Three-Dimensional Surface Reconstruction from Point Clouds Using Euler’s Elastica Regularization
Abstract
:1. Introduction
2. Variational Image 3D Reconstruction Theory
3. Proposed Variational Method
4. Evaluation Metrics
5. Results
5.1. Experiments for 2D Case
5.2. Experiments for 3D Case
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalkiewicz, M.; Pontes, J.K.; Jack, D.; Baktashmotlagh, M.; Eriksson, A. Deep level sets: Implicit surface representations for 3D shape inference. arXiv 2019, arXiv:1901.06802. [Google Scholar]
- Park, J.J.; Florence, P.; Straub, J.; Newcombe, R.; Lovegrove, S. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Yu, X.; Tang, L.; Rao, Y.; Huang, T.; Zhou, J.; Lu, J. Point-BERT: Pre-Training 3D Point Cloud Transformers With Masked Point Modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 19313–19322. [Google Scholar]
- De Silva Edirimuni, D.; Lu, X.; Shao, Z.; Li, G.; Robles-Kelly, A.; He, Y. IterativePFN: True Iterative Point Cloud Filtering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 13530–13539. [Google Scholar]
- Williams, F.; Schneider, T.; Silva, C.; Zorin, D.; Bruna, J.; Panozzo, D. Deep geometric prior for surface reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10130–10139. [Google Scholar]
- Wang, S.; Cai, G.; Cheng, M.; Junior, J.M.; Huang, S.; Wang, Z.; Su, S.; Li, J. Robust 3D reconstruction of building surfaces from point clouds based on structural and closed constraints. ISPRS J. Photogramm. Remote Sens. 2020, 170, 29–44. [Google Scholar] [CrossRef]
- Ma, B.; Liu, Y.S.; Han, Z. Reconstructing surfaces for sparse point clouds with on-surface priors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 6315–6325. [Google Scholar]
- Huang, Z.; Wen, Y.; Wang, Z.; Ren, J.; Jia, K. Surface Reconstruction from Point Clouds: A Survey and a Benchmark. arXiv 2022, arXiv:2205.02413. [Google Scholar]
- Edelsbrunner, H.; Mücke, E. Three-dimensional alpha shapes. ACM Trans. Graph. 1994, 13, 43–72. [Google Scholar] [CrossRef]
- Amenta, N.; Bern, M.; Kamvysselis, M. A new Voronoi-based surface reconstruction algorithm. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 19–24 July 1998; pp. 415–421. [Google Scholar]
- Xu, L.; Lu, C.; Xu, Y.; Jia, J. Image smoothing via L 0 gradient minimization. In Proceedings of the 2011 SIGGRAPH Asia Conference, Hong Kong, China, 12–15 December 2011; pp. 1–12. [Google Scholar]
- Zhao, H.K.; Osher, S.; Fedkiw, R. Fast surface reconstruction using the level set method. In Proceedings of the IEEE Workshop on Variational and Level Set Methods in Computer Vision, Vancouver, BC, Canada, 7–12 July 2001; pp. 194–201. [Google Scholar]
- Ye, J.; Bresson, X.; Goldstein, T.; Osher, S. A fast variational method for surface reconstruction from sets of scattered points. CAM Rep. 2010, 10. [Google Scholar]
- Liang, J.; Park, F.; Zhao, H. Robust and efficient implicit surface reconstruction for point clouds based on convexified image segmentation. J. Sci. Comput. 2013, 54, 577–602. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Yu, R.; Sun, J.; Kim, J. Surface reconstruction from unorganized points with l0 gradient minimization. Comput. Vis. Image Underst. 2018, 169, 108–118. [Google Scholar] [CrossRef]
- Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49. [Google Scholar] [CrossRef]
- Bresson, X.; Esedoglu, S.; Vandergheynst, P.; Thiran, J.; Osher, S. Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 2007, 28, 151–167. [Google Scholar] [CrossRef]
- Zhao, H.; Osher, S.; Merriman, B.; Kang, M. Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 2000, 80, 295–314. [Google Scholar] [CrossRef]
- Li, C.; Xu, C.; Gui, C.; Fox, M. Level set evolution without re-initialization: A new variational formulation. In Proceedings of the CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 430–436. [Google Scholar]
- Duan, J.; Haines, B.; Ward, W.O.; Bai, L. Surface reconstruction from point clouds using a novel variational model. In Proceedings of the International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK; 2015; pp. 135–146. [Google Scholar]
- Duan, J. Variational and PDE-Based Methods for Image Processing. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2018. [Google Scholar]
- He, Y.; Kang, S.H.; Liu, H. Curvature regularized surface reconstruction from point clouds. SIAM J. Imaging Sci. 2020, 13, 1834–1859. [Google Scholar] [CrossRef]
- Chen, D.; Cohen, L.D.; Mirebeau, J.M.; Tai, X.C. An elastica geodesic approach with convexity shape prior. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 6900–6909. [Google Scholar]
