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Abstract: The task of fine‑grained named entity recognition is to locate entities in text and classify
them into predefined fine‑grained categories. At present, Chinese fine‑grained NER only uses the
pretrained languagemodel to encode the characters in the sentence and lacks the ability to extract the
deep semantic, sequence, and position information. The sequence annotation method is character‑
based and lacks the processing of entity boundaries. Fine‑grained entity categories have a high
degree of similarity, which makes it difficult to distinguish similar categories. To solve the above
problems, this paper constructs the BILTAR deep semantic extraction module and adds the Glob‑
alPointer module to improve the accuracy of Chinese fine‑grained named entity recognition. The
BILTARmodule is used to extract deep semantic features from the coding information of pretrained
language models and use higher‑quality features to improve the model performance. In the Global‑
Pointermodule, themodel first adds the rotation position encoding information to the feature vector,
using the position information to achieve data enhancement. Finally, the model considers all pos‑
sible entity boundaries through the GlobalPointer module and calculates the scores for all possible
entity boundaries in each category. In this paper, all possible entity boundaries in the text are con‑
sidered by the above method, and the accuracy of entity recognition is improved. In this paper, the
corresponding experiments were carried out on CLUENER 2020 and the micro Chinese fine‑grained
NER dataset, and the F1 scores of the model in this paper reached 80.848% and 75.751%, respectively.
In ablation experiments, the proposed method outperforms the most advanced baseline model and
improves the performance of the basic model.

Keywords: named entity recognition; natural language processing; deep neural networks; feature
extraction; knowledge graph

1. Introduction
Named entity recognition (NER) is a critical task in natural language processing and

an essential component in various NLP technologies, such as information extraction, infor‑
mation retrieval [1], machine translation, and question‑answering systems [2]. The task
of NER is to locate entities in text and predict their categories, providing downstream
tasks with rich entity information. There have beenmany research achievements in coarse‑
grained entity recognition, and the F1 values of various models have far‑exceeded 90%.
However, in the real world, it is not enough to use only coarse‑grained category infor‑
mation, and in most cases, fine‑grained categories are needed to obtain deeper semantic
information from the text. For example, sometimes it may be necessary to predict whether
an organization belongs to the government or a company. However, fine‑grained cate‑
gories have a downside. Fine‑grained categories often have similar categories that are
difficult to distinguish, which presents a challenge in predicting fine‑grained entity types.
For example, when the coarse‑grained category “organization” is split into “government”
and “company”, the two categories are not as easy to distinguish as “organization” and
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“person name”. Therefore, fine‑grained entity recognition is more challenging and valu‑
able for research. The use of simple neural networks such as BERT‑CRF [3] may not ex‑
tract enough semantic information to distinguish between similar fine‑grained categories.
Entity recognition models need a more powerful feature extraction layer to improve the
semantic extraction ability.

In the early days, named entity recognition methods often used the English language,
and there was little research on Chinese entity recognition. With the widespread applica‑
tion of Chinese named entity recognition (CNER), many studies have been carried out on
NER in Chinese, and Chinese NER faces two challenges. The first challenge is that clas‑
sical sequence labeling methods are based on character‑level tagging. The method marks
the characters at the specific positions of the entity. One example is the “B‑I‑O” encod‑
ing method, which represents “B” as the first character of the entity, “I” as the internal
character of the entity, and “O” as the non‑entity character. Due to the problem of van‑
ishing gradients over long distances in RNN networks, many models are unable to extract
long‑distance semantic information and mainly rely on local context for predictions. The
second challenge is that in Chinese, there is a lack of boundary information for each char‑
acter. There are no separators between Chinese characters. But in English, each word is
separated by a space. In general, sequential labeling methods do not carry out special la‑
beling and processing of entity boundaries. Chinese entity boundaries are affected by their
contextual features and semantic information, resulting in a certain degree of ambiguity.
This ambiguity reduces the predictive effectiveness of entity boundaries. At present, most
of the classical entity recognition models use CRF to predict entity labels. Conditional
random fields (CRF) is a conditional probability distribution model of another set of out‑
put sequences given a set of input sequences, which is often used in problems such as
annotation and entity recognition. However, this method belongs to the sequence labeling
method, and the research based on this method generally conducts corresponding labeling
based on characters and lacks the processing of entity boundaries. Therefore, in order to
solve the above problems, the GlobalPointer module came into being. The module uses
the upper triangular matrix to consider all possible entity boundaries and eliminate the
fuzziness of entity boundaries. The GlobalPointer module takes a multi‑step matrix prod‑
uct of two eigenvectors and then performs a dimensional transformation of the product
result to obtain an entity boundary score matrix. The entity boundary score matrix con‑
tains the confidence degree of each boundary for each category, and the module obtains
the corresponding category of each entity boundary through the confidence degree, thus
identifying entities and entity categories.

