers for the (a) CS and
(b) implemented vacuum-based QS both in the raw and uniformized scenarios. In (c), the 32-bit
prime distributions for the uniformized sources are highlighted.

3.4. Length-Agnostic Statistical Validation

In this section, we present a length-agnostic approach to assess the statistical quality of
the prime RNG output based on observing the probability of measurements falling below a
given threshold. Since prime numbers are not uniformly distributed in the set of natural
numbers N, searching for the presence of patterns in the RNG output is not a trivial task.
Statistical test suits, such as the one from NIST [1], typically certify randomness by expect-
ing uniformly distributed sequences and simply test for deviations from this assumption.
Moreover, for larger prime lengths, collecting and testing a sufficiently representative se-
quence can quickly become unfeasible due to the vast number of possible outcomes and the
computational precision required to represent these values. Most statistical evaluations will
be increasingly complex for larger prime lengths, making their implementation unfeasible.

Nonetheless, it should be possible to establish a threshold, pth, such that any given
n-bit prime distribution can be mapped into two equiprobable bins, each containing half of
all possible outcomes. An unbiased prime RNG should then yield a uniformly distributed
binary sequence that can be tested by a randomness test suite. Unfortunately, it is not
feasible to calculate the exact value of the prime-counting function, π(x), for any arbitrary
x. Instead, lower and upper bounds, πmin, max(x), must be established [38]:

π(x) ≥ x
log x

(
1 +

1
log(x)

+
1.8

log2(x)

)
for x ≥ 32299

π(x) ≤ x
log x

(
1 +

1
log(x)

+
2.51

log2(x)

)
for x ≥ 355991.

(5)

Since π(x) is not a bijective function, pth will also have to be estimated and thus
presents associated uncertainty bounds, pmin, max

th . For any k = π(x) [39]:

pk < k
(

log(k) + log log(k)− 1 +
log log(k)− 2

log(k)
− (log log(k))2 − 6 log log(k) + 10.667

2 log2(k)

)
for x ≥ 46254381

pk > k
(

log(k) + log log(k)− 1 +
log log(k)− 2

log(k)
− (log log(k))2 − 6 log log(k) + 11.321

2 log2(k)

)
for x ≥ 2.

(6)

Consequently, given a certain probability r that a n-bit prime number is below pth, the
expected interval for the number of measurements below the threshold, Imin, max, can be
estimated through Equation (5):
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Imin, max = (1− r)πmin, max(2n−1) + rπmin, max(2n − 1). (7)

Since there is uncertainty in determining pth, there is also a maximum expected
interval for the proportion of measurements below the threshold, rmin, max, which can be
numerically calculated using the bounds in Equation (6):

rmin, max =
πmin, max(pmin, max

Imin, max
)− πmax, min(2n−1)

πmax, min(2n − 1)− πmax, min(2n−1)
. (8)

After dividing the distribution of number primes, finding a proportion of outcomes
outside the calculated probability interval, rmin, max, is a strong indicator that the sequence
under test is biased. Moreover, since the output measurements are mapped into binary
sequences, this approach has the advantage of not increasing in complexity for larger prime
lengths, which allows the statistical validation of all prime lengths considered.

