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Abstract: Gait recognition is a distinctive biometric technique that can identify pedestrians by their
walking patterns from considerable distances. A critical challenge in gait recognition lies in effectively
acquiring discriminative spatial-temporal representations from silhouettes that exhibit invariance
to disturbances. In this paper, we present a novel gait recognition network by aggregating features
in the spatial-temporal and view domains, which consists of two-path spatial-temporal feature
fusion module and view embedding module. Specifically, two-path spatial-temporal feature fusion
module firstly utilizes multi-scale feature extraction (MSFE) to enrich the input features with multiple
convolution kernels of various sizes. Then, frame-level spatial feature extraction (FLSFE) and multi-
scale temporal feature extraction (MSTFE) are parallelly constructed to capture spatial and temporal
gait features of different granularities and these features are fused together to obtain muti-scale spatial-
temporal features. FLSFE is designed to extract both global and local gait features by employing
a specially designed residual operation. Simultaneously, MSTFE is applied to adaptively interact
multi-scale temporal features and produce suitable motion representations in temporal domain.
Taking into account the view information, we introduce a view embedding module to reduce the
impact of differing viewpoints. Through the extensive experimentation over CASIA-B and OU-MVLP
datasets, the proposed method has achieved superior performance to the other state-of-the-art gait
recognition approaches.

Keywords: gait recognition; two-path spatial-temporal feature fusion; multi-scale feature extraction;
view embedding

1. Introduction

Gait recognition refers to judging individuals by their distinct walking patterns, mak-
ing it one of the most auspicious biometric technologies for identity recognition. In contrast
to other biometric identification methods such as fingerprints, DNA, facial recognition,
vein recognition, and so on, gait recognition works by using regular or low-resolution cam-
eras at long ranges and does not require explicit cooperation from the subjects of interest.
Therefore, gait recognition has demonstrated huge development potential in the fields of
crime prevention, video surveillance, and social security. Invariance to disturbances in gait
recognition signifies the capability of achieving high recognition accuracy without being
affected by various external factors, such as bag-carrying, cloth-change, cross-view, and
speed changes [1–3]. However, the performance of gait recognition is susceptible to the
forementioned external factors in real-word scenarios, which brings substantial challenges
to achieve invariance to disturbances. Therefore, a multitude of state-of-art works have
focused on achieving invariance to disturbances in gait recognition to ensure the reliability
of gait recognition systems.

Benefiting from recent developments in deep learning algorithms, numerous pow-
erful gait recognition algorithms have been developed [4–11], and have been proven
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effective under challenging conditions. Liao et al. [9] proposed long short-term memory
(LSTM) [12] for the extraction of spatial and temporal features based on human skeleton
points. PoseGait [10] transformed 2D poses into 3D poses to enhance recognition accuracy
by extracting additional gait features from 3D poses. Shiraga et al. [11] utilized the gait
energy image (GEI) to train their networks and learn covariate features for gait recognition.
GaitSet [4] used 2D convolutional neural networks (CNNs) at the frame level to extract
global features and treated gait silhouettes as a set to capture temporal features. GaitPart [7]
extracted local gait feature representations by dividing the feature maps horizontally and
utilized micro-motion features to focus on the short-term temporal expressions. Huang
et al. [8] introduced a 3D local CNN to extract sequence information from specific human
body parts.

To the best of our knowledge, the human body possess evidently various visual appear-
ances and movement patterns during walking. Spatial-temporal representations refer to the
spatial-temporal features derived from the modeling of silhouettes, which can effectively
capture the visual appearances and movement patterns of the pedestrian. Spatial feature
representations indicate the visual appearances of the silhouettes, while temporal feature
representations reflect the movement patterns of the silhouettes. Spatial feature extraction
and temporal modeling can extract rich and discriminative spatial-temporal feature repre-
sentations, distinctly capturing an individual’s walking process. Since there are significant
differences among various persons in terms of visual appearance and movement patterns
during walking, these spatial-temporal representations can play a pivotal role in enhancing
the effectiveness of gait recognition. The combing of spatial and temporal representations
can not only describe the visual appearances, but also capture motion patterns of the pedes-
trians, and utilizing either spatial representations or temporal representations alone would
lead to the poor accuracy of gait recognition. Therefore, by jointly investigating motion
learning and spatial mining simultaneously, the accuracy of gait recognition can be sub-
stantially improved. Despite considerable efforts in gait recognition, the aforementioned
methods still encounter the following challenges: (1) there is a need for muti-scale feature
extraction to capture more robust spatial-temporal representations, thereby enhancing the
accuracy of gait recognition especially in case of appearance camouflage; (2) few methods
have taken view angle into consideration explicitly and the detection or estimation of
viewpoint has been somewhat overlooked, which can exert an essential impact to improve
the recognition ability of existing approaches.

With such considerations, we propose an advanced gait recognition network, namely
two-path spatial-temporal feature fusion module and view embedding module. The
two-path spatial-temporal feature fusion module consists of multi-scale feature extraction
(MSFE), frame-level spatial feature extraction (FLSFE) and multi-scale temporal feature
extraction (MSTFE). Firstly, MSFE is deployed to facilitate the effective extraction of shallow
features, which can extend the receptive field and enable the extraction of multiple internal
features within different regions. Subsequently, we introduce a two-path parallel structure
containing FLSFE and MSTFE, which aims to effectively extract the multi-scale spatial-
temporal information across various granularities. In FLSFE, we develop an innovative
residual convolutional block (R-conv) to capture both global and local gait features by
the special design of residual operation. Meanwhile, in MSTFE, we design independent
branches of temporal feature extraction with varying scales and integrate the temporal
features in an attention-based way. For reasonable refinement of extracted features, a view
embedding module is constructed to reduce the negative impact of viewpoint differences,
which uses view prediction learning to calculate the best view and embeds the view
information into the multi-scale spatial-temporal characteristics to obtain the final features.
Extensive experiments conducted on the two public datasets CASIA-B and OU-MVLP have
demonstrated that our method has outperformed other state-of-the-art methods, showing
its superior performance in gait recognition.
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2. Related Work

Gait recognition: Current deep-learning-based gait recognition methods can be broadly
classified into two categories: model-based [13–16] and appearance-based [4–8,17–30]. Model-
based methods leverage the relationships between bone joints and pose information to create
models of walking patterns and human body structures [13], such as OpenPose [14], HR-
Net [15], and DensePose [16]. These methods exhibit stronger robustness to clothing variation
and carrying articles. However, model-based methods depend on accurate joint detection
and pose estimators, which can significantly increase the computational complexity and may
lead to inferior performance in certain scenarios. Conversely, appearance-based methods use
gait silhouettes (the binary images shown in Figure 1) as the model’s input and capture
spatial and temporal characteristics from silhouettes by CNNs [17]. Gait silhouettes can
describe the body state in a single frame at a low computational cost and more detailed
information in each silhouette image can be preserved directly from the original silhouette
sequences. The silhouettes are the basis of appearance-based methods, and the quality of
silhouettes will directly affect the performance of the gait recognition system. Moreover,
spatial feature representations can be obtained from the silhouette of an individual frame,
which can represent appearance characteristics, while temporal feature representations
can be captured from consecutive silhouettes, in which the relationship between adja-
cent frames can reflect the temporal characteristics and motion patterns. Therefore, some
appearance-based methods have overcome the challenges of pose estimation and achieved
competitive performance [4–8,21,22,29]. Particularly, the first opensource gait recognition
framework, named OpenGait (https://github.com/ShiqiYu/OpenGait, accessed on 29 Jan-
uary 2023) [18], encompassed a series of state-of-the-art appearance-based methods for gait
recognition. In this paper, our approach is categorized as appearance-based and we count on
binary silhouettes as our input data without the need for pose estimation or joint detection. By
focusing on silhouettes, we aim to reduce the influence of variations in subjects’ appearance,
thereby enhancing the accuracy and robustness of our gait recognition approach.
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Figure 1. Overview of the whole framework, which mainly consists of two modules as: two-path
spatial-temporal feature fusion module and view embedding module. The two-path spatial-
temporal feature fusion module consists of three component including multi-scale feature ex-
traction (MSFE), frame-level spatial feature extraction (FLSFE) and multi-scale temporal feature
extraction (MSTFE). View embedding module consists of two components: view prediction and
HPP with view embedding.
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Spatial feature extraction modeling: Regarding the range of feature representations
in spatial feature extraction modeling, two main approaches are commonly used: global-
based and local-based methods. Specifically, global-based methods focus on exploring
gait silhouettes as a whole to generate global feature representations [4,5,12,17,19,20]. For
instance, Shiraga et al. [12] proposed the GEI and utilized 2D CNNs to obtain global gait
feature representations from the GEIs. Similarly, GaitSet [4] and GLN [5] extracted global gait
features at the frame-level by 2D CNNs. Conversely, local-based methods usually segment
the silhouettes into multiple parts to establish the local feature representations [7,21,22], and
focus more on learning the local information of different body parts. For example, Zhang
et al. [21] split human gait into four distinct segments and adopted 2D CNNs to capture
more detailed information from each of these segments. Fan et al. [7] introduced the focal
convolution layer (FConv), a novel convolution layer that divided the feature map into
several parts to obtain part-based gait features. Qin et al. [22] developed RPNet to discover
the intricate interconnections between each part of gait silhouettes and then integrated them
by a straightforward splicing process. GaitGL [23] and GaitStrip [24] both used 3D CNNs to
construct multi-level frameworks to extract more discriminative and richer spatial features.
In this paper, we design an innovative residual convolutional block (R-conv) in spatial
feature extraction model by 2D CNNs, which combines regular convolution with FConv to
extract both global and local gait features and enhance the discriminative capacity of the
feature representations.

Temporal feature extraction modeling: As a crucial cue for gait tasks, the current
temporal feature extraction model generally employs various approaches such as 1D con-
volutions, LSTMs and 3D convolutions [25]. For example, Fan et al. [7] and Wu et al. [26]
utilized 1D convolutions to model the temporal dependencies and aggregated temporal
information by concatenation or in a summation. Additionally, LSTM networks were built
in [21,27] to preserve the temporal variation of gait sequences and fuse temporal informa-
tion by accumulation. Moreover, some studies have proposed 3D convolutions [28–31] to
simultaneously extract spatial and temporal information from gait silhouette sequences.
Lin et al. [32] introduced MT3D network, which used 3D CNNs to extract spatial-temporal
features with multiple temporal scales. However, 3D CNNs often bring complex calcula-
tions and encounter challenges during training. In this paper, we present a novel approach
for temporal feature extraction modeling by 2D CNNs, which aggregates temporal infor-
mation with different scales. By incorporating muti-scale temporal branches, our approach
can capture rich temporal clues and empower the network to learn more discriminative
motion representations adaptively.

View-invariant Modeling: To the best of our knowledge, viewpoint change poses a
formidable challenge in biometrics, particularly in face recognition and gait recognition.
In contrast to face recognition, fewer methods in gait recognition have incorporated the
aspect of viewpoint into their considerations. He et al. [33] introduced a multitask gen-
erative adversarial network (GAN) and trained the GAN by using viewpoint labels as
the supervision. Chai et al. [34] adopted a different projection matrix as a perspective
embedding method and achieved high growth on multiple backbones. However, these
methods often involve a large number of parameters, making them extremely complex
for effective cross-view gait recognition. Therefore, we propose a concise view model that
applies view prediction learning to calculate the best view and embeds view information
into our two-path spatial-temporal feature fusion module, which can significantly enhance
the robustness of our network to view changes and improve gait recognition performance
across varying viewpoints.

3. Proposed Method
3.1. System Overview

The overall framework is depicted in Figure 1. Firstly, MSFE is employed to extract
shallow features from the original input silhouettes, which can extend the receptive field
and capture the gait spatial and temporal features within different regions. Next, a two-path
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parallel structure including FLSFE and MSTFE is designed to obtain multi-scale spatial-
temporal features. FLSFE is devised to extract combined features by encompassing both
global and local gait information in the spatial domain and use a novel convolutional
block (R-conv) by the special design of residual operation. Simultaneously, MSTFE is
implemented to learn more discriminative motion representation between long-term and
short-term features in the temporal domain and integrate the muti-scale temporal features
in an attention-based way. Subsequently, both the spatial and temporal features are in-
tegrated to generate muti-scale spatial-temporal representations. HPP [4] is applied to
complete feature mapping process, ensuring comprehensive and discriminative features.
Furthermore, a view embedding module is introduced to use view prediction learning to
calculate the best view and incorporate view information explicitly into the spatial-temporal
fused feature representations to gain the final features, which can effectively alleviate the
effect of viewpoint variations. Finally, joint losses of cross entropy loss and the triplet
loss [4,7] are selected to train the proposed network.

3.2. Two-Path Spatial-Temporal Feature Fusion Module

The two-path spatial-temporal feature fusion module is composed of three different
components, namely multi-scale feature extraction (MSFE), frame-level spatial feature
extraction (FLSFE) and multi-scale temporal feature extraction (MSTFE). In the following
sections, we will furnish a comprehensive description of the structure of each component
individually.

3.2.1. Multi-Scale Feature Extraction (MSFE)

Generally, a convolution layer utilizes multiple convolution kernels of the same size
to carry out convolution operation, which leads to the limitation of feature extraction
to a certain extent. In the two-path spatial-temporal feature fusion module, we propose
multi-scale feature extraction (MSFE) to process the input silhouettes, which can extract
more comprehensive and discriminative feature representations with different granularities.
MSFE utilizes the multi-scale convolution (MSC) structure with multiple kernels of various
sizes to extract gait features during convolution operation and merges the multi-scale
features by different single-path convolution branches. The MSC can expand different
perceptual fields and learn more fine-grained features. Moreover, multiple branches can
fuse the fine-grained features and obtain more abundant and complete gait characteristics.

The structure of MSFE is presented in Figure 2. MSFE comprises a three-layer structure,
where the first layer is a MSC structure and the other two layers are the regular convolutions.
The MSC structure comprises three parallel convolution branches, each of which is designed
with distinct kernel sizes: (1,1), (3,3), and (5,5), respectively. Each branch processes the input
gait sequences and transforms them into multi-scale feature maps. Then, the outputs of the
parallel convolution operations at different scales are combined together by element-wise
addition to obtain more abundant features. Subsequently, another two convolution layers
are employed to optimize the comprehensive characteristics to achieve the appropriate
number of channels, which can also balance the capabilities of the network more flexibly.
Assuming that the input is X ∈ RC×T×H×W , where C means the number of channels, T
represents the length of the gait sequence and (H, W) signify the height and width of each
frame. The MSC feature FMSC can be formulated below:

FMSC = F1×1(X) + F3×3(X) + F5×5(X) (1)

where F1×1, F3×3 and F5×5 denote the 2D convolution operations with the kernel sizes of
(1,1), (3,3) and (5,5), respectively.
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Figure 2. The detailed structure of multi-scale feature extraction (MSFE).

3.2.2. Frame-Level Spatial Feature Extraction (FLSFE)

To further enhance the granularity of spatial-temporal learning and capture contextual
information, frame-level spatial feature extraction (FLSFE) is constructed to extract both
global and local spatial features for each frame. The structure of FLSFE is shown in Figure 3.
The input of FLSFE is demoted as FMSFE ∈ RC×T×H/2×w/2, and FLSFE is composed of
three consecutive R-convs (detailed structure could be found in Figure 4), each of which
is designed to extract both the whole-body and part-informed spatial features. Then, set
pooling operation (SP) is applied to each R-conv block to extract set-level features, and after
point-by-point summation, column vector spatial features Fspace ∈ RC1×K are obtained by
the horizontal pooling operation (HP), where C1 means the number of channels, and K
represents the number of strips cut in HP.
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Figure 4 illustrates the structure of the R-conv, which is a novel residual convolutional
block that combines regular convolution with FConv in parallel to extract both global and
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local features from gait sequences. The R-conv is designed to leverage the benefits of both
global and local features by adding the output of FConv with the result of regular convolu-
tion. Assuming that the input is denoted as Xglobal ∈ Rc1×t×h×w, where c1 represents the
number of channels, t means the length of feature maps and (h, w) indicate the dimensions
of each image frame. Initially, the global feature map is horizontally partitioned into n parts
to derive local feature maps, represented as Xlocal =

{
Xi

local |i = 1, · · · , n
}

, where n denotes

the total number of partitions and Xi
local ∈ Rc1×t× h

n×w represents the i-th local gait segment.
Subsequently, 2D CNN is used to extract global and local gait information independently.
Finally, the combined features FR−conv, which includes global and local information, are
fused through element-wise summation, formulated as:

FR−conv = Fglobal + Flocal ∈ Rc2×t×h×w (2)

Fglobal and Flocal can be expressed as:

Fglobal = F3×3

(
Xglobal

)
∈ Rc2×t×h×w (3)

Flocal = cat


F3×3

(
X1

local
)

F3×3
(
X2

local
)

...
F3×3

(
Xn

local
)
 ∈ Rc2×t×h×w (4)

where F3×3 represents the 2D convolution operation with the kernel size of (3,3), and cat
denotes the concatenation operation on the horizontal dimension.

In FLSFE, except for three consecutive R-convs, SP is used to aggregate high-level fea-
ture maps from different gait timepoints that are robust to the appearance and observation
perspectives into set-level feature maps. The set-level spatial representation is generated as
FSP ∈ RC×h×w and the process can be formulated as Equation (5):

FSP = SP(FR−conv) (5)

Then, set-level features are summed up point by point and HP is designed to obtain
the column vector spatial features Fspace ∈ RC1×K by dividing the feature map into K parts
according to the height. The HP process can be formulated as Equation (6):

Fspae = maxpool
(

Fsp
)
+ avgpool

(
Fsp
)

(6)

where maxpool represents the horizontal maximum pooling and avgpool represents the
horizontal average pooling.

3.2.3. Multi-Scale Temporal Feature Extraction (MSTFE)

MSTFE is devised to integrate long-term and short-term features in the temporal
dimension, facilitating effective information exchange between different scales. As depicted
in Figure 5, firstly, the HP operation is implemented on FMSFE to obtain fine-grained
information and then, on the one hand, the long-term features are extracted to represent
the motion characteristics of all frames, which reveals the global motion periodicity of
different body parts. On the other hand, two sequential 1D convolutions with a kernel
size of 3 are used to extract short-term temporal contextual features that are favorable for
modeling micromotion patterns. Finally, an adaptive temporal feature fusion approach
is employed to acquire the temporal importance weights for each temporal scale at both
long-term and short-term scales to adaptively highlight or suppress features to obtain the
most discriminative motion characteristics.
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The input of MSTFE is denoted as FMSFE, and the HP operation is used to parti-
tion the human body into K segments, resulting in the temporal feature representation
FTemp ∈ RC×T×K, Fi

Temp denotes the i-th sample of each frame. Initially, a multilayer percep-
tron (MLP) followed by a Sigmoid function is applied to each frame to obtain the long-term
temporal features. The MLP could be considered as a temporal attention mechanism,
learning to assess the importance of different frames based on their relevance to the overall
motion characteristics. Subsequently, the long-term temporal feature FL is obtained by
performing a weighted summation of all frames. The process can be expressed below:

FL =
∑I

i=1 Sigmoid
(

MLP
(

Fi
Temp

)
� Fi

Temp

)
∑I

i=1 Sigmoid
(

MLP
(

Fi
Temp

)) . (7)

where � denotes dot product and FL describes the global motion cues.
To obtain the short-term temporal features, two sequential 1D convolutions with a

kernel size of 3 are applied to the temporal feature representation FTemp obtained from the
HP operation. After each 1D convolution, the resulting features are summed to capture the
short-term temporal feature FS, which is formulated as:

Fs = Conv1d
(

FTemp
)
⊕ Conv1d

(
Conv1d

(
FTemp

))
(8)

To capture the varying motion patterns of different temporal scales and their varying
importance in gait recognition, an adaptive temporal feature fusion approach is introduced.
This approach aims to determine temporal importance weights that adaptively highlight or
suppress features to obtain the most discriminative motion characteristics, which is realized
through two fully connected layers followed by a Sigmoid function [35,36]. These layers
are specifically designed to learn the temporal importance weights for both long-term and
short-term temporal scales. The process can be expressed as follows:

WT = Sigmoid(FC(FC(cat(Fs, FL)))) (9)

The fused temporal features can be realized by:

Fn
A = Fn

L ×Wn
T,1 + Fn

S ×Wn
T,2 (10)

where Wn
T denotes the importance weight of the n-th frame of a sample, and the weights of

the long-term and short-term temporal feature are denoted as Wn
T,1, Wn

T,2.
Based on the adaptive temporal feature fusion, we obtain sequence-level representa-

tions in a weighted summation way as follows:

FSL−term =
∑N

n=1 Fn
A

∑N
n=1 ∑2

i−1 Wn
T,i

(11)
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where FSL−term ∈ RC2×K, and C2 means the number of channels.

3.3. View Embedding Module

Since view information is an imperative condition in gait recognition, the view em-
bedding module is introduced to build view estimation and view angle is embedded into
the previous two-path spatial-temporal feature fusion module, which can not only greatly
minimize the intra-class caused by the view differences, but also improve the recognition
ability of gait recognition.

3.3.1. View Prediction

As shown in Figure 6, Fspace and FSL−term in the two-path parallel structure are con-
catenated along the channel dimension as the multi-scale spatial-temporal features FST ,
which can be formulated as:

FST = FspceΘFSL−term (12)

where Θ denotes a merge operation on the channel dimension.
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The view classification feature can be realized by:

∼
Fview = FC

(
PGlobal_Avg(FST)

)
(13)

where FC means a fully connect layer and PGlobal_Avg indicates the global average pooling.
Subsequently, the view probability of the input silhouette, denoted as Pview and the

maximum probability of the predicted view, represented as
∼
Pview are determined by calcu-

lating the following formulas, respectively, as:

Pview = Wview
∼
Fview + Bview (14)

∼
Pview = Argmax(Pview) (15)

where Pview ∈ RV , V means the number of discrete views, Wview are the view weight matrix

of FC layer, Bview denotes the bias terms of FC layer and
∼
Pview ∈ {0, 1, 2 · · ·V}.

Regarding the predicted discrete view
∼
Pview, a group of view projection matrix will be

trained as Z∼
Pview
| = {Wi|i = 1, 2, · · · , n}, where Wi ∈ RD×D is the projection matrix, and it

will be used in Section 3.3.2.

3.3.2. HPP with View Embedding

In this section, horizontal pyramid pooling (HPP) [4] is utilized on the multi-scale
spatial-temporal feature maps and then the weights under the best view are connected
with these multi-scale spatial-temporal features by matrix multiplication to acquire the
final feature.
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The multi-scale spatial-temporal feature maps after HPP can be denoted as FHPP,i,
i = 1, 2, 3, · · · n, where n means the number of strips into split in HPP, FHPP,i ∈ RD. Suppos-
ing the predicted view of FST is θ, the embed procedure can be realized by:

Ff inal,i = WiFHPP,i (16)

Ff inal =
[

Ff inal,1, Ff inal,2, · · · , Ff inal,n

]
(17)

where i = 1, 2, 3, · · · n, Wi ∈ Zθ , Ff inal,i ∈ RD, Ff inal ∈ Rn×D.

3.4. Joint Losses

We employ two joint loss functions, namely the cross entropy (CE) loss [37] and the
triplet loss [38] for training our proposed framework. The CE loss is applied for the view
prediction task and is calculated as follows:

Lce = −
N

∑
n=1

V

∑
V=1

ynlog(Pn,v)w.r.t.Pn,v =
e
∼
Pviewn,v

∑V
V=1 e

∼
Pviewn,v

(18)

where N represents the total number of silhouette sequences and yn denotes the discrete
ground value of the n-th sequence.

Next, the triplet loss is employed to augment the discriminative capability of the
features. For each triplet of gait silhouette sequences (Q, P, N), where Q and P belong
to the same subject, and Q and N are from the different subjects, the triplet loss can be
calculated as follows:

Ltrip =
1
K ∑K

i=1 ∑n
l=1 max

(
m− d−ij + d+ij , 0

)
d−ij . (19)

where K represents the number of triplets, d−ij =
∥∥∥ f Qi

f inal,j − f Ni
f inal,j

∥∥∥2

2
and d+ij =∥∥∥ f Qi

f inal,j − f Pi
f inal,j

∥∥∥2

2
.

Finally, to obtain the overall loss function, we joint the CE loss and the triplet loss
as follows:

L = Ltrip + λceLce (20)

where λce is a hyper-parameter.

4. Experiments
4.1. Datasets

CASIA-B: CASIA-B (http://www.cbsr.ia.ac.cn/, accessed on 28 August 2006) [39] is a
well-known gait dataset with a total of 124 subjects. Each subject contains 11 views (from
0◦ to 180◦). Each view includes 10 gait sequences captured under three various walking
conditions: normal walking (NM) with 6 sequences, carrying bags (BG) with two sequences
and wearing coats or jackets (CL) with two sequences. For our experiments, we follow
the protocol from a previous work [20] and the dataset is split into a training set with
samples from the initial 74 subjects, and a testing set with samples from the remaining
subjects. During test, the first 4 sequences of the NM condition (NM #1–4) are kept as the
gallery set, and the remaining 6 sequences (NM#5–6, BG#1–2, CL#1–2) are defined as the
probe set, which aims to ensure consistency with the division of CASIA-B datasets in the
state-of-the-art methods [4,7,12,21,29].

OU-MVLP: OU-MVLP (http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitMVLP.
html, accessed on 4 October 2018) [40] is an extensive public gait dataset including 10,307 sub-
jects in total. Among these subjects, 5153 are designated as training samples, while the
remaining 5154 subjects are served as testing samples. Each subject has 14 distinct views (from
0◦ to 90◦ and 180◦ to 270◦) and each view contains two sequences (#00–01).

http://www.cbsr.ia.ac.cn/
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitMVLP.html
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitMVLP.html


Appl. Sci. 2023, 13, 12808 11 of 16

4.2. Implementation Details

The batchsize is configured to (8, 8) and (32, 8) for CASIA-B dataset and OUMVLP
dataset separately. The input silhouettes are resized to the size of 64 × 44 and aligned
according to the method in [40]. Adam optimizer is applied for training with an initial
learning rate of 0.0001 and the momentum 0.9 [41]. In the triplet loss Ltrip, the margin is set
to 0.2, and the λce in Equation (20) is set to 0.05 and 0.3 on CASIA-B dataset and OUMVLP
dataset separately. In CASIA-B dataset, three-layer CNNs are used in MSFE and three
consecutive R-convs are implemented in FLSFE to extract features, while in OU-MVLP
dataset, five-layer CNNs are applied in MSFE and an additional R-conv is stacked in FLSFE,
and the value of n in each R-conv is set to 1, 1, 3, 3. Furthermore, the CASIA-B dataset is
trained 70 K iteration, while the OUMVLP dataset is trained 250 K iteration. The learning
rate is adjusted to 1 × 10−5 after 160 K iterations to ensure the stable convergence. All the
experiments are carried out by using the Pytorch framework [42] on NVIDIA GeForce RTX
3090 GPUs [39].

4.3. Comparison with State-of-the-Art Methods

CASIA-B: Table 1 presents the comprehensive comparison results between the pro-
posed method and other state-of-the-art methods on CASIA-B dataset. From Table 1, it
can be clearly seen that our method attains outstanding performance across nearly all
viewpoints compared to other methods, such as GaitNet [12], GaitSet [4], GaitPart [7],
MT3D [29], and RPNet [21]. In particular, the proposed method exhibits significantly
higher average accuracies than other gait recognition methods, especially under BG and
CL conditions. Our proposed method achieves average accuracies of 97.7%, 93.7%, and
83.8% under these conditions, outperforming GaitPart [7] by +1.5%, +2.2%, and +5.1%,
respectively. Furthermore, our proposed method demonstrates superior performance in
some specific view angles. For example, under the view angles of 90◦ and 180◦, the NM
accuracy of our method reaches 95.9% and 94.2%, surpassing GaitPart [7] by +3.4% and
+3.8% separately. The experimental results illustrate that our framework exhibits substantial
robustness and advantages under unfavorable conditions, which can be attributed to the
fact that multi-scale convolution can simultaneously observe more detailed gait features in
spatial and temporal domain. Furthermore, the effective combination of multi-scale spatial-
temporal features can obtain discriminative features even in the presence of occlusion, thus
enhancing the recognition ability of the proposed method.

OUMVLP: Similar experiments are executed on OU-MLVP dataset to prove the gener-
alization efficacy of our approach. As demonstrated in Table 2, our method consistently
attains higher accuracies across most camera views than other methods such as GaitSet [4],
GaitPart [7] and RPNet [21], which displays a more outstanding recognition ability in the
large-scale dataset. Specifically, the recognition ability of our method is superior to the
state-of-the-art RPNet [18] by a margin of +4.4% (85.0% vs. 89.4%). Due to the addition of
view embedding, the accuracies of our method under the view angles of 0◦ and 180◦ have
been greatly improved. Meanwhile, it can be also observed that our results may not surpass
GaitPart [7] under certain view angles, such as 45◦, 75◦ and 90◦, this is mainly due to the
fact that our training dataset does not include as many samples as other works contained
under these view angle. Although our results may not surpass GaitPart [7] under some
specific view angles, our method has still achieved substantial overall improvement. In
conclusion, our method can perform better recognition ability and effectively improve the
recognition accuracy on the large and worldwide dataset for cross-view gait recognition.
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Table 1. Averaged rank-1 recognition accuracies on CASIA-B dataset, excluding identical-view cases.

Gallery NM#1–4 0–180◦ Mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5–6

GaitNet [12] 93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3

GaitSet [4] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

GaitPart [7] 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2

MT3D [29] 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7

RPNet [21] 95.1 99.0 99.1 98.3 95.7 93.6 95.9 98.3 98.6 97.7 90.8 96.6

ours 96.1 99.6 99.8 98.7 96.5 95.9 96.7 99.3 99.4 98.8 94.2 97.7

BG#1–2

GaitNet [12] 88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9

GaitSet [4] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

GaitPart [7] 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5

MT3D [29] 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0

RPNet [21] 92.6 92.3 96.6 94.5 91.9 87.6 90.7 94.7 96.0 93.9 86.1 92.8

ours 93.1 96.1 97.2 95.1 91.6 87.8 91.1 96.1 97.5 95.8 89.5 93.7

CL#1–2

GaitNet [12] 50.1 60.7 72.4 72.7 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3

GaitSet [4] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

GaitPart [7] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

MT3D [29] 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5

RPNet [21] 75.6 87.1 88.3 87.1 83.1 78.0 79.9 82.7 83.9 78.9 66.6 80.3

ours 77.4 89.0 90.0 87.3 83.8 79.1 80.7 87.2 87.5 85.0 75.2 83.8

Table 2. Averaged rank-1 recognition accuracies on OUMVLP dataset, excluding identical-view cases.

Probe RPNet [21] GaitSet [4] GaitPart [7] Ours

0◦ 73.5 79.5 82.6 84.2
15◦ 84.4 87.9 88.9 89.9
30◦ 89.6 89.9 90.8 91.3
45◦ 89.8 90.2 91.0 90.8
60◦ 86.3 88.1 89.7 90.2
75◦ 87.4 88.7 89.9 89.6
90◦ 86.0 87.8 89.5 88.9

180◦ 76.3 81.7 85.2 86.7
195◦ 83.2 86.7 88.1 89.7
210◦ 88.6 89.0 90.0 90.5
225◦ 88.9 89.3 90.1 90.2
240◦ 85.7 87.2 89.0 89.7
255◦ 86.4 87.8 89.1 89.5
270◦ 84.4 86.2 88.2 89.8

Mean 85.0 87.1 88.7 89.4

4.4. Ablation Study

In this paper, the three components (MSFE, FLSFE and MSTFE) of the two-path spatial-
temporal feature fusion module and the view embedding module are included in the
proposed framework. Hereby, exhaustive ablation experiments of these components are
carried out on CASIA-B dataset to assess the effectiveness of each individual component.
The experimental results and analysis are presented below.

Impact of Each component: Table 3 illustrates the effect of each component in our
method on CASIA-B dataset. The baseline refers to the remaining structure after removing
MSFE, FLSFE, MSTFE and view embedding module from the proposed methods, which
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consists of three-layer CNNs and aggregates temporal information through the max op-
eration. It can be observed from Table 3 that when MSFE is added to baseline alone, the
average accuracy under three walking conditions achieves +1.5% improvement than the
baseline, which implies that MSFE can perform well on the baseline by using different
kernel sizes to handle the input. In addition, with the utilization of FLSFE and MSTFE, the
average accuracy reaches 90.5%, which is +1.7% higher than GaitPart [7] and the accuracies
under each condition are improved significantly, especially under BG and CL, proving
the superiority of the two-path spatial-temporal feature fusion module under occlusion.
Particularly, when FLSFE is added to the baseline, the average accuracy increases substan-
tially by +7.9% compared to Baseline + MSFE, which verifies the fact that FLSFE plays
a vitally important role in this two-path parallel structure. Finally, we incorporate view
embedding into the baseline to increase the recognition accuracy of our method, resulting
in a remarkable 91.7% performance, which is +1.2% higher than the previous version. The
comparison results confirm that view prediction offers valuable perspective information
for cross-view gait recognition and the view embedding module proves to be instrumental
in improving the recognition capability of multi-view gait tasks.

Table 3. Study of the effectiveness of each component on CASIA-B dataset.

Model NM BG CL Mean

Baseline 89.8 82.0 59.5 77.1

Baseline + MSFE 91.6 83.5 60.7 78.6

Baseline + MSFE + FLSFE 95.6 88.6 75.2 86.5

Baseline + MSFE + FLSFE + MSTFE 97.0 92.9 81.6 90.5

Baseline + MSFE + FLSFE + MSTFE + view embedding 97.7 93.7 83.8 91.7

Impact of different kernel sizes in MSFE: To study the impact of various kernel sizes
in MSFE, three various kinds of kernel sizes are designed and the ablation studies are
conducted by arranging them. The results of these experiments are presented in Table 4.
Evidently, increasing the number of multi-scale convolution kernels can attain higher
recognition accuracies. Therefore, we set the kernel sizes of the multi-scale convolution to
1, 3, and 5, as it yields the most favorable recognition performance.

Table 4. Study of the effectiveness of different kernel sizes in MSFE on CASIA-B dataset.

Kernel Size NM BG CL

1 89.8 82 59.5
1, 3 91.3 82.8 60.2
1, 5 90.9 82.6 59.9

1, 3, 5 91.6 83.5 60.7

Impact of the value of n in R-conv: Following the approach of setting the parameter
n in R-conv as described in Section 3.2.2, five controlled experiments are performed and
the results are presented in Table 5. Notably, when the n value of all the R-conv is set
to 1, the R-conv becomes entirely composed of regular layers. From Table 5. it becomes
evident that when the n value of three consecutive R-conv is set to 2, 8, 8, the recognition
accuracy achieves the most excellent performance compared to other four experiments.
There is another thing worth noting that it is not the case that the larger n is, the higher
recognition accuracy will be. For example, when the n value of three consecutive R-conv
is set to 4, 8, 8, the accuracy under NM increases slightly, while the accuracies under BG
and CL decrease dramatically.
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Table 5. Study of the effectiveness of the value of n in each R-conv on CASIA-B dataset.

R-conv1 R-conv2 R-conv3 NM BG CL

1 1 1 95.3 86.1 71.9
2 2 2 95.3 86.9 72.8
2 4 4 95.4 87.8 73.9
2 8 8 95.6 88.6 75.2
4 8 8 95.9 87.9 74.7

Impact of multi-scale temporal features: We conduct an investigation into the effects
of the multi-scale temporal features in MSTFE and the results are presented in Table 6
Obviously, both the long-term and short-term temporal features produce positive effects on
recognition performance, and joining these two muti-scale temporal features achieves the
best performance, since the long-term and short-term features can interact with each other,
increasing the diversity of temporal representations and further improving the overall
recognition accuracy.

Table 6. Study of the effectiveness of multi-scale temporal features on CASIA-B dataset.

Short-Term Long-Term NM BG CL

� 96.8 91.9 80.6
� 95.5 90.3 74.3

97.0 92.9 81.6

5. Discussion

Based on extensive comparative experimental results, our proposed model exhibits
significant improvements in two key aspects: (1) Enhanced accuracy under BG and CL
conditions on CASIA-B dataset. This improvement is attributed to the utilization of
MSFE, FLSFE and MSTFE. MSFE can expand different perceptual fields and observe more
detailed gait features in spatial and temporal domain. Besides, both FLSFE and MSTFE in
a two-path parallel structure can extract muti-scale spatial and temporal discriminative
features, which can enhance the robustness of the proposed method, particularly under
unfavorable conditions. (2) Enhanced accuracy on the OUMVLP dataset. The proposed
method demonstrates outstanding performance in the large-scale dataset, this is due to the
fact that the view embedding module can predict the best view and embed view angle into
the multi-scale spatial-temporal features, which can help mitigate the intra-class variations
resulting from view differences and enhance the recognition ability of gait recognition.

In the future, we will further improve the performance of our proposed method in
more complex test scenarios and gait in-the-wild datasets, such as the GREW [43] dataset
and the Gait3D [44] dataset. Simultaneously, whether our method exists overfitting over
CASIA-B and OU-MVLP datasets also needs to be verified in the wild datasets and real-
word scenarios. Additionally, as silhouettes are easily disturbed by pedestrians’ clothes
and objects, it is essential to explore multi-modal gait recognition approaches that combines
silhouettes, skeletons [45], and pose heatmaps [46].

6. Conclusions

In this paper, we propose a novel gait recognition framework that combines two-path
spatial-temporal feature fusion with view embedding. In the two-path spatial-temporal
feature fusion module, MSFE is firstly utilized to extract feature representations with
different granularities from the input frames. Then, the two-path parallel structure is
designed to obtain the muti-scale spatial-temporal features, where FLSFE extracts both
global and local features by R-convs and MSTFE interacts temporal features with multiple
scales for achieving the strong ability of muti-scale spatial-temporal modeling. Additionally,
a view embedding module is put forward to make the muti-scale spatial-temporal features
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under the best viewpoint. Extensive experiments conducted on various public datasets
validate superior performance of our approach compared to recent counterparts.
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