To address these issues, this paper proposes a Chinese fine‑grained entity recognition
model, Bert‑ATT‑BILTAR‑GlobalPointer. In this model, a multi‑position attention mecha‑
nism is added to denoise the data. The model in this paper extracts deep semantic in‑
formation from the text to compensate for the shortcomings of BERT performance by the
BILTAR module. The model adds rotation position encoding in the GlobalPointer mod‑
ule to increase the position information, and the GlobalPointer module of the model uses
an upper triangular matrix to calculate the scores of all possible entity boundaries in each
category. In comparative experiments, the performance of the proposed model is higher
than that of recent baseline models. In ablation experiments, it is demonstrated that each
submodule of the proposed model can improve the model’s performance among various
module combinations.

The innovation points of this paper are described as follows: (1) Replacing the CRF
in the classical entity recognition model with the GlobalPointer module and adding the ro‑
tation position encoding (RoPE); (2) The multi‑head self‑attention mechanism (ATT) with
multiple positions; (3) The application of a positive–negative direction module (PN) and
time‑step module (TIME) in BILSTM; (4) We added the corresponding innovation mod‑
ules to different module combinations, so as to carry out ablation experiments on each
innovation point of the model. The results of the ablation experiments demonstrate the
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effectiveness of all innovations in this paper. There are 18 groups of ablation experiments
in the ablation experiment chapter.

In real life, text content generally covers a wide range. Each piece of text may contain
several different types of content. In order to improve the recognition ability of the entity
recognition model for multiple fine‑grained categories, the CLUENER2020 dataset was
selected as the first experimental dataset. The CLUENER2020 dataset contains 10 entity
categories, covering the vast majority of real‑life text content. On the Internet, the general
communication information is network language. Such text has the characteristics of be‑
ing short, random, fuzzy, having a complex context, and so on. In order to investigate the
ability of processing network language, we chose a microblog dataset as the second exper‑
imental dataset. The Weibo dataset contains four categories and marks whether the entity
is explicitly or generally referred to.

This paper is divided into five chapters, namely, introduction, related work, model,
experiment, conclusion, and future work. Structurally, this paper first introduces the cur‑
rent status and significance of entity recognition research in the introduction and related
work sections. Then, we describe the specific details of themodel in themodel section. The
effectiveness of the model is analyzed through the experimental section. Finally, the main
work of this paper and future prospects of entity recognition research are summarized in
the conclusion and future work section.

2. Related Work
Generally, there are two types of methods for entity recognition: sequence‑based

methods and span‑based methods. The sequence‑based approach defines entity recogni‑
tion as a sequence labeling problem. In this method, each character is labeled with one or
more labels for entity recognition. Classical sequence labeling methods include the neural
network model [4] (NNS), the hidden Markov model [5] (HMM) and conditional random
fields [6] (CRF). With the wide application of deep learning in natural language process‑
ing, deep learning techniques have been applied to entity recognition tasks. The classic
modules of deep learning include the convolutional neural network [7] (CNN), fully con‑
nected layer [8] (Linear), recurrent neural network [9] (RNN), long short‑termmemory net‑
work [10] (LSTM), and gated recurrent neural network [11] (GRU). For example, Huang
et al. [12] proposed the BILSTM‑CRFmodel, which combines bidirectional LSTM and CRF
to achieve entity recognition. The CNN lacks the extraction of sequence features, so Chiu
et al. [13] combined the cyclic neural network LSTM and the convolutional neural network
CNN to construct a LSTM‑CNNs neural network structure. Themodel uses the CNN to ex‑
tract local features fromword‑level and character‑level features and uses BILSTM to anno‑
tate each element. Ma et al. [14] proposed the BILSTMCNNs‑CRF model, which combines
a CNN, bidirectional LSTM, and CRF to construct a complete end‑to‑end neural network
model for various sequence labeling tasks. For ChineseNER, Zhang et al. [15] proposed the
Lattice‑LSTMmodel, which incorporates Chinese word features into themodel to enhance
entity information. However, the Lattice‑LSTM model is unable to determine the length
and number of Chinese words, whichmay lead to problems such as difficult batch training
and poor generalization ability. To solve these problems, Ma et al. [16] proposed the Soft‑
Lexicon model based on Lattice‑LSTM. This new model improves the running speed and
generalization ability of the Lattice‑LSTMmodel. Zhu et al. [17] proposed a convolutional
attention network (CAN) model. The model adds an attention mechanism on CNNS and
a global attention mechanism on GRNN to extract semantic and contextual information
between characters. Gui et al. [18] proposed a rethinking mechanism and integrated this
mechanism into LR‑CNN (lexiconrethinkingCNN). In this study, encoded information of
binary and ternary words was added to achieve data enhancement.

