Innovative Functional Lactic Acid Bacteria Fermented Oat Beverages with the Addition of Fruit Extracts and Lyophilisates
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials, Microorganisms, and Chemicals
2.1.1. Chemicals
2.1.2. Extracts and Lyophilisates
2.1.3. Microorganisms
2.1.4. Fermented Oat-Based Beverages
2.2. Methods
2.2.1. Antibacterial Activity Assay
2.2.2. Total Phenolic Content Determination
2.2.3. Antioxidant Activity Assay
2.2.4. Microbial Quality Determination
2.2.5. pH Measurements of Oat-Based Fermented Beverages
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Biological Activity of Fruit Extracts and Lyophilisates
3.2. Microbiological Quality and Biological Activity of Fermented OBB
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Transparency Market Research. Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2019–2029; TMR: Albany, NY, USA, 2019. [Google Scholar]
- Karwacka, M.; Ciurzyńska, A.; Lenart, A.; Janowicz, M. Sustainable development in the agri-food sector in terms of the carbon footprint: A Review. Sustainability 2020, 12, 6463. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D.; Lante, A. Insights and Perspectives on Plant-Based Beverages. Plants 2023, 12, 3345. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewicz, Ł.; Drozłowska, E.; Siedlecka, P.; Mężyńska, M.; Bartkowiak, A.; Sienkiewicz, M.; Zielińska-Bliźniewska, H.; Kwiatkowski, P. Development, Characterization, and Bioactivity of Non-Dairy Kefir-Like Fermented Beverage Based on Flaxseed Oil Cake. Foods 2019, 8, 544. [Google Scholar] [CrossRef] [PubMed]
- Verni, M.; Demarinis, C.; Rizzello, C.G.; Baruzzi, F. Design and Characterization of a Novel Fermented Beverage from Lentil Grains. Foods 2020, 9, 893. [Google Scholar] [CrossRef]
- Panghal, A.; Janghu, S.; Virkar, K.; Gat, Y.; Kumar, V.; Chhikara, N. Potential non-dairy probiotic products—A healthy approach. Food Biosci. 2018, 21, 80–89. [Google Scholar] [CrossRef]
- Blandino, A.; Al-Aseeri, M.E.; Pandiella, S.S.; Cantero, D.; Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 2003, 36, 527–543. [Google Scholar] [CrossRef]
- Tolun, A.; Altintas, Z. Medicinal Properties and Functional Components of Beverages. In Functional and Medicinal Beverages; Grumezescu, A.M., Holban, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 235–284. [Google Scholar]
- Umelo, M.C. Production of Malt Flavoured Low-Sugar Drink from Banana (Musa sapientum) Fig Using Amyloglucosidase. Niger. Food J. 2012, 30, 89–94. [Google Scholar] [CrossRef]
- Clemens, R.; Van Klinken, B.J.-W. Oats, more than just a whole grain: An introduction. Br. J. Nutr. 2014, 112, S1–S3. [Google Scholar] [CrossRef]
- McClements, D.J. Development of next-generation nutritionally fortified plant-based milk substitutes: Structural design principles. Foods 2020, 9, 421. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D. The development of fruit-based functional foods targeting the health and wellness market: A review. Int. J. Food Sci. Technol. 2011, 46, 899–920. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Esparza, I.; Bimbela, F.; Gandía, L.M.; Ancín-Azpilicueta, C. Valorization of selected fruit and vegetable wastes as bioactive compounds: Opportunities and challenges. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2061–2108. [Google Scholar] [CrossRef]