Here, we have applied this mapping, with a threshold probability of 0.5 , to the output
of the uniformized CS and QS. In Figure 7a, the normalized autocorrelation coefficients
for the binary threshold values of 10 M 32-bit prime numbers are shown. As can be seen,
no persisting correlations were found for either source. The same is seen in the correlation
analyses for all other lengths, which can be found in Figure A2 from Appendix A. Addi-
tionally, the proportion of measurements that fall below the equiprobable threshold was
calculated for increasing lengths, as shown in Figure 7b. Here, the theoretically expected
Confidence Interval (CI), given by Equation (8), are represented by full lines. Nonetheless,
since only 10 M samples were evaluated, its 99% binomial CI was also calculated for each
of the probability bounds. As can be seen, all the obtained values appear outside the
acceptable interval. Consequently, we are forced to conclude that the prime RNG fails
this particular statistical test for all the cases that were considered. Given that a single
assessment was made, additional test runs are necessary to assess the statistical significance
of this result. Nonetheless, this indicates an unbalanced dataset where the proportions of
0’s and 1’s in the binary sequences are significantly different. In practice, this means that the
prime generation of the implemented RNG is slightly unbalanced, with more values being
consistently outputted below the calculated threshold even for the larger prime lengths.
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Figure 7. (a) Normalized autocorrelation coefficients for 10 M threshold values for the 32-bit uni-
formized sources. The black-dashed line represents the theoretical standard deviation expected.
(b) Proportion of the 10 M samples that fall below the equiprobable threshold. Full lines represent the
theoretical maximum expected interval, while black-dashed lines represent its 99% CI.

Finally, to conclusively determine the significance of this result, a 100 Mbit binary
sequence obtained from the 32-bit prime output was submitted to NIST’s statistical test
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suite [1]. These results are represented in Table A1 from Appendix B, both for the uni-
formized CS and QS. Here, each binary sequence was subdivided into bitstreams of 1 Mbit
and subsequently submitted to the statistical tests. As can be seen, the output conclusively
fails most of the applied evaluations, which confirms our prior assessment. In fact, we
verify that both sources decisively fail the Frequency test, which evaluates a very similar
metric to the previous analysis. Notably, although it also yields a failure, the QS performed
slightly better in the OverlappingTemplate and NonoverlappingTemplate tests. In fact, here, 83
and 73 sequences, respectively, successfully passed these tests, which is contrasted with the
57 and 31 sequences that yielded a positive result for the CS. As described in [1], these two
tests assess the occurrence of predetermined bit patterns, which could indicate that the QS
output has higher entropy. Moreover, although the QS ultimately fails some test runs and,
consequently, is rejected by the overall test, it is relevant to highlight that the vacuum-based
QRNG performed significantly better than the classical scheme when considering all test
iterations applied. In fact, the QS successfully passed 140 tests of the 161 applied, yielding
a success rate of 86.96%. Meanwhile, the CS only passed 45.34% of the tests considered
by the statistical suite. Despite this, the failures observed are very significant since they
highlight serious flaws in the prime RNG implemented. Although it is hard to give a con-
clusive reason for this result, a strong candidate is the aforementioned lack of RE layer. The
temporal correlations introduced by the TIA and the classical noise floor clearly manifest
themselves on the prime number sequences obtained since, as previously verified, the
prime-searching algorithm is unable to suppress them. In this way, it would be important
to reassess these figures after implementing this essential step. Moreover, additional data
should be gathered to allow more extensive statistical validation. This would allow us to
conclusively determine the viability of the implemented vacuum-based QRNG for prime
number generation.

4. Conclusions

In conclusion, we have implemented a probabilistic prime quantum number genera-
tion scheme based on homodyne measurements of vacuum fluctuations passed through a
set of 24 Miller–Rabin primality tests. For a prime length of 512 bits, we expect a theoretical
maximum throughput of 11.6 M primes per second with a probability of outputting a
composite number of only 3.55× 10−15 . By removing the QS, a second classical generation
scheme based on electronic noise was obtained, and the two schemes were compared.
Although the overall number of primes does not depend on the noise source chosen, the
quantum scheme clearly outperforms the CS at small prime generation. For the set of
32-bit primes, increases in the diversity of primes up to 585.0% are shown, which cannot be
explained by the bias of the input distribution. In fact, the quantum source was shown to
yield approximately 5% of all possible prime outcomes, outperforming the classical RNG by
an order of magnitude. Moreover, we revealed that strong biases in the input distribution
are clearly reflected in the prime output distribution, and although these differences are less
prominent for larger lengths, the output distributions were also shown to consistently im-
prove for the QS. Finally, a novel length-agnostic statistical test for prime number sequences
based on establishing interval bounds for the expected frequency of measurements in an
equiprobable binning of the prime distribution was proposed and applied to the output
of the uniformized sources. Using the known bounds for the prime-counting function,
the proportion of prime numbers below any given threshold can be bounded such that
observations outside this range are witnesses of an unbalanced prime distribution. This
approach allows the direct validation of a sequence of prime numbers with arbitrary length
instead of relying on assessing the underlying RNG, which would not consider potential
biases introduced by the prime-searching algorithm. This analysis was able to reveal the
underlying correlations in the prime output of both sources, which remain present due
to the lack of a RE layer. The resultant binary sequences thus conclusively fail the tests
contained in the NIST statistical test suite, with only 86.96% and 45.34% of the evaluations
being, respectively, passed by the QS and CS. In fact, out of the 161 evaluations applied, the
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QS source passed 140 tests, whereas the CS had a pass rate of 73. This nevertheless shows a
significant difference between the two cases. Finally, to improve the statistical significance
of this analysis, it would be important to gather additional datasets for each of the cases
considered. This would allow us to more precisely estimate the key merit figures by estab-
lishing their respective confidence intervals, as well as apply a more extensive statistical
validation. Moreover, to conclusively validate the viability of the vacuum-based imple-
mentation, it is fundamental to reassess all these cases after implementing the required
RE stage.
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Appendix A. Statistical Validation

This appendix presents the output prime distributions and autocorrelation analyses
for increasing prime lengths from the statistical validation discussed in Sections 3.3 and 3.4
that were not included in the main text. Figures A1 and A2 show the respective results.
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Figure A1. Output distribution of 10 M prime numbers for the (a) 64-bit CS, (b) 64-bit QS, (c) 128-bit
CS, (d) 128-bit QS, (e) 256-bit CS, (f) 256-bit QS, (g) 512-bit CS, and (h) 512-bit QS. In each case, the
uniformized source was also represented.
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Figure A2. Autocorrelation coefficients for 10 M threshold values for the uniformized (a) 64-bit,
(b) 128-bit, (c) 256-bit, and (d) 512-bit sources. For each case, both the CS and QS are represented and
the dashed line represents the theoretically expected standard deviation.

Appendix B. Results from NIST’s Statistical Test Suite

This appendix summarizes the results of the randomness tests from the NIST statistical
test suite [1], which are represented in Table A1.

Table A1. NIST’s statistical test suite results for the default α = 0.01 and a data size of 100 Mbit
(100 bit streams of 1 Mbit). The minimum pass rate is 96/100 and, when multiple values exist, the
smallest is represented. For tests with multiple p-values, a Kolmogorov-Smirnov (KS) test was applied
to obtain a representative value.

Statistical Test
Uniformized CS Quantum QS

p-Value Proportion Result p-Value Proportion Result

Frequency 0.000000 0/100 FAILED 0.000000 0/100 FAILED
BlockFrequency 0.000000 76/100 FAILED 0.000000 93/100 FAILED

CumulativeSums 0.000000 0/100 FAILED 0.000000 0/100 FAILED
Runs 0.000000 0/100 FAILED 0.000000 0/100 FAILED

LongestRun 0.010988 97/100 PASSED 0.000082 93/100 FAILED
Rank 0.304126 99/100 PASSED 0.262249 99/100 PASSED
FFT 0.262249 98/100 PASSED 0.028817 100/100 PASSED

NonOverlappingTemplate 0.000000 31/100 FAILED 0.000000 73/100 FAILED
OverlappingTemplate 0.000000 57/100 FAILED 0.000000 81/100 FAILED

Universal 0.319084 98/100 PASSED 0.304126 98/100 PASSED
Approximate entropy 0.000000 3/100 FAILED 0.000000 90/100 FAILED

Serial 0.500000 92/100 FAILED 0.704474 100/100 PASSED
LinearComplexity 0.319084 98/100 PASSED 0.319084 99/100 PASSED
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