The span‑based approach defines entity recognition as the classification problem of
entity boundaries. Firstly, all possible entity boundaries are listed, and the semantic fea‑
tures of entity boundaries are extracted by the feature extraction layer. Finally, entities and
entity categories are predicted by the entity prediction module. Compared with sequence‑
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based methods, span‑based methods do not require labeling of individual elements, mak‑
ing them suitable for nested entity recognition tasks. For example, Sohrab et al. [19] pro‑
posed an exhaustive model that enumerates all possible spans and uses LSTM to predict
the categories of generated spans. Xu and Jiang [20] proposed a local detectionmethod that
encodes the span and its context into a fixed‑size feature vector and uses the feature vector
to predict the category of the corresponding entity. Xia et al. [21] separated entity span
extraction and entity type prediction. The study used the overall detector to obtain the
possible entity span and then used the classifier to predict the class of the corresponding
entity. Li et al. [22] proposed a unified NER framework based on word pair relationships.
Themodel constructs a table of all possible entity spans and predicts the categories of these
entity spans.

A span‑based approach can also be implemented by adding a network of pointers to
the network model. Pointer networks can generate output sequences of variable lengths.
They break the limitation of fixed sequence length in the general sequence‑to‑sequence
model. The entity recognition model based on a pointer network takes text as input data,
first predicts the beginning and end boundaries of the entity to obtain the entity boundary,
and then calculates the representation of the entity boundary to predict the entity type
corresponding to the entity boundary. Zhai et al. [23] added a pointer network on the
model to implement sequence partitioning and annotation. Li et al. [24] used aGRUneural
network on the feature extraction layer to extract the semantic features of the data and used
a pointer network to eliminate the fuzziness of the entity boundary. The pointer network
has an obvious effect in dealing with nested entities, but the pointer network generally
transforms the multi‑entity extraction into multiple binary classification problems, so the
model may converge too slowly when the sequence is too long.

In the traditional entity recognition or reading comprehension pointer network, the
head and tail boundaries of the entity are extracted with two different modules, which
brings about inconsistencies between training and prediction. To solve the problem of
the pointer network, Su et al. [25] proposed the GlobalPointer module. The GlobalPointer
module enumerates all entity boundaries and computes the confidence levels of the entity
boundaries on each class through the upper trigonometric matrix. This confidence level is
used to predict entities and entity classes. GlobalPointer is designed to address inconsisten‑
cies in common pointer networks. It takes the beginning and end of the physical boundary
as a whole, so it is more “global”. Zhang et al. [26] used the GlobalPointer module to pre‑
dict entities and add a RoBERT pretrained language model on the feature extraction layer
to extract character‑level features. Sun et al. [27] proposed the nezhan‑cnn‑globalpointer
architecture, which adds an annotation semantic network and uses multi‑granularity con‑
text semantic information to improve the semantic extraction ability of the entity recogni‑
tion model.

Through the analysis of the two main methods in entity recognition, it is concluded
that the span‑based method can avoid the element labeling error of the sequence method,
and the powerful feature extraction layer is suitable for the fine‑grained entity recognition
task. Therefore, this paper adopts the GlobalPointer module to implement the span‑based
method and adds the rotation position encoding to increase the feature’s positional infor‑
mation in the GlobalPointer module. This paper proposes the BILTAR module to extract
deep semantic information from data. In this paper, the attention mechanism is added in
several positions of the model to reduce the noise of the data and improve the data quality.
Finally, this paper proposes the Chinese fine‑grained entity recognition model Bert‑ATT‑
BILTAR‑GlobalPointer.

