Change of Direction Performance in Soccer Players: Comparison Based on Horizontal Force–Velocity Profile
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Testing Procedures
2.3.1. Horizontal Force–Velocity Profile
2.3.2. Change of Direction
- 505test: Two timing gates were positioned 5 m away from a specified turning point. Athletes began from a stationary position, using their preferred foot positioned on the start-line, 10 m from the timing gates and 15 m from the turning point [12]. Participants were directed to rapidly accelerate through the timing gates, pivot at the designated turning point on their dominant leg over the line and reaccelerate, returning through the timing gates.
- M505test: Two timing gates were positioned 5 m away from a specific turning point. In contrast to the 505test, players began in a stationary position, using their preferred foot positioned on the start-line, 1 m behind the timing gates (5 m from the turning point) [16,36]. Participants were instructed to accelerate rapidly through the timing gates, pivot at the designated turning point on their dominant leg over the line and reaccelerate, returning through the timing gates.
2.3.3. Change of Direction Deficit
2.3.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheppard, J.M.; Young, W.; Doyle, T.; Sheppard, T.; Newton, R.U. An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. J. Sci. Med. Sport 2006, 9, 342–349. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding change of direction ability in sport: A review of resistance training studies. Sport. Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Arrones, L.; Gonzalo-Skok, O.; Carrasquilla, I.; Asián-Clemente, J.; Santalla, A.; Lara-Lopez, P.; Núñez, F.J. Relationships between Change of Direction, Sprint, Jump, and Squat Power Performance. Sports 2020, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. Sport. Med. 2018, 48, 2235–2253. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.T.; Pereira, L.A.; Alcaraz, P.E.; Arruda, A.F.S.; Guerriero, A.; Azevedo, P.H.S.M.; Loturco, I. Influence of strength and power capacity on change of direction speed and deficit in elite team-sport athletes. J. Hum. Kinet. 2019, 68, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.A.; Nimphius, S.; Kobal, R.; Kitamura, K.; Turisco, L.A.; Orsi, R.C.; Abad, C.C.C.; Loturco, I. Relationship between change of direction, speed, and power in male and female national olympic team handball athletes. J. Strength Cond. Res. 2018, 32, 2987–2994. [Google Scholar] [CrossRef]
- Spiteri, T.; Nimphius, S.; Hart, N.H.; Specos, C.; Sheppard, J.M.; Newton, R.U. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2014, 28, 2415–2423. [Google Scholar] [CrossRef]
- Thomas, C.; Dos’Santos, T.; Comfort, P.; Jones, P.A. Comparison of Change of Direction Speed Performance and Asymmetries between Team-Sport Athletes: Application of Change of Direction Deficit. Sports 2018, 6, 174. [Google Scholar] [CrossRef]
- Bishop, C.; Brashill, C.; Abbott, W.; Read, P.; Lake, J.; Turner, A. Jumping Asymmetries Are Associated With Speed, Change of Direction Speed, and Jump Performance in Elite Academy Soccer Players. J. Strength Cond. Res. 2021, 35, 1841–1847. [Google Scholar] [CrossRef]
- Cuthbert, M.; Thomas, C.; Dos’Santos, T.; Jones, P.A. Application of Change of Direction Deficit to Evaluate Cutting Ability. J. Strength Cond. Res. 2019, 33, 2138–2144. [Google Scholar] [CrossRef]
- Kadlubowski, B.; Keiner, M.; Hartmann, H.; Wirth, K.; Frick, U. The Relationship between Change of Direction Tests in Elite Youth Soccer Players. Sports 2019, 7, 111. [Google Scholar] [CrossRef] [PubMed]
- Draper, J.; Lancaster, M. The 505 test: A test for agility in the horizontal plane. Aust. J. Sci. Med. Sport 1985, 17, 15–18. [Google Scholar]
- Spiteri, T.; Cochrane, J.L.; Hart, N.H.; Haff, G.G.; Nimphius, S. Effect of strength on plant foot kinetics and kinematics during a change of direction task. Eur. J. Sport Sci. 2013, 13, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Haydar, B.; Ahmaidi, S. Repeated sprints with directional changes: Do angles matter? J. Sport. Sci. 2012, 30, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Nimphius, S.; McGuigan, M.; Newton, R.U. Relationship between strength, power, speed, and change of direction performance of female softball players. J. Strength Cond. Res. 2010, 24, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; McBurnie, A.; Thomas, C.; Comfort, P.; Jones, P.A. Biomechanical Determinants of the Modified and Traditional 505 Change of Direction Speed Test. J. Strength Cond. Res. 2019, 34, 1285–1296. [Google Scholar] [CrossRef]
- Nimphius, S.; Callaghan, S.J.; Spiteri, T.; Lockie, R.G. Change of Direction Deficit: A More Isolated Measure of Change of Direction Performance Than Total 505 Time. J. Strength Cond. Res. 2016, 30, 3024–3032. [Google Scholar] [CrossRef]
- Nimphius, S.; Geib, G.; Spiteri, T.; Carlisle, D. “Change of Direction Deficit” Measurement in Devision I American Football PLayers. J. Aust. Strength Cond. 2013, 21, 115–117. [Google Scholar]
- Sheppard, J.; Young, W. Agility literature review: Classifications, training and testing. J. Sport. Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef]
- Jones, P.; Bampouras, T.; Marrin, K. An investigation into the physical determinants of change of direction speed. J. Sport. Med. Phys. Fit. 2009, 49, 97–104. [Google Scholar]
- Peterson, M.D.; Alvar, B.A.; Rhea, M.R. The contribution of maximal force production to explosive movement among young collegiate athletes. J. Strength Cond. Res. 2006, 20, 867–873. [Google Scholar] [PubMed]
- Green, B.; Blake, C.; Caulfield, B. A comparison of cutting technique performance in rugby union players. J. Strength Cond. Res. 2011, 25, 2668–2680. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.M.; Franklyn-Miller, A.D.; King, E.A.; Moran, K.A.; Strike, S.C.; Falvey, É.C. Biomechanical factors associated with time to complete a change of direction cutting maneuver. J. Strength Cond. Res. 2014, 28, 2845–2851. [Google Scholar] [CrossRef] [PubMed]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. Role of the Penultimate Foot Contact During Change of Direction. Strength Cond. J. 2019, 41, 87–104. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Freitas, T.T.; Alcaraz, P.E.; Zanetti, V.; Bishop, C.; Jeffreys, I. Maximum acceleration performance of professional soccer players in linear sprints: Is there a direct connection with change-of-direction ability? PLoS ONE 2019, 14, e0216806. [Google Scholar] [CrossRef]
- Marcovic, G. Poor relationship between strength and power qualities and agility performance. J. Sport. Med. Phys. Fit. 2007, 47, 276–283. [Google Scholar]
- Loturco, I.; Jeffreys, I.; Abad, C.C.C.; Kobal, R.; Zanetti, V.; Pereira, L.A.; Nimphius, S. Change-of-direction, speed and jump performance in soccer players: A comparison across different age-categories. J. Sport. Sci. 2019, 38, 1279–1285. [Google Scholar] [CrossRef]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; de Villarreal, E.S.; Morin, J.-B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sport. 2016, 26, 648–658. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Rodríguez-Pérez, M.A.; Jiménez-Reyes, P.; Soriano-Maldonado, A. Maximizing acceleration and change of direction in sport: A case series to illustrate how the force-velocity profile provides additional information to that derived from linear sprint time. Int. J. Environ. Res. Public Health 2021, 18, 6140. [Google Scholar] [CrossRef]
- Morin, J.B.; Gimenez, P.; Edouard, P.; Arnal, P.; Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Mendiguchia, J. Sprint acceleration mechanics: The major role of hamstrings in horizontal force production. Front. Physiol. 2015, 6, 404. [Google Scholar] [CrossRef]
- Morin, J.B.; Edouard, P.; Samozino, P. Technical ability of force application as a determinant factor of sprint performance. Med. Sci. Sport. Exerc. Sci. Sport. Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Baena-Raya, A.; Soriano-Maldonado, A.; Conceição, F.; Jiménez-Reyes, P.; Rodríguez-Pérez, M.A. Association of the vertical and horizontal force-velocity profile and acceleration with change of direction ability in various sports. Eur. J. Sport Sci. 2020, 21, 1659–1667. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Jiménez-Reyes, P.; Romea, E.S.; Soriano-Maldonado, A.; Rodríguez-Pérez, M.A. Gender-Specific Association of the Sprint Mechanical Properties With Change of Direction Performance in Basketball. J. Strength Cond. Res. 2021, 36, 2868–2874. [Google Scholar] [CrossRef]
- Morin, J.B.; Petrakos, G.; Jiménez-Reyes, P.; Brown, S.; Samozino, P.; Cross, M. Very-heavy sled training for improving horizontal-force output in soccer players. Int. J. Sport. Physiol. Perform. 2017, 12, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, R.; Manfredini, F.; Fersini, C.; Francesco, C. Circadian rhythms, athletic performance, and jet lag. Br. J. Sport. Med. 1998, 32, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.M.; Cunningham, L.; Hood, P.; Thorne, B.; Irvin, G.; Weston, M. The reliability of a modified 505 test and change-of-direction deficit time in elite youth football players. Sci. Med. Footb. 2019, 3, 157–162. [Google Scholar] [CrossRef]
- Morin, J.B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef]
- Morin, J.B.; Samozino, P. Interpreting power-force-velocity profiles for individualized and specific training. Int. J. Sport. Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef]
Hzt FV Profile | ||||
F0 (N·kg−1) | Pmax (W·kg−1) | V0 (m·s−1) | T10m (s) | |
Professional | 7.31 ± 0.43 | 16.42 ± 1.02 | 9.04 ± 0.33 | 1.73 ± 0.04 |
Amateurs | 6.92 ± 0.6 | 15.64 ± 1.4 | 9.11 ± 0.3 | 1.77 ± 0.07 |
U18DH | 7.1 ± 0.73 | 15.86 ± 1.72 | 9.01 ± 0.44 | 1.76 ± 0.09 |
U18LN | 6.74 ± 0.49 | 15.09 ± 1.37 | 9.02 ± 0.42 | 1.79 ± 0.07 |
Performance Tests | ||||
M505test (s) | 505test (s) | M505_CODD (s) | 505_CODD (s) | |
Professional | 2.45 ± 0.09 | 2.21 ± 0.07 | 0.72 ± 0.07 | 0.49 ± 0.07 |
Amateurs | 2.48 ± 0.07 | 2.27 ± 0.09 | 0.70 ± 0.05 | 0.5 ± 0.11 |
U18DH | 2.50 ± 0.11 | 2.29 ± 0.08 | 0.74 ± 0.09 | 0.53 ± 0.09 |
U18LN | 2.57 ± 0.08 | 2.39 ± 0.07 | 0.77 ± 0.07 | 0.60 ± 0.08 |
505test | ||||
Professional | Amateur | U18DH | U18LN | |
Constant | 3.550 | 2.245 | 3.379 | 3.149 |
F0 (N·kg−1) | 0.29 (1.845) | −0.027 (−0.253) | ||
Pmax (W·kg−1) | −0.127 (−1.877) | |||
V0 (m·s−1) | −0.148 (−0.660) | −0.140 (−0.807) | −0.084 (−0.448) | |
Adj. R2 (SEE) | 0.405 (0.05 s) | 0.385 (0.07 s) | 0.631 (0.04 s) | 0.204 (0.06 s) |
ANOVA p value | 0.02 | 0.046 | 0.000 | 0.016 |
M505test | ||||
Professional | Amateur | U18DH | U18LN | |
Constant | 3.511 | 3.014 | 3.131 | 3.230 |
F0 (N·kg−1) | −0.078 (−0.693) | −0.098 (−0.631) | ||
Pmax (W·kg−1) | −0.065 (−0.709) | −0.40 (−0.656) | ||
V0 (m·s−1) | ||||
Adj. R2 (SEE) | 0.476 (0.06 s) | 0.429 (0.05 s) | 0.401 (0.08 s) | 0.370 (0.06 s) |
ANOVA p value | 0.000 | 0.012 | 0.001 | 0.001 |
505_CODD | ||||
Professional | Amateur | U18DH | U18LN | |
Constant | 1.325 | −0.319 | 1.219 | 0.739 |
F0 (N·kg−1) | 0.347 (1.8) | |||
Pmax (W·kg−1) | 0.028 (0.4) | −0.101 (−1.219) | 0.042 (0.761) | 0.042 (0.737) |
V0 (m·s−1) | −0.143 (−0.622) | −0.15 (−0.703) | −0.085 (−0.46) | |
Adj. R2 (SEE) | 0.312 (0.06 s) | 0.574 (0.07 s) | 0.698 (0.05 s) | 0.292 (0.06 s) |
ANOVA p value | 0.016 | 0.009 | 0.000 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-López, S.; López-Sagarra, A.; Ortega-Becerra, M.; Jiménez-Reyes, P.; Rodríguez-Pérez, M.A. Change of Direction Performance in Soccer Players: Comparison Based on Horizontal Force–Velocity Profile. Appl. Sci. 2023, 13, 12809. https://doi.org/10.3390/app132312809
Sánchez-López S, López-Sagarra A, Ortega-Becerra M, Jiménez-Reyes P, Rodríguez-Pérez MA. Change of Direction Performance in Soccer Players: Comparison Based on Horizontal Force–Velocity Profile. Applied Sciences. 2023; 13(23):12809. https://doi.org/10.3390/app132312809
Chicago/Turabian StyleSánchez-López, Sergio, Andrés López-Sagarra, Manuel Ortega-Becerra, Pedro Jiménez-Reyes, and Manuel A. Rodríguez-Pérez. 2023. "Change of Direction Performance in Soccer Players: Comparison Based on Horizontal Force–Velocity Profile" Applied Sciences 13, no. 23: 12809. https://doi.org/10.3390/app132312809
APA StyleSánchez-López, S., López-Sagarra, A., Ortega-Becerra, M., Jiménez-Reyes, P., & Rodríguez-Pérez, M. A. (2023). Change of Direction Performance in Soccer Players: Comparison Based on Horizontal Force–Velocity Profile. Applied Sciences, 13(23), 12809. https://doi.org/10.3390/app132312809