- Liu, H.; Tai, X.C.; Kimmel, R.; Glowinski, R. Elastica Models for Color Image Regularization. arXiv 2022, arXiv:2203.09995. [Google Scholar] [CrossRef]
- Liu, H.; Tai, X.C.; Kimmel, R.; Glowinski, R. A color elastica model for vector-valued image regularization. SIAM J. Imaging Sci. 2021, 14, 717–748. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Guo, Z.; Wu, B.; Du, S. Image multiplicative denoising using adaptive Euler’s elastica as the regularization. J. Sci. Comput. 2022, 90, 69. [Google Scholar] [CrossRef]
- Liu, H.; Tai, X.C.; Kimmel, R.; Glowinski, R. Elastica models for color image regularization. SIAM J. Imaging Sci. 2023, 16, 461–500. [Google Scholar] [CrossRef]
- Chan, T.; Esedoglu, S.; Nikolova, M. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 2006, 66, 1632–1648. [Google Scholar] [CrossRef]
- Tai, X.C.; Duan, J. A simple fast algorithm for minimization of the elastica energy combining binary and level set representations. Int. J. Numer. Anal. Model 2017, 14, 809–821. [Google Scholar]
- Song, J.; Pan, H.; Jieyu, D.; Wei, W.; Pan, Z. New dual method for elastica regularization. PLoS ONE 2022, 17, e0261195. [Google Scholar] [CrossRef]
- Shen, J.; Kang, S.H.; Chan, T.F. Euler’s elastica and curvature-based inpainting. SIAM J. Appl. Math. 2003, 63, 564–592. [Google Scholar] [CrossRef]
- Matsutani, S. Euler’s Elastica and Beyond. J. Geom. Symmetry Phys. 2010, 17, 45–86. [Google Scholar]
- Tai, X.C.; Hahn, J.; Chung, G.J. A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 2011, 4, 313–344. [Google Scholar] [CrossRef]
- Zhu, W.; Tai, X.C.; Chan, T. Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 2013, 57, 414–438. [Google Scholar] [CrossRef]
- Tsai, Y.; Cheng, L.; Osher, S.; Zhao, H. Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 2003, 41, 673–694. [Google Scholar] [CrossRef]
- Zhao, H. A fast sweeping method for eikonal equations. Math. Comput. 2005, 74, 603–627. [Google Scholar] [CrossRef]
Chan–Vese | GAC | TV | TV-L1 | TV-B | Ours | |
---|---|---|---|---|---|---|
Point Cloud 1 | 1.5337 | 1.5926 | 1.4644 | 1.3292 | 1.1669 | 1.1278 |
Point Cloud 2 | 1.4936 | 1.7140 | 2.1126 | 1.6273 | 1.2777 | 1.2256 |
Chan–Vese | GAC | TV | TV-L1 | TV-B | Ours | ADMM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Iter | Times | Iter | Times | Iter | Times | Iter | Times | Iter | Times | Iter | Times | Iter | Times | |
Bunny | 43rd | 2.45 s | 3rd | 14.14 s | 46th | 22.51 s | 28th | 5.23 s | 28th | 9.19 s | 7th | 1.97 s | 29th | 24.42 s |
Hand | 43rd | 12.04 s | 3rd | 77.46 s | 30th | 56.67 s | 23rd | 22.11 s | 13th | 22.59 s | 17th | 24.16 s | 20th | 103.71 s |
10th Error | 20th Error | 30th Error | 40th Error | 50th Error | |
---|---|---|---|---|---|
Bunny | 41.36 | 40.90 | 39.19 | 39.32 | 39.34 |
Hand | 67.20 | 67.15 | 67.12 | 67.10 | 67.09 |
Chan–Vese | GAC | TV | TV-L1 | TV-B | Ours | |
---|---|---|---|---|---|---|
Bunny | 0.91 | 0.92 | 1.00 | 0.98 | 0.46 | 0.00 |
Hand | 1.00 | 0.94 | 0.74 | 0.83 | 0.40 | 0.00 |
Angel | 0.64 | 0.47 | 0.81 | 1.00 | 0.32 | 0.00 |
Armadillo | 0.66 | 0.40 | 0.14 | 0.36 | 1.00 | 0.00 |
Buda | 0.66 | 0.75 | 1.00 | 0.83 | 0.47 | 0.00 |
Dragon | 0.68 | 0.58 | 0.79 | 0.74 | 1.00 | 0.00 |
Head | 0.88 | 0.78 | 1.00 | 0.85 | 0.51 | 0.00 |
Horse | 0.36 | 0.31 | 0.95 | 1.00 | 0.00 | 0.01 |
Lucy | 1.00 | 0.00 | 0.39 | 0.46 | 0.11 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Pan, H.; Zhang, Y.; Lu, W.; Ding, J.; Wei, W.; Liu, W.; Pan, Z.; Duan, J. Three-Dimensional Surface Reconstruction from Point Clouds Using Euler’s Elastica Regularization. Appl. Sci. 2023, 13, 12695. https://doi.org/10.3390/app132312695
Song J, Pan H, Zhang Y, Lu W, Ding J, Wei W, Liu W, Pan Z, Duan J. Three-Dimensional Surface Reconstruction from Point Clouds Using Euler’s Elastica Regularization. Applied Sciences. 2023; 13(23):12695. https://doi.org/10.3390/app132312695
Chicago/Turabian StyleSong, Jintao, Huizhu Pan, Yuting Zhang, Wenqi Lu, Jieyu Ding, Weibo Wei, Wanquan Liu, Zhenkuan Pan, and Jinming Duan. 2023. "Three-Dimensional Surface Reconstruction from Point Clouds Using Euler’s Elastica Regularization" Applied Sciences 13, no. 23: 12695. https://doi.org/10.3390/app132312695
APA StyleSong, J., Pan, H., Zhang, Y., Lu, W., Ding, J., Wei, W., Liu, W., Pan, Z., & Duan, J. (2023). Three-Dimensional Surface Reconstruction from Point Clouds Using Euler’s Elastica Regularization. Applied Sciences, 13(23), 12695. https://doi.org/10.3390/app132312695