3. Model
This paper proposes the Chinese fine‑grained entity recognition model Bert‑ATT‑

BILTAR‑GlobalPointer. The model first uses the BERT layer to encode the text into word
vectors. BILTAR is used to extract the deep semantic features of the text, and the posi‑
tion information is added to the features by rotation position encoding. Finally, the model
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uses the GlobalPointer module to compute each possible entity boundary and extract all
entities. Figure 1 shows the overall framework of the model proposed in this paper. In
Figure 1, circular blocks represent vectors, rectangles represent input text, and rounded
rectangles represent modules. In Figure 1, “北京大学” is a Chinese text that represents the
input instance of the model.
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3.1. Word Embedding Layer
In order to encode text intoword vectors and extract certain semantic information, the

pretrained language model BERT is used as the word embedding layer to extract semantic
information from the text.
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The pretrained language model BERT [28] is composed of a word embedding layer
and multiple transformer modules. Its word embedding layer uses a variety of text in‑
formation as input to calculate the word vector representation of the text. Its multiple
stacked transformer modules extract the deep semantic features of the text vectors. The
BERT model adopts two pretraining methods, the Masked Language Model (MLM) and
Next Sentence Prediction (NSP). The MLM tasks tend to extract markup‑level represen‑
tations and implement gestalt tasks by masking random positions in the sequence. This
task desensitizes the BERTmodel to specific masking locations in order to obtain semantic
information for each location in the sequence.

The NSP task first selects a sentence as the previous sentence, selects the next sen‑
tence as the next sentence with a 50% probability, and, finally, determines whether the two
sentences are upper and lower sentences. This task is able to improve the BERT model’s
perception of the relationships between sentences. Therefore, the BERT model is used as
the word embedding layer of the model, and the BERT model provides more semantic
information for the feature‑extraction module, BILTAR.

3.2. Multi‑Head Self‑Attention Mechanism
The entity recognition dataset may contain some useless information or noise. BERT

modelsmay struggle to represent completely clean semantic information. In order to solve
the above problems, an attention mechanism [29] is used to highlight the important infor‑
mation of feature vectors and reduce the noise, thus improving the performance of the
model. In order to extract semantic information from more dimensions, we use a multi‑
head self‑attention mechanism to denoise data at multiple locations in the model. Figure 2
shows the structural diagram of the multi‑head self‑attention mechanism. In Figure 2, the
rounded rectangle represents a module, and the circle represents a vector.
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Taking the eight‑head self‑attention mechanism module as an example, this paper
introduces the working principle of the multi‑head self‑attention mechanism. Input is
the input vector of the attention module, and the dimension of it is (batch_size, seq_size,
word_embedding_size). The input is passed through three different fully connected layers
to obtain the encoded data Qall , Kall , and Vall . The calculation formulas for Qall , Kall , and
Vall are shown in Equations (1)–(3), respectively. The dimensions ofWq,all ,Wk,all , andWv,all
are (word_embedding_size, word_embedding_size); batch_size is the batch size formodel
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training and validation; seq_size is the sequenced length of the text; and the value called
word_embedding_size is the dimension of the word vector.

Qall = Wq,all × Input + biasq,all (1)

Kall = Wk,all × Input + biask,all (2)

Vall = Wv,all × Input + biasv,all (3)

The keys Kall , values Vall , and query Qall vectors are split into 8 parts along the last
dimension, and the last dimension d_last is split into two dimensions (8, d_last/8). The sec‑
ond and third dimensions of the vectors are swapped, resulting in the query, key, and value
vectors Qatt, Katt, and Vatt of the 8‑head self‑attention mechanism. Compared with the
single‑head attention mechanism, the multi‑head attention mechanism extracts important
information from more dimensions from the same data, resulting in higher‑quality data.
Formula (4) shows the dimension changes of the key, value, and query vectors. batch_size
is the batch size when the model is trained, seq_size is the length of each text sequence, and
word_embedding_size is the dimension of the word vector.

The key and value vectors are multiplied to obtain the attention score, and the atten‑
tion score is divided by the length of the last dimension d_last/8 in the key vector to prevent
the attention score from being too large.

Qall(batch_size, seq_size, word_embedding_size)
→ Qatt(batch_size, 8, seq_size, word_embedding_size/8)
Kall(batch_size, seq_size, word_embedding_size)
→ Katt(batch_size, 8, seq_size, word_embedding_size/8)
Vall(batch_size, seq_size, word_embedding_size)
→ Vatt(batch_size, 8, seq_size, word_embedding_size/8)

(4)

The attention score and the value vector are multiplied to obtain the output vector
Output f irst. The model combines the last two dimensions (8, d_last/8) of the output vector
Output f irst into one dimension d_last to obtain the intermediate output vectorOutputmiddle.
The calculation formula for this step is shown in Formula (5).

Att_score = (Qatt ∗ Katt)/(d_last/8)
Output f irst = Att_score ∗ Vall
Output f irst(batch_size, 8, seq_size, word_embedding_size/8)
→ Outputmiddle(batch_size, seq_size, word_embedding_size)

(5)

The output vectorOutputmiddle is passed through a fully connected layer and adropout
layer. The dropout layer is used to prevent the model from over‑fitting. The output

Outputlast = Laynorm(Dropout(Outputmiddle
∗Wlast + biaslast) + Input)

(6)

is summed with the original input data to retain the necessary information of the origi‑
nal input vector. The layer‑normalization layer Laynorm is used to adjust the value of
the output vector to a suitable range. The dimension of Wlast is (word_embedding_size,
word_embedding_size). The calculation formula of the final output feature is shown in
Equation (6).

3.3. BILTAR Module
The BILTARmodule is composed of a BILSTM, TIME layer, attention mechanism, PN

forward–backwardmodule, and residual structure. Themodel first puts the feature vector
into the BILSTM to obtain the forward and backward temporal information. Then, the
PN module separates the forward and backward temporal information, and each piece of
temporal information is processed separately through its own attention module and TIME
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layer to obtain two feature vectors, ATT and TIME. These two feature vectors, ATT and
TIME, are summed to obtain the deep semantic feature vectors L_post and L_neg for the
forward and backward sequences, respectively; and these two vectors, L_post and L_neg,
are summed to obtain the final deep semantic information.

3.3.1. BILSTMModule
The BILTAR module adjusts the dimension of the output vector to make the feature

vector size suitable for the GlobalPointer module. The method of changing the dimension
is as follows:

Set the output vector dimension of the LSTM to change the last dimension of the fea‑
ture vector to ent_type_size*inner_dim*2 and obtain a feature vector with a dimension of
(batch_size, seq_len, ent_type_size*inner_dim*2).

Split the last dimension of the eigenvector to obtain a feature vector with a dimension
of (batch_size, seq_len, ent_type_size, inner_dim*2).

In the last dimension of the feature vector, take the first inner_dimvalues as the feature
vector q, and the last inner_dim values as the feature vector k. The dimensions of q and
k are (batch_size, seq_len, ent_type_size, inner_dim). The feature vectors q and k are the
inputs of the GlobalPointer module.

The BILSTM is used to extract sequence information from data, the TIME layer is
used to encode features at each position of the sequence, the attention mechanism is used
to denoise the data, the PN forward–backward module is used to refine the forward and
backward sequence information, and the residual structure is used to fuse different fea‑
tures. The following describes each structure block of the BILTAR module in detail.

The BILSTM is a classic neural network structure that processes sequence data. Text
data are also sequence data, so the entity recognition task is very suitable for using BIL‑
STM to obtain the sequence information of the text. RNN has a problem of long‑term
dependency and struggles to remember long sequence information. Therefore, the LSTM
structure is used to increase the model’s memory capacity for long‑term sequences, so that
the model can extract more long‑time sequence information. There is an inevitable connec‑
tion between the entity and the entity context, so BILSTM is used to obtain the sequence
information of the entity context.

At the same time, the forward and backward sequence information may not be the
same. Therefore, LSTM is upgraded to BILSTM in order to obtain the forward and back‑
ward sequence information, so as to obtain the semantic information of the sequence from
more dimensions. Figure 3 shows the structure diagram of the bidirectional recurrent neu‑
ral network BILSTM.
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Figure 3. Bidirectional recurrent neural network BILSTM.

In this paper’s model, the BILSTM is a one‑layer structure. Taking the internal struc‑
ture of a one‑layer BILSTM as an example, this paper introduces the implementation prin‑
ciple of BILSTM. The single‑layer BILSTM consists of two different LSTMs [30]. One layer
of LSTMs is responsible for the forward propagation of the data to obtain the forward
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information of the sequence. Another layer of LSTM is responsible for the backward prop‑
agation of the data to obtain the backward information of the sequence. The forward and
backward information are concatenated to obtain the output vector of the BILSTM.

The LSTM unit consists of an input gate it, a forget gate ft, an output gate ot, and a
candidate memory cell gt. Based on the input data xt and the previous hidden state ht−1,
the values of the three gates and the candidate memory cell gt are calculated. The forget
gate ft and the candidate memory cell gt are multiplied to delete some useless memory
information. The input gate it and the candidate memory cell gt are multiplied to obtain
the necessary memory information. The sum of the two inner products is the memory cell
ct at this time step. After passing through the tanh activation function, the memory cell ct
is multiplied by the value of the output gate to obtain the hidden state ht at this time step.
The calculation formula for the LSTM unit is shown in Equation (7).

it = σ(Wii ∗ xