Amplification Ratio of a Recycled Plastics-Compliant Mechanism Flexure Hinge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Amplification of PP, ABS, and HDPE Flexure Hinges
3.2. Comparison between PP, ABS, and HDPE Flexure Hinges
3.3. LDPE/TPU Blend Flexure Hinge
4. Conclusions
- The input and output displacements of all PP, ABS, and HDPE hinges are in a linear relationship. The existence of recycled plastics has no effect on this principle. The pure PP, ABS, and HDPE flexure hinges achieve the highest amplification ratios of 5.728, 8.249, and 5.668. The amplification ratio is lowered by the addition of recycled plastics. However, this amplification ratio reduction is not very high. In comparison to pure plastic hinges, the 25% recycling ratio PP, ABS, and HDPE flexure hinges obtain an amplification ratio that is 12%, 13.3, and 21.7% lower. Furthermore, the use of recycled plastics could reduce the requirement for new plastic created from raw resources.
- With the PP flexure hinge, a maximum input value of 157 µm could lead to an output value of 886 µm. However, the ABS flexure hinge could gain an output value of 833 µm at a maximum input value of 115 µm. Finally, with the HDPE flexure hinge, a maximum input value of 175 µm could lead to an output value of 857 µm. For the PP, ABS, and HDPE flexure hinges, respectively, the average amplification ratio values of all recycling ratios are 5.35, 7.60, and 5.02. In terms of amplification ratios, the ABS flexure hinge is often better than the PP and HDPE flexure hinge. The HDPE flexure hinges have the lowest amplification ratio among these plastic types.
- The amplification ratio typically develops as more TPU is added to the LDPE/TPU blend. The TPU’s strong compatibility with the LDPE polymer may be the reason for this. The LDPE/TPU blend hinge offers a broader range of amplification ratio of 2.85–10.504 than the PP, ABS, and HDPE flexure hinges. It is noteworthy that altering the blend percentage has a much greater impact on the amplification ratio than adjusting the recycling ratio. By identifying the best plastic kinds, the findings expand the range of uses for plastic flexure hinges. Besides finding suitable plastics, further investigations could survey the effects of the hinge shape, the hinge dimension, and the hinge design on its performance. The temperature condition, humidity, and degradation could also impact the plastic flexural hinge and need further investigation.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poppinga, S.; Correa, D.; Bruchmann, B.; Menges, A.; Speck, T. Plant movements as concept generators for the development of biomimetic compliant mechanisms. Integr. Comp. Biol. 2020, 60, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Valdivia y Alvarado, P.; Youcef-Toumi, K. Design of machines with compliant bodies for biomimetic locomotion in liquid environments. J. Dyn. Syst. Meas. Control 2006, 128, 3–13. [Google Scholar] [CrossRef]
- Nakata, T.; Liu, H. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach. Proc. R. Soc. B Biol. Sci. 2012, 279, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Howell, L.L. Compliant mechanisms. In 21st Century Kinematics: The 2012 NSF Workshop; Springer: London, UK, 2013; pp. 189–216. [Google Scholar]
- Ouyang, P.R.; Tjiptoprodjo, R.C.; Zhang, W.J.; Yang, G.S. Micro-motion devices technology: The state of arts review. Int. J. Adv. Manuf. Technol. 2008, 38, 463–478. [Google Scholar] [CrossRef]
- Stavropoulos, P.; Foteinopoulos, P.; Papacharalampopoulos, A.; Bikas, H. Addressing the challenges for the industrial application of additive manufacturing: Towards a hybrid solution. Int. J. Lightweight Mater. Manuf. 2018, 1, 157–168. [Google Scholar] [CrossRef]
- Kota, S.; Joo, J.; Li, Z.; Rodgers, S.M.; Sniegowski, J. Design of compliant mechanisms: Applications to MEMS. Analog Integr. Circuits Signal Process. 2001, 29, 7–15. [Google Scholar] [CrossRef]
- Yin, L.; Ananthasuresh, G.K. Design of distributed compliant mechanisms. Mech. Based Des. Struct. Mach. 2003, 31, 151–179. [Google Scholar] [CrossRef]
- Luo, J.; Luo, Z.; Chen, S.; Tong, L.; Wang, M.Y. A new level set method for systematic design of hinge-free compliant mechanisms. Comput. Methods Appl. Mech. Eng. 2008, 198, 318–331. [Google Scholar] [CrossRef]
- Yiru, R.E.N.; Yabin, D.E.N.G.; Jiang, H. Core reinforcement design for improving flexural energy-absorption of corrugated sandwich composite structure. Chin. J. Aeronaut. 2021, 34, 510–522. [Google Scholar]
- Dirksen, F.; Lammering, R. On mechanical properties of planar flexure hinges of compliant mechanisms. Mech. Sci. 2011, 2, 109–117. [Google Scholar] [CrossRef]
- Dayyani, I.; Shaw, A.D.; Flores, E.S.; Friswell, M.I. The mechanics of composite corrugated structures: A review with applications in morphing aircraft. Compos. Struct. 2015, 133, 358–380. [Google Scholar] [CrossRef]
- He, W.; Lu, S.; Yi, K.; Wang, S.; Sun, G.; Hu, Z. Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact. Int. J. Mech. Sci. 2019, 161, 105026. [Google Scholar] [CrossRef]
- Chen, G.; Ma, Y.; Li, J. A tensural displacement amplifier employing elliptic-arc flexure hinges. Sens. Actuators A Phys. 2016, 247, 307–315. [Google Scholar] [CrossRef]
- Chen, G.; Howell, L.L. Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms. Precis. Eng. 2009, 33, 268–274. [Google Scholar] [CrossRef]
- Ling, M.; Howell, L.L.; Cao, J.; Chen, G. Kinetostatic and dynamic modeling of flexure-based compliant mechanisms: A survey. Appl. Mech. Rev. 2020, 72, 030802. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, X.; Fatikow, S. Design and analysis of a multi-notched flexure hinge for compliant mechanisms. Precis. Eng. 2017, 48, 292–304. [Google Scholar] [CrossRef]
- Jipa, A.; Dillenburger, B. 3D printed formwork for concrete: State-of-the-art, opportunities, challenges, and applications. 3d Print. Addit. Manuf. 2022, 9, 84–107. [Google Scholar] [CrossRef]
- Ian Gibson, I.G. Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Nah, S.K.; Zhong, Z.W. A microgripper using piezoelectric actuation for micro-object manipulation. Sens. Actuators A Phys. 2007, 133, 218–224. [Google Scholar] [CrossRef]
- Yang, Y.L.; Wei, Y.D.; Lou, J.Q.; Xie, F.R.; Fu, L. Development and precision position/force control of a new flexure-based microgripper. J. Micromech. Microeng. 2015, 26, 015005. [Google Scholar] [CrossRef]
- Liu, L.; Bi, S.; Yang, Q.; Wang, Y. Design and experiment of generalized triple-cross-spring flexure pivots applied to the ultra-precision instruments. Rev. Sci. Instrum. 2014, 85, 105102. [Google Scholar] [CrossRef]
- Song, K.Y.; Kim, G.H.; Shin, J. A hybrid manufacturing process for a microgripper using selective laser melting 3D printing and wire EDM. J. Mech. Sci. Technol. 2023, 37, 1931–1937. [Google Scholar] [CrossRef]
- Coemert, S.; Wegener, L.G.; Yalvac, B.; Fuckner, J.; Lueth, T.C. Experimental and FEM-Based Payload Analysis of Ti-6Al-4V Flexure Hinges. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 83518, p. V014T14A001. [Google Scholar]
- Mutlu, R.; Alici, G.; in het Panhuis, M.; Spinks, G. Effect of flexure hinge type on a 3D printed fully compliant prosthetic finger. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic of Korea, 7–11 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 790–795. [Google Scholar]
- Rosa, F.; Scaccabarozzi, D.; Cinquemani, S.; Bizzozero, F. Sensor Embedding in a 3D Printed Flexure Hinge. In Design Tools and Methods in Industrial Engineering, Proceedings of the International Conference on Design Tools and Methods in Industrial Engineering, ADM 2019, Modena, Italy, 9–10 September 2019; Springer International Publishing: Cham, Switzerland, 2020; pp. 848–859. [Google Scholar]
- Thomas, J.; Patil, R.S.; John, J.; Patil, M. A Comprehensive Outlook of Scope within Exterior Automotive Plastic Substrates and Its Coatings. Coatings 2023, 13, 1569. [Google Scholar] [CrossRef]
- Ladhari, A.; Kucukpinar, E.; Stoll, H.; Sängerlaub, S. Comparison of properties with relevance for the automotive sector in mechanically recycled and virgin polypropylene. Recycling 2021, 6, 76. [Google Scholar] [CrossRef]
- Hansen, L.A.; Mcnaughton, M.; Kowalewski, A.M.; Chan, A.M.L.; Gaukler, S.M.; Hathcock, C.D. ASER Annual Site Environmental Report 2020; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2022.
- Vieyra, H.; Molina-Romero, J.M.; Calderón-Nájera, J.D.D.; Santana-Díaz, A. Engineering, recyclable, and biodegradable plastics in the automotive industry: A review. Polymers 2022, 14, 3412. [Google Scholar] [CrossRef]
- Chen, F.; Du, Z.J.; Yang, M.; Gao, F.; Dong, W.; Zhang, D. Design and analysis of a three-dimensional bridge-type mechanism based on the stiffness distribution. Precis. Eng. 2018, 51, 48–58. [Google Scholar] [CrossRef]
- Ling, M.; Cao, J.; Zeng, M.; Lin, J.; Inman, D.J. Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms. Smart Mater. Struct. 2016, 25, 075022. [Google Scholar] [CrossRef]
- Fiaz, H.S.; Settle, C.R.; Hoshino, K. Metal additive manufacturing for microelectromechanical systems: Titanium alloy (Ti-6Al-4V)-based nanopositioning flexure fabricated by electron beam melting. Sens. Actuators A Phys. 2016, 249, 284–293. [Google Scholar] [CrossRef]
- Maffiodo, D.; Raparelli, T. Three-fingered gripper with flexure hinges actuated by shape memory alloy wires. Int. J. Autom. Technol. 2017, 11, 355–360. [Google Scholar] [CrossRef]
- Thomas, M.; Kamble, A.D.; John, N. A study on the influence of compatibilizer and mica filler on the properties of thermoplastic polyurethane/polyolefins blends. Chem. Sci. Trans. 2013, 2, 181–191. [Google Scholar] [CrossRef]
Parameters | PP | ABS | HDPE | LDPE/TPU |
---|---|---|---|---|
Filling pressure (bar) | 40 | 43 | 26 | 25 |
Filling speed (%) | 75 | 75 | 65 | 60 |
Filling time (s) | 2 | 2 | 2 | 2 |
Packing pressure (bar) | 45 | 38 | 23 | 20 |
Packing speed (bar) | 75 | 70 | 60 | 60 |
Packing time (s) | 2 | 1 | 1 | 1 |
Temperature (°C) | 200 | 210 | 205 | 200 |
Input (μm) | 0 | 34 | 53 | 64.5 | 74 | 86 | 101.5 | 112.5 | 120 | 132 | 157 |
Output 25% (μm) | 0 | 98 | 202 | 294 | 357 | 425 | 504 | 572 | 627 | 691 | 814 |
Output 20% (μm) | 0 | 100 | 208 | 298 | 361 | 434 | 512 | 600 | 646 | 713 | 839 |
Output 15% (μm) | 0 | 109 | 212 | 301 | 364 | 438 | 527 | 615 | 660 | 726 | 856 |
Output 10% (μm) | 0 | 112 | 219 | 308 | 373 | 458 | 547 | 620 | 666 | 741 | 861 |
Output 5% (μm) | 0 | 121 | 228 | 312 | 384 | 487 | 558 | 626 | 681 | 764 | 867 |
Output 0% (μm) | 0 | 145 | 257 | 339 | 414 | 498 | 584 | 651 | 706 | 797 | 886 |
Input (μm) | 0 | 15 | 27 | 34 | 41 | 45 | 55 | 63 | 70 | 85 | 115 |
Output 25% (μm) | 0 | 82 | 141 | 214 | 285 | 346 | 436 | 482 | 550 | 653 | 739 |
Output 20% (μm) | 0 | 85 | 164 | 207 | 281 | 344 | 435 | 482 | 568 | 661 | 748 |
Output 15% (μm) | 0 | 87 | 174 | 231 | 285 | 357 | 444 | 512 | 599 | 677 | 771 |
Output 10% (μm) | 0 | 96 | 181 | 238 | 286 | 363 | 457 | 531 | 624 | 684 | 773 |
Output 5% (μm) | 0 | 97 | 189 | 246 | 305 | 364 | 467 | 542 | 643 | 713 | 783 |
Output 0% (μm) | 0 | 108 | 204 | 260 | 324 | 399 | 489 | 560 | 666 | 741 | 833 |
Input (μm) | 0 | 15 | 25 | 40 | 50 | 63 | 80 | 95 | 113 | 138 | 175 |
Output 25% (μm) | 0 | 89 | 157 | 228 | 283 | 341 | 413 | 458 | 493 | 524 | 745 |
Output 20% (μm) | 0 | 102 | 160 | 245 | 294 | 360 | 424 | 461 | 507 | 576 | 762 |
Output 15% (μm) | 0 | 105 | 166 | 254 | 309 | 360 | 445 | 502 | 544 | 615 | 785 |
Output 10% (μm) | 0 | 110 | 172 | 264 | 319 | 374 | 474 | 548 | 611 | 684 | 790 |
Output 5% (μm) | 0 | 107 | 178 | 274 | 336 | 415 | 493 | 584 | 646 | 715 | 814 |
Output 0% (μm) | 0 | 115 | 194 | 290 | 353 | 450 | 532 | 608 | 662 | 744 | 857 |
Recycle Ratio | PP | ABS | HDPE |
---|---|---|---|
25% | y1 = 5.728x1 | y7 = 8.249x7 | y13 = 5.668x13 |
20% | y2 = 5.50x2 | y8 = 7.843x8 | y14= 5.404x14 |
15% | y3 = 5.381x3 | y9 = 7.646x9 | y15 = 5.159x15 |
10% | y4 = 5.288x4 | y10 = 7.506x10 | y16 = 4.852x16 |
5% | y5 = 5.183x5 | y11 = 7.233x11 | y17 = 4.616x17 |
0% | y6 = 5.036x6 | y12 = 7.152x12 | y18 = 4.436x18 |
Average ratio | 5.35 | 7.60 | 5.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uyen, T.M.T.; Minh, P.S.; Nguyen, V.-T.; Do, T.T.; Nguyen Le Dang, H.; Nguyen, V.T.T. Amplification Ratio of a Recycled Plastics-Compliant Mechanism Flexure Hinge. Appl. Sci. 2023, 13, 12825. https://doi.org/10.3390/app132312825
Uyen TMT, Minh PS, Nguyen V-T, Do TT, Nguyen Le Dang H, Nguyen VTT. Amplification Ratio of a Recycled Plastics-Compliant Mechanism Flexure Hinge. Applied Sciences. 2023; 13(23):12825. https://doi.org/10.3390/app132312825
Chicago/Turabian StyleUyen, Tran Minh The, Pham Son Minh, Van-Thuc Nguyen, Thanh Trung Do, Hai Nguyen Le Dang, and Van Thanh Tien Nguyen. 2023. "Amplification Ratio of a Recycled Plastics-Compliant Mechanism Flexure Hinge" Applied Sciences 13, no. 23: 12825. https://doi.org/10.3390/app132312825
APA StyleUyen, T. M. T., Minh, P. S., Nguyen, V. -T., Do, T. T., Nguyen Le Dang, H., & Nguyen, V. T. T. (2023). Amplification Ratio of a Recycled Plastics-Compliant Mechanism Flexure Hinge. Applied Sciences, 13(23), 12825. https://doi.org/10.3390/app132312825