Quantitative Assessment of Organic Mass Fluxes and Natural Attenuation Processes in a Petroleum-Contaminated Subsurface Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
3. Results
3.1. Contamination and Attenuation Processes
3.1.1. Spatial Distribution of TPH
3.1.2. TPH along the Flowline
3.1.3. Temporal Variation of TPH
3.1.4. Hydrogeochemistry and Biogeochemistry
3.2. Quantitative Assessment of Biodegradation Processes
3.2.1. Statistical Methods
3.2.2. Mann–Kendall Test
3.2.3. Mass Flux
4. Discussion
4.1. Statistical Methods
4.2. Trend Analysis Based on the Mann–Kendall Test
4.3. The Analysis Based on Mass Flux
4.4. The Division of Functional Areas and the Utilization of Electron Acceptor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.H.; Li, M.M.; Zhang, Y.; Ma, W.M. Health risk assessment of groundwater organic pollution in an abandoned chemical plant. Geol. Surv. Res. 2012, 35, 4. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.S.; Wang, B.; Qu, Z.H.; Zheng, W.; Jia, X.; Sun, M. Natural Attenuation of diesel pollution in sand layer of vadose zone. J. Jilin Univ. (Earth Sci. Ed.) 2010, 40, 389–393. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, S.J.; Zhang, M.; He, Z.; Zhang, W. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution. China Environ. Sci. 2018, 38, 1185–1193. (In Chinese) [Google Scholar] [CrossRef]
- Sarkar, D.; Ferguson, M.; Datta, R.; Birnbaum, S. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Pollut. 2005, 136, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Brett, R.B.; Cindy, H.N.; Loring, N. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Water Res. 2008, 42, 723–731. [Google Scholar] [CrossRef]
- Choi, H.M.; Lee, J.Y. Groundwater contamination and natural attenuation capacity at a petroleum spilled facility in Korea. J. Environ. Sci. 2011, 23, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- Declercq, I.; Cappuyns, V.; Duclos, Y. Monitored natural attenuation (MNA) of contaminated soils: State of the art in Europe—A critical evaluation. Sci. Total Environ. 2012, 426, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Li, T. Study on optimization of groundwater monitoring network for petroleum hydrocarbon pollution site based on natural attenuation process simulation. Master’s Thesis, Jilin University, Changchun, China, 2021. (In Chinese). [Google Scholar] [CrossRef]
- U.S. EPA. Guidance for Developing Ecological Soil Screening Levels; Office of Solid Waste and Emergency Response: Washington, DC, USA, 2005.
- Sun, Y.; Liu, Y.; Yue, G.; Cao, J.; Li, C.; Ma, J. Vapor-phase biodegradation and natural attenuation of petroleum VOCs in the unsaturated zone: A microcosm study. Chemosphere 2023, 336, 139275. [Google Scholar] [CrossRef]
- Song, Q.W.; Xue, Z.K.; Wu, H.J.; Zhai, Y.; Lu, T.T.; Du, X.Y.; Zheng, J.; Chen, H.K.; Zuo, R. The collaborative monitored natural attenuation (CMNA) of soil and groundwater pollution in large petrochemical enterprises: A case study. Environ. Res. 2023, 216, 114816. [Google Scholar] [CrossRef]
- Lv, H.; Su, X.S.; Wang, Y.; Dai, Z.X.; Liu, M.Y. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. Chemosphere 2018, 206, 293–301. [Google Scholar] [CrossRef]
- U.S. NRC (National Research Council). Natural Attenuation for Groundwater Remediation; National Academy Press: Washington, DC, USA, 2000.