- Peng, M.; Tabashsum, Z.; Anderson, M.; Truong, A.; Houser, A.K.; Padilla, J.; Akmel, A.; Bhatti, J.; Rahaman, S.O.; Biswas, D. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1908–1933. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.A.; Rose, D.J.; Stewart, D. Processing of oats and the impact of processing operations on nutrition and health benefits. Br. J. Nutr. 2014, 112, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Londono, D.M.; van’t Westende, W.P.C.; Goryunova, S.; Salentijn, E.M.J.; Van den Broeck, H.C.; Van der Meer, I.M.; Visser, R.G.F.; Gilissen, L.J.W.J.; Smulders, M.J.M. Avenin diversity analysis of the genus Avena (oat). Relevance for people with celiac disease. J. Cereal Sci. 2013, 58, 170–177. [Google Scholar]
- Aadil, R.M.; Roobab, U.; Sahar, A.; Rahman, U.U.; Khalil, A.A. Functionality of bioactive nutrients in beverages. In Nutrients in Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 237–276. [Google Scholar]
- Gwiazdowska, D.; Uwineza, P.A.; Frąk, S.; Juś, K.; Marchwińska, K.; Gwiazdowski, R.; Waśkiewicz, A. Antioxidant, antimicrobial and antibiofilm properties of Glechoma hederacea extracts obtained by supercritical fluid extraction, using different extraction conditions. Appl. Sci. 2022, 12, 3572. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Włodarska, K.; Pawlak-Lemańska, K.; Górecki, T.; Sikorska, E. Classification of commercial apple juices based on multivariate analysis of their chemical profiles. Int. J. Food Prop. 2017, 20, 1773–1785. [Google Scholar] [CrossRef]
- Mabrouki, H.; Duarte, C.M.M.; Akretche, D.E. Estimation of total phenolic contents and in vitro antioxidant and antimicrobial activities of various solvent extracts of Melissa officinalis L. Arab. J. Sci. Eng. 2017, 43, 3349–3357. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Ciska, E.; Pawlak-Lemańska, K.; Chmielewski, J.; Borkowski, T.; Tyrakowska, B. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit. Contam. 2006, 23, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- PN EN 1132:1999; Fruit and Vegetable Juices—Determination of the ph-Value. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Pantelidis, G.E.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G.R. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: In vitro and in vivo Evidences and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Borowska, S.; Brzóska, M.M. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr. Rev. Food Sci. Food Saf. 2016, 15, 982–1017. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Loftus, H.; McAinch, A.J.; Su, X.Q. Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. J. Funct. Foods 2017, 30, 16–29. [Google Scholar] [CrossRef]
- Tamkutė, L.; Vaicekauskaitė, R.; Gil, B.M.; Rovira Carballido, J.; Venskutonis, P.R. Black chokeberry (Aronia melanocarpa L.) pomace extracts inhibit food pathogenic and spoilage bacteria and increase the microbiological safety of pork products. J. Food Process. Preserv. 2021, 45, e15220. [Google Scholar] [CrossRef]
- Sidor, A.; Drożdżyńska, A.; Gramza-Michałowska, A. Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors—An overview. Trends Food Sci. Technol. 2019, 89, 45–60. [Google Scholar] [CrossRef]
- Yang, S.Q.; Wang, D.; Gao, Y.X. Advances in studies on the function and application of Aronia melanocarpa. Food Res. Dev. 2021, 42, 206–213. [Google Scholar]
- Jurendić, T.; Ščetar, M. Aronia melanocarpa products and by-products for health and nutrition: A review. Antioxidants 2021, 10, 1052. [Google Scholar] [CrossRef]
- Ancillotti, C.; Ciofi, L.; Rossini, D.; Chiuminatto, U.; Stahl-Zeng, J.; Orlandini, S.; Furlanetto, S.; Del Bubba, M. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation. Anal. Bioanal. Chem. 2017, 409, 1347–1368. [Google Scholar] [CrossRef]
- Stanys, V.; Bendokas, V.; Rugienius, R.; Sasnauskas, A.; Frercks, B.; Mažeikienė, I.; Šikšnianas, T. Management of anthocyanin amount and composition in genus Ribes using interspecific hybridisation. Sci. Hortic. 2019, 247, 123–129. [Google Scholar] [CrossRef]
- Zorenc, Z.; Veberic, R.; Mikulic-Petkovsek, M. Are processed bilberry products a good source of phenolics? J. Food Sci. 2018, 83, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Fazel Nabavi, S.; Habtemariam, S.; Ahmed, T.; Sureda, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.M. Polyphenolic Composition of Crataegus monogyna Jacq.: From Chemistry to Medical Applications. Nutrients 2015, 7, 7708–7728. [Google Scholar] [CrossRef] [PubMed]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.; Angioni, A.; Dessi, S.; Nejib, M.; Cabras, P. Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.P.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Seabra, R.M.; Silva, B.M. Phenolic profile of Cydonia oblonga Miller leaves. J. Agric. Food Chem. 2007, 55, 7926–7930. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.M.; Seabra, R.M.; Andrade, P.B.; Papadopoulos, K.N. Quince (Cydonia oblonga Miller): An interesting dietary source of bioactive compounds. Food Chem. Res. Dev. 2008, 243–266. [Google Scholar]
- Byczkiewicz, S.; Szwajgier, D.; Cisowska, J.K.; Szczepaniak, O.; Szulc, P.P. Comparative examination of bioactive phytochemicals in quince (Chaenomeles) fruits and their in vitro antioxidant activity. Emir. J. Food Agric. 2021, 33, 293–302. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Guo, X.; Li, T.; Fu, X.; Liu, R.H. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chem. 2017, 221, 997–1003. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Espinosa, M.V.; González-de-Peredo, A.; Espada-Bellido, E.; Ferreiro-González, M.; Toledo-Domínguez, J.J.; Carrera, C.; Palma, M.; Barbero, G.F. Ultrasound-assisted extraction of two types of antioxidant compounds (TPC and TA) from black chokeberry (Aronia melanocarpa L.): Optimization of the individual and simultaneous extraction methods. Agronomy 2019, 9, 456. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.F.; Lim, L.T. Influence of extraction conditions on ultrasound-assisted recovery of bioactive phenolics from blueberry pomace and their antioxidant activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, P.C.; Leclercq, L.; Rossi, J.C.; Desvignes, I.; Hertzog, J.; Fabiano-Tixier, A.S.; Chemat, F.; Schmitt-Kopplin, P.; Cottet, H. Optimizing water-based extraction of bioactive principles of hawthorn: From experimental laboratory research to homemade preparations. Molecules 2019, 24, 4420. [Google Scholar] [CrossRef]
- Sonmez, F.; Sahin, Z. Comparative Study of Total Phenolic Content, Antioxidant Activities, and Polyphenol Oxidase Enzyme Inhibition of Quince Leaf, Peel, and Seed Extracts. Erwerbs-Obstbau 2023, 65, 745–750. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.; O’Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar] [CrossRef]
- Çoklar, H.; Akbulut, M. Effect of sun, oven and freeze-drying on anthocyanins, phenolic compounds and antioxidant activity of black grape (Ekşikara) (Vitis vinifera L.). S. Afr. J. Enol. Vitic. 2017, 38, 264–272. [Google Scholar] [CrossRef]
- Du, H.; Wu, J.; Li, H.; Zhong, P.X.; Xu, Y.J.; Li, C.H.; Ji, K.X.; Wang, L.S. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chem. 2013, 141, 4260–4268. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Lech, K.; Tkacz, K.; Nowicka, P. Influence of different drying methods on the quality of Japanese quince fruit. LWT 2019, 114, 108416. [Google Scholar] [CrossRef]
- Antoniewska, A.; Rutkowska, J.; Pineda, M.M. Antioxidative, sensory and volatile profiles of cookies enriched with freeze-dried Japanese quince (Chaenomeles japonica) fruits. Food Chem. 2019, 286, 376–387. [Google Scholar] [CrossRef]
- Téllez-Pérez, C.; Cardador-Martínez, A.; Tejada-Ortigoza, V.; Soria-Mejía, M.C.; Balderas-León, I.; Alonzo-Macías, M. Antioxidant content of frozen, convective air-dried, freeze-dried, and swell-dried chokecherries (Prunus virginiana L.). Molecules 2020, 25, 1190. [Google Scholar] [CrossRef]
- Thi, N.D.; Hwang, E.S. Effects of drying methods on contents of bioactive compounds and antioxidant activities of black chokeberries (Aronia melanocarpa). Food Sci. Biotechnol. 2016, 25, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia powders obtained by different drying processes. Food Chem. 2013, 141, 2858–2863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Zhang, L.F.; Xu, J.G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Sci. Rep. 2020, 10, 8876. [Google Scholar] [CrossRef] [PubMed]
- Salmanian, S.S.M.A.; Sadeghi Mahoonak, A.R.; Alami, M.; Ghorbani, M. Phenolic content, antiradical, antioxidant, and antibacterial properties of hawthorn (Crataegus elbursensis) seed and pulp extract. J. Agric. Sci. Technol. 2014, 16, 343–354. [Google Scholar]
- Jeong, J.H.; Lee, J.W.; Kim, K.S.; Kim, J.S.; Han, S.N.; Yu, C.Y.; Lee, J.K.; Kwon, Y.S.; Kim, M.J. Antioxidant and antimicrobial activities of extracts from a medicinal plant, sea buckthorn. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 33–38. [Google Scholar] [CrossRef]
- Xiaoyong, S.; Luming, C. Phenolic constituents, antimicrobial and antioxidant properties of blueberry leaves (V5). J. Food Nutr. Res. 2014, 2, 973–979. [Google Scholar] [CrossRef]
- Sandulachi, E.; Cojocari, D.; Balan, G.; Popescu, L.; Ghendov-Moşanu, A.; Sturza, R. Antimicrobial effects of berries on Listeria monocytogenes. Food Nutr. Sci. 2020, 11, 873–886. [Google Scholar] [CrossRef]
- Georgescu, C.; Frum, A.; Virchea, L.I.; Sumacheva, A.; Shamtsyan, M.; Gligor, F.G.; Neli, K.O.; Endre Mathe, E.; Mironescu, M. Geographic variability of berry phytochemicals with antioxidant and antimicrobial properties. Molecules 2022, 27, 4986. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef]
- Nohynek, L.J.; Alakomi, H.L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R.H. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Fitriyanto, N.A.; Lewa, N.; Prasetyo, R.A.; Kurniawati, A.; Erwanto, Y.; Bachruddin, Z. Antibacterial activity of Maja fruit extract against Escherichia coli and its potential as urease inhibitor for reducing ammonia emission in poultry excreta. IOP Conf. Ser. Earth Environ. Sci. 2020, 465, 012006. [Google Scholar] [CrossRef]
- Bahorun, T.; Aumjaud, E.; Ramphul, H.; Rycha, M.; Luximon-Ramma, A.; Trotin, F.; Aruoma, O.I. Phenolic Constituents and Antioxidant Capacities of Crataegus monogyna (Hawthorn) Callus Extracts. Nahr. Food 2003, 47, 191–198. [Google Scholar] [CrossRef]
- Muresan, A.E.; Muste, S.; Petrut, G.; Vlaic, R.A.; Man, S.M.; Muresan, V. New Uses of Hawthorn Fruits in Tonic Wines Technology. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2016, 73, 117. [Google Scholar] [CrossRef] [PubMed]
- Dabija, A.; Codinǎ, G.G.; Ropciuc, S.; Gâtlan, A.M.; Rusu, L. Assessment of the Antioxidant Activity and Quality Attributes of Yogurt Enhanced with Wild Herbs Extracts. J. Food Qual. 2018, 2018, 5329386. [Google Scholar] [CrossRef]
- Herrera, T.; Iriondo-DeHond, M.; Ramos Sanz, A.; Bautista, A.I.; Miguel, E. Effect of Wild Strawberry Tree and Hawthorn Extracts Fortification on Functional, Physicochemical, Microbiological, and Sensory Properties of Yogurt. Foods 2023, 12, 3332. [Google Scholar] [CrossRef] [PubMed]
- Yaneva, T.; Dinkova, R.; Gotcheva, V.; Angelov, A. Modulation of the antioxidant activity of a functional oat beverage by enrichment with chokeberry juice. J. Food Process. Preserv. 2022, 46, e16012. [Google Scholar] [CrossRef]
- Wang, J.; Wei, B.-C.; Wei, B.; Yu, H.-Y.; Thakur, K.; Wang, C.-Y.; Wei, H.-Y. Evaluation of phenolics biotransformation and health promoting properties of blueberry juice following lactic acid bacteria fermentation. Food Sci. Technol. 2023, 43. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Pobiega, K.; Rybak, K.; Synowiec, A.; Woźniak, Ł.; Trych, U.; Gniewosz, M.; Witrowa-Rajchert, D. Changes in Physical and Chemical Parameters of Beetroot and Carrot Juices Obtained by Lactic Fermentation. Appl. Sci. 2023, 13, 6113. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and functional paths of lactic acid bacteria in plant foods: Get out of the labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Szutowska, J.; Gwiazdowska, D.; Rybicka, I.; Pawlak-Lemańska, K.; Biegańska-Marecik, R.; Gliszczyńska-Świgło, A. Controlled fermentation of curly kale juice with the use of autochthonous starter cultures. Food Res. Int. 2021, 149, 110674. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, J.; Fan, L.; Qin, Z.; Chen, Q.; Zhao, L. Antioxidant properties of a vegetable–fruit beverage fermented with two Lactobacillus plantarum strains. Food Sci. Biotechnol. 2018, 27, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A.; Njobeh, P.B.; Mulaba-Bafubiandi, A.F.; Adebiyi, J.A.; Desobgo, Z.S.C.; Kayitesi, E. Optimization of fermentation conditions for ting production using response surface methodology. J. Food Process. Preserv. 2018, 42, e13381. [Google Scholar] [CrossRef]
- Awika, J.M. Sorghum: Its unique nutritional and health-promoting attributes. In Gluten-Free Ancient Grains; Taylor, J.R.N., Awika, J.M., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 21–54. [Google Scholar]
- Taylor, J.R.; Duodu, K.G. Effects of processing sorghum and millets on their phenolic phytochemicals and the implications of this to the health-enhancing properties of sorghum and millet food and beverage products. J. Sci. Food Agric. 2015, 95, 225–237. [Google Scholar] [CrossRef]
- Mårtensson, O.; Öste, R.; Holst, O. Lactic acid bacteria in an oat-based non-dairy milk substitute: Fermentation characteristics and exopolysaccharide formation. LWT Food Sci. Technol. 2000, 33, 525–530. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Corsetti, A.; Di Cagno, R. Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci. Technol. 2005, 16, 57–69. [Google Scholar] [CrossRef]
- Nionelli, L.; Rossana, C.; Curiel, J.A.; Poutanen, K.; Gobbetti, M.; Rizzello, C.G. Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. Int. J. Food Microbiol. 2014, 185, 17–26. [Google Scholar]
- Angelov, A.; Gotcheva, V.; Kuncheva, R.; Hristozova, T. Development of a new oat-based probiotic drink. Int. J. Food Microbiol. 2006, 112, 75–80. [Google Scholar] [CrossRef]
- Gupta, S.; Cox, S.; Abu-Ghannam, N. Process optimisation for the development of a functional beverage based on lactic acid fermentation of oats. Biochem. Eng. J. 2010, 52, 199–204. [Google Scholar] [CrossRef]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Production and characterization of a novel gluten-free fermented beverage based on sprouted oat flour. Foods 2021, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Diez-Sánchez, E.; Quiles, A.; Hernando, I. Use of Berry Pomace to Design Functional Foods. Food Rev. Int. 2021, 39, 3204–3224. [Google Scholar] [CrossRef]
Raw Material | Fruit Lyophilisates | Fruit Extracts | ||
---|---|---|---|---|
TPC (mg GAE/g of Lyophilisate) | Antioxidant Activity (mM Trolox/g of Lyophilisate) | TPC (mg GAE/g of Extract) | Antioxidant Activity (mM Trolox/g of Extract) | |
black chokeberry | 26.1 ± 0.2 a | 20.31 ± 1.3 a | 42.6 ± 0.3 a | 42.23 ± 0.9 a |
red currant | 10.1 ± 0.1 c | 10.49 ± 1.0 c | 11.7 ± 0.3 e | 17.34 ± 0.4 c |
Blueberry | 13.8 ± 0.0 b | 14.82 ± 1.0 b | 26.1 ± 0.2 c | 35.98 ± 2.9 b |
Hawthorn | 9.1 ± 0.1 c | 15.05 ± 2.8 b | 32.2 ± 0.1 b | 33.26 ± 0.9 b |
Quince | 4.4 ± 0.2 d | 2.76 ± 0.8 d | 8.7 ± 0.1 e | 4.29 ± 0.4 d |
sea buckthorn | 4.2 ± 0.2 d | 3.82 ± 1.5 d | 16.9 ± 0.2 d | 7.31 ± 0.4 d |
Microorganism | MIC/MBC | Black Chokeberry | Red Currant | Blueberry | Hawthorn | Quince | Sea Buckthorn | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | L | E | L | E | L | E | L | E | L | E | L | ||
E. faecalis | MIC | 2.5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 |
MBC | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 | |
B. subtilis | MIC | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 |
MBC | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | |
S. epidermidis | MIC | 0.625 | 5 | 2.5 | 5 | 2.5 | >5 | 1.25 | >5 | >5 | >5 | 2.5 | 5 |
MBC | 2.5 | >5 | 5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | 2.5 | 5 | |
S. aureus | MIC | 2.5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 |
MBC | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 | |
M. luteus | MIC | 2.5 | 5 | 2.5 | 5 | 5 | 5 | >5 | 5 | >5 | >5 | 2.5 | 5 |
MBC | 5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | 5 | |
P. aeruginosa | MIC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 |
MBC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 | |
P. vulgaris | MIC | 5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 2.5 | 5 |
MBC | 5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 | |
S. marcescens | MIC | >5 | >5 | >5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 |
MBC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | |
S. enteritidis | MIC | 1.25 | 5 | 5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 |
MBC | 2.5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 | |
M. catarrhalis | MIC | 0.625 | 2.5 | 2.5 | 1.25 | >5 | >5 | 2.5 | 5 | 5 | >5 | 2.5 | >5 |
MBC | 2.5 | 5 | 5 | 2.5 | >5 | >5 | 5 | 5 | >5 | >5 | 5 | >5 | |
E. coli | MIC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 |
MBC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 |
Microorganism | MIC/MBC | Black Chokeberry | Red Currant | Blueberry | Hawthorn | Quince | Sea Buckthorn | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | L | E | L | E | L | E | L | E | L | E | L | ||
Lactiplantibacillus plantarum | MIC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 |
MBC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | |
Lactobacillus rhamnosus | MIC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 |
MBC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | |
Laticaseibacillus paracasei | MIC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 |
MBC | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | |
Pediococcus pentosaceus | MIC | 2.5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 |
MBC | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | >5 | |
Lactobacillus reuteri | MIC | 2.5 | 5 | 2.5 | 5 | 5 | 5 | >5 | 5 | >5 | >5 | 2.5 | 5 |
MBC | 5 | >5 | 5 | >5 | >5 | >5 | >5 | >5 | >5 | >5 | 5 | 5 |
Oat Beverages Samples | Chokeberry Extract | Chokeberry Lyophilisate | ||
---|---|---|---|---|
Fermentation Time | ||||
0 h | 20 h | 0 h | 20 h | |
TPC (mg GAE/L) | ||||
Control | 84.93 bB ± 1.89 | 64.92 aA ± 3.50 | 84.93 bB ± 1.89 | 64.92 aA ± 3.50 |
1% addition | 216.97 cC ± 11.85 | 208.53 cC ± 5.58 | 205.76 cC ± 2.51 | 201.29 cC ± 5.83 |
5% addition | 215.69 cC ± 9.99 | 201.86 cC ± 9.05 | 242.94 dD ± 9.18 | 213.71 cC ± 8.31 |
Antioxidant activity (mM Trolox/L) | ||||
Control | 0.657 bB ± 0.034 | 0.603 bB ± 0.033 | 0.657 aB ± 0.034 | 0.603 aB ± 0.033 |
1% addition | 0.648 bB ± 0.005 | 0.517 aA ± 0.017 | 0.750 bC ± 0.021 | 0.627 aB ± 0.021 |
5% addition | 0.792 cCD ± 0.007 | 0.489 aA ± 0.011 | 0.847 cD ± 0.022 | 0.638 aB ± 0.056 |
Oat Beverages Samples | Hawthorn Extract | Hawthorn Lyophilisate | ||
---|---|---|---|---|
Fermentation Time | ||||
0 h | 20 h | 0 h | 20 h | |
TPC (mg GAE/L) | ||||
Control | 84.93 bB ± 1.89 | 64.92 aA ± 3.50 | 84.93 bB ± 1.89 | 64.92 aA ± 3.50 |
1% addition | 239.39 dEF ± 5.90 | 251.88 dF ± 12.29 | 219.60 dDE ± 13.91 | 193.42 cC ± 5.27 |
5% addition | 243.65 dF ± 15.50 | 199.73 cCD ± 7.50 | 214.13 dCD ± 9.39 | 215.41 dD ± 2.51 |
Antioxidant activity (mM Trolox/L) | ||||
Control | 0.657 bBC ± 0.034 | 0.603 abAB ± 0.033 | 0.657 bcBC ± 0.034 | 0.603 bAB ± 0.033 |
1% addition | 0.677 bcCD ± 0.039 | 0.557 aA ± 0.026 | 0.808 eE ± 0.013 | 0.674 cdBCD ± 0.020 |
5% addition | 0.743 cDE ± 0.032 | 0.543 aA ± 0.018 | 0.732 dD ± 0.011 | 0.532 aA ± 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchwińska, K.; Gwiazdowska, D.; Juś, K.; Gluzińska, P.; Gwiazdowska, J.; Pawlak-Lemańska, K. Innovative Functional Lactic Acid Bacteria Fermented Oat Beverages with the Addition of Fruit Extracts and Lyophilisates. Appl. Sci. 2023, 13, 12707. https://doi.org/10.3390/app132312707
Marchwińska K, Gwiazdowska D, Juś K, Gluzińska P, Gwiazdowska J, Pawlak-Lemańska K. Innovative Functional Lactic Acid Bacteria Fermented Oat Beverages with the Addition of Fruit Extracts and Lyophilisates. Applied Sciences. 2023; 13(23):12707. https://doi.org/10.3390/app132312707
Chicago/Turabian StyleMarchwińska, Katarzyna, Daniela Gwiazdowska, Krzysztof Juś, Paulina Gluzińska, Julia Gwiazdowska, and Katarzyna Pawlak-Lemańska. 2023. "Innovative Functional Lactic Acid Bacteria Fermented Oat Beverages with the Addition of Fruit Extracts and Lyophilisates" Applied Sciences 13, no. 23: 12707. https://doi.org/10.3390/app132312707
APA StyleMarchwińska, K., Gwiazdowska, D., Juś, K., Gluzińska, P., Gwiazdowska, J., & Pawlak-Lemańska, K. (2023). Innovative Functional Lactic Acid Bacteria Fermented Oat Beverages with the Addition of Fruit Extracts and Lyophilisates. Applied Sciences, 13(23), 12707. https://doi.org/10.3390/app132312707