- Yan, X.X.; An, J.; Zhang, Y.Z.; Wei, S.H.; He, W.X.; Zhou, Q.X. Photochemical degradation in natural attenuation of characteristics of petroleum hydrocarbons (C10-C40) in crude oil polluted soil by simulated long term solar irradiation. J. Hazard. Mater. 2023, 460, 132259. [Google Scholar] [CrossRef]
- Zito, P.; Bekins, B.A.; Martinović-Weigelt, D.; Harsha, M.L.; Humpal, K.E.; Trost, J.; Cozzarelli, I.; Mazzoleni, L.R.; Schum, S.K.; Podgorski, D.C. Photochemical mobilization of dissolved hydrocarbon oxidation products from petroleum contaminated soil into a shallow aquifer activate human nuclear receptors. J. Hazard. Mater. 2023, 459, 132312. [Google Scholar] [CrossRef] [PubMed]
- Blum, P.; Hunkeler, D.; Weede, M.; Beyer, C.; Grathwohl, P.; Morasch, B. Quantification of biodegradation for o-xylene and naphthalene using first order decay models, Michaelis-Menten kinetics and stable carbon isotopes. J. Contam. Hydrol. 2009, 105, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Agnello, A.C.; Bagard, M.; Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Balseiro-Romero, M.; Monterroso, C.; Casares, J.J. Environmental Fate of Petroleum Hydrocarbons in Soil: Review of Multiphase Transport, Mass Transfer, and Natural Attenuation Processes. Pedosphere 2018, 28, 833–847. [Google Scholar] [CrossRef]
- Kristensen, A.H.; Henriksenm, K.; Mortensen, L.; Scow, K.M.; Moldrup, P. Soil physical constraints on intrinsic biodegradation of petroleum vapors in a layered subsurface. Vadose Zone J. 2010, 9, 1–11. [Google Scholar] [CrossRef]
- Wang, B.; Xia, Y.B.; Qu, Z.H.; Zhao, Y.S. Research on natural attenuation of diesel in the aquifer. Hydrogeol. Eng. Geol. 2014, 41, 138–143. (In Chinese) [Google Scholar] [CrossRef]
- Bauer, S.; Beyer, C.; Kolditz, O. Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Yang, Y.S.; Li, P.; Zhang, X.; Li, M.J.; Lu, Y.; Xu, B.; Yu, T. Lab-based investigation of enhanced BTEX attenuation driven by groundwater table fluctuation. Chemosphere 2017, 169, 678–684. [Google Scholar] [CrossRef]
- Chen, K.F.; Kao, C.M.; Chen, C.W.; Surampalli, R.Y.; Lee, M.S. Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation. J. Environ. Sci. 2010, 22, 864–871. [Google Scholar] [CrossRef]
- Li, G.H.; Zhang, X.; Huang, W. Characteristics of degrading microorganism distribution in polluted soil with petroleum hydrocabons. Environ. Sci. 2000, 21, 61–64. (In Chinese) [Google Scholar] [CrossRef]
- Eulãlia, M.P.; Tim, G.; Anna, M.S.; Marc, V. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil. J. Hazard. Mater. 2015, 300, 135–143. [Google Scholar] [CrossRef]
- Alakendra, N.R.; Greg, L.M. Redox pathways in a petroleum contaminated shallow sandy aquifer: Iron and sulfate reductions. Sci. Total Environ. 2006, 366, 262–274. [Google Scholar] [CrossRef]
- Guarino, C.; Spada, R.; Sciarrillo, R. Assessment of three approaches of bioremediation (natural attenuation, landfarming and bioagumentation-assistited landfarming) for a petroleum hydrocarbons contaminated soil. Chemosphere 2017, 170, 10–16. [Google Scholar] [CrossRef]
- Chen, K.F.; Kao, C.M.; Wang, J.Y.; Chen, T.Y.; Chien, C.C. Natural attenuation of MTBE at two petroleum-hydrocarbon spill sites. J. Hazard. Mater. 2005, 125, 10–16. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, Y.S.; Qu, Z.H.; Zheng, W.; Long, B.S.; Jiao, L.N.; Xu, C. Impact of depth and moisture to diesel degradation in sand layer of vadose zone. Environ. Sci. 2011, 32, 227–232. (In Chinese) [Google Scholar] [CrossRef]
- Xia, Y.B.; Wang, B.; Yang, Y.S.; Du, X.Q.; Yang, M.X. Evaluation effect of monitored natural attenuation in groundwater of petroleum-contaminated site. Hydrol. Eng. Geol. 2013, 40, 85–90. (In Chinese) [Google Scholar] [CrossRef]
- Chiu, H.Y.; Hong, A.; Lin, S.L.; Surampalli, R.Y.; Kao, C.M. Application of natural attenuation for the control of petroleum hydrocarbon plume: Mechanisms and effectiveness evaluation. J. Hydrol. 2013, 505, 126–137. [Google Scholar] [CrossRef]
- Drápela, K.; Drápelová, I. Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts. the Czech Pepublic) 1997–2010. Časopis Beskydy 2011, 4, 133–146. [Google Scholar] [CrossRef]
- Kumar, K.S.; Rathnam, E.V. Analysis and Prediction of Groundwater Level Trends Using Four Variations of Mann Kendall Tests and ARIMA Modelling. J. Geol. Soc. India 2019, 94, 281–289. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Schäfer, D.; Hornbruch, G.; Schlenz, B.; Dahmke, A. Contaminant spreading assuming different kinetic approaches to simulate microbial degradation. Grundwasser 2007, 12, 15–25. [Google Scholar] [CrossRef]
- Wilson, R.D.; Thornton, S.F.; Mackay, D.M. Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation 2004, 15, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Newell, C.J.; Rifai, H.S.; Wilson, J.T.; Connor, J.A.; Aziz, J.A.; Suarez, M.P. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies; U.S. EPA Ground Water Issue; EPA/540/S-02/500; U.S. EPA, Office of Research and Development: Washington, DC, USA, 2002.
- Metvalf, M.M.; Stevens, G.J.; Robbins, G.A. Application of first order kinetics to characterize MTBE natural attenuation in groundwater. J. Contam. Hydrol. 2016, 187, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Suarez, M.P.; Rifai, H.S. Evaluation of BTEX remediation by natural attenuation at a coastal facility. Ground Water Monit. Remediat. 2002, 22, 62–77. [Google Scholar] [CrossRef]
- Bockelmann, A.; Zamfirescu, D.; Ptak, T. Quantification of mass fluxes and natural attenuation rates at an industrial site with a limited monitoring network: A case study. J. Contam. Hydrol. 2003, 60, 97–121. [Google Scholar] [CrossRef] [PubMed]
- Verginelli, I.; Pecoraro, R.; Baciocchi, R. Using dynamic flux chambers to estimate the natural attenuation rates in the subsurface at petroleum contaminated sites. Sci. Total Environ. 2018, 619–620, 470–479. [Google Scholar] [CrossRef]
- Vasudevan, M.; Nambi, M.I.; Kumar, S.G. Scenario-based modelling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications. J. Environ. Manag. 2016, 175, 9–19. [Google Scholar] [CrossRef]
- Gutierrez-Neri, M.; Ham, P.A.S.; Schotting, R.J.; Lerner, D.N. Analytical modelling of fringe and core biodegradation in groundwater plumes. J. Contam. Hydrol. 2009, 107, 1–9. [Google Scholar] [CrossRef]
- Medici, G.; Lorenzi, V.; Sbarbati, C.; Manetta, M.; Petitta, M. Structural classification, discharge statistics, and recession analysis from the springs of the Gran Sasso (Italy) carbonate aquifer; comparison with selected analogues worldwide. Sustainability 2023, 15, 10125. [Google Scholar] [CrossRef]
- Steelman, C.M.; Meyer, J.R.; Parker, B.L. Multidimensional investigation of bedrock heterogeneity/unconformities at a DNAPL-impacted site. Groundwater 2017, 55, 532–549. [Google Scholar] [CrossRef] [PubMed]
- King, M.W.G.; Barker, J.F.; Devlin, J.T.; Butler, B.J. Migration and natural fate of a coal tar creosote plume: 2. Mass balance and biodegradation indicators. J. Contam. Hydrol. 1999, 39, 281–307. [Google Scholar] [CrossRef]
- Bayer-Raich, M.; Jarsjö, J.; Liedl, R.; Ptak, T.; Teutsch, G. Average contaminant concentration and mass flow in aquifers from time-dependent pumping well data: Analytical framework. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef]
- Chiu, H.Y.; Verpoort, F.; Liu, J.K.; Chang, Y.M.; Kao, C.M. Using intrinsic bioremediation for petroleum-hydrocarbon contaminated groundwater cleanup and migration containment: Effectiveness and mechanism evaluation. J. Taiwan Inst. Chem. Eng. 2017, 72, 53–61. [Google Scholar] [CrossRef]
- GB/T 14848-2017; Quality Standard for Ground Water. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Standards Press of China: Beijing, China, 2017.
- Xia, Y.B.; Yang, Y.S.; Du, X.Q.; Yang, M.X. Evaluation of in-situ MNA remediation potential and biodegradation efficiency of petroleum-contaminated shallow groundwater. J. Jilin Univ. Earth Sci. Ed. 2011, 41, 831–839. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, Y.L.; Ding, Y.; Song, H.W.; Liu, T.; Zhang, Y.; Xu, W.Q.; Shi, Y.J. Comparing the indigenous microorganism system in typical petroleum-contaminated groundwater. Chemosphere 2023, 311, 137173. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, K.K. Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer. Environ. Pollut. 2003, 126, 201–212. [Google Scholar] [CrossRef]
- Norris, R.D.; Hinchee, R.E.; Brown, R. Handbook of Bioremediation; Lewis Publishers, Inc.: Boca Raton, FL, USA, 1994; 257p. [Google Scholar]
- Jiang, W.; Sheng, Y.; Wang, G.; Shi, Z.; Liu, F.; Zhang, J.; Chen, D. Cl, Br, B, Li, and noble gases isotopes to study the origin and evolution of deep groundwater in sedimentary basins: A review. Environ. Chem. Lett. 2022, 20, 1497–1528. [Google Scholar] [CrossRef]
- Fetter, C.W. Contaminant Hydrogeology; Macmillan: New York, NY, USA, 1993; pp. 285–291. [Google Scholar]
September 2009 | October 2009 | November 2009 | January 2010 | March 2010 | |
---|---|---|---|---|---|
TPH (mg/L) | 3.7–15.1 | 2.8–12.0 | 4.3–6.6 | 3.4–6.8 | 3.2–5.6 |
pH | 6.8–7.6 | 6.8–8.3 | 7.9–8.6 | 7.3–9.7 | 7.2–7.9 |
ORP | −163.0–36.4 | −137.6–45.7 | −130.2–−45.4 | −160.9–−77.4 | −126.5–−21.5 |
NO3− (mg/L) | 1.2–14.0 | 1.2–3.0 | - | 0.6–2.0 | 0.6–4.0 |
NH4+(mg/L) | 0.1–0.3 | 0.2–1.3 | 0.56–1.86 | - | - |
Mn2+ (mg/L) | 0.68–2.98 | 0.05–2.27 | 0.90–4.89 | 0.85–5.23 | 0.36–3.52 |
Total Fe (mg/L) | 1.7–27.8 | 0.3–20.9 | 0.1–10.9 | 2.0–13.3 | 0.8–47.1 |
Fe3+ (mg/L) | 0.1–1.1 | 0.1–0.3 | 0.1–0.6 | 0.1–0.5 | 0.2–0.8 |
SO42− (mg/L) | 0.2–142.7 | 0.2–104.7 | 0.3–70.8 | 4.8–48.0 | 7.9–42.5 |
Location | Initial Concentration (mg/L) | Distance to the Source (m) | Attenuation Time (d) | Attenuation Rate (mg/d) | Half-Life (d) | Remediation Time (a) |
---|---|---|---|---|---|---|
Z1-1 | 15.1 | 25.1 | 105 | 0.101 | 87 | 1.3 |
Z6 | 5.8 | 38.0 | 115 | 0.017 | 270 | 3.5 |
Z7 | 7.4 | 36.6 | 83 | 0.043 | 130 | 1.8 |
Z8 | 6.1 | 39.2 | 115 | 0.023 | 212 | 2.8 |
Z9 | 6.2 | 65.1 | 162 | 0.012 | 472 | 6.2 |
Z10 | 10.3 | 68.4 | 73 | 0.082 | 84 | 1.3 |
Z11 | 5.3 | 64.4 | 46 | 0.035 | 145 | 2.0 |
Z16 | 8.3 | 49.0 | 194 | 0.026 | 182 | 2.6 |
Z19 | 5.6 | 67.1 | 194 | 0.011 | 500 | 6.5 |
Z20 | 6.6 | 64.4 | 162 | 0.018 | 288 | 3.9 |
Z21 | 9.7 | 52.0 | 162 | 0.039 | 168 | 2.4 |
Z22 | 7.1 | 55.3 | 194 | 0.019 | 327 | 4.3 |
S1 | 7.3 | 8.8 | 194 | 0.009 | 775 | 10.6 |
Concentration Trend | Confidence Level (%) | |
---|---|---|
Z1-1 | Probably decreasing | 93 |
Z6 | Probably decreasing | 97 |
Z7 | No trend | 69 |
Z8 | Stable | 83 |
Z9 | Probably decreasing | 97 |
Z10 | No trend | 79 |
Z11 | No trend | 56 |
Z16 | Probably decreasing | 97 |
Z19 | Probably decreasing | 93 |
Z20 | Probably decreasing | 96 |
Z21 | Decreasing | 99 |
Z22 | Probably decreasing | 97 |
S1 | Probably decreasing | 93 |
Time (d) | 0 | 32 | 69 | 105 | 115 | 194 | |
---|---|---|---|---|---|---|---|
CP1–CP2 | Mass flux (mg) | 243,868 | 168,081 | 108,778 | 95,533 | 80,997 | 82,453 |
Adsorbed mass (mg) | 81,289 | 56,027 | 36,259 | 31,844 | 26,999 | 27,484 | |
Total mass (mg) | 325,157 | 224,108 | 145,037 | 127,377 | 107,996 | 109,937 | |
Mass flux decreased (mg) | 0 | 75,787 | 135,090 | 148,335 | 162,871 | 161,415 | |
Adsorbed mass decreased (mg) | 0 | 25,262 | 45,030 | 49,445 | 54,290 | 53,805 | |
Biodegradation (mg) | 0 | 101,049 | 180,120 | 197,780 | 217,161 | 215,220 | |
Total attenuation (mg) | 81,289 | 157,076 | 216,379 | 229,624 | 244,160 | 242,704 | |
Biodegradation ratio (%) | 0 | 64 | 83 | 86 | 89 | 89 | |
Attenuation rate (%) | 25 | 48 | 67 | 71 | 75 | 75 | |
CP2–CP3 | Mass flux (mg) | 139,415 | 87,636 | 50,803 | 45,171 | 39,551 | 34,223 |
Adsorbed mass (mg) | 46,472 | 29,212 | 16,934 | 15,057 | 13,184 | 11,408 | |
Total mass (mg) | 185,887 | 116,848 | 67,737 | 60,228 | 52,734 | 45,631 | |
Mass flux decreased (mg) | 0 | 51,780 | 88,613 | 94,244 | 99,865 | 105,192 | |
Adsorbed mass decreased (mg) | 0 | 17,260 | 29,538 | 31,415 | 33,288 | 35,064 | |
Biodegradation (mg) | 0 | 69,040 | 118,150 | 125,659 | 133,153 | 140,257 | |
Total attenuation (mg) | 46,472 | 98,251 | 135,084 | 140,716 | 146,336 | 151,664 | |
Biodegradation ratio (%) | 0 | 70 | 87 | 89 | 91 | 92 | |
Attenuation rate (%) | 25 | 53 | 73 | 76 | 79 | 82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Wang, B.; Yang, Y.; Du, X.; Yang, M. Quantitative Assessment of Organic Mass Fluxes and Natural Attenuation Processes in a Petroleum-Contaminated Subsurface Environment. Appl. Sci. 2023, 13, 12782. https://doi.org/10.3390/app132312782
Xia Y, Wang B, Yang Y, Du X, Yang M. Quantitative Assessment of Organic Mass Fluxes and Natural Attenuation Processes in a Petroleum-Contaminated Subsurface Environment. Applied Sciences. 2023; 13(23):12782. https://doi.org/10.3390/app132312782
Chicago/Turabian StyleXia, Yubo, Bing Wang, Yuesuo Yang, Xinqiang Du, and Mingxing Yang. 2023. "Quantitative Assessment of Organic Mass Fluxes and Natural Attenuation Processes in a Petroleum-Contaminated Subsurface Environment" Applied Sciences 13, no. 23: 12782. https://doi.org/10.3390/app132312782
APA StyleXia, Y., Wang, B., Yang, Y., Du, X., & Yang, M. (2023). Quantitative Assessment of Organic Mass Fluxes and Natural Attenuation Processes in a Petroleum-Contaminated Subsurface Environment. Applied Sciences, 13(23), 12782. https://doi.org/10.3390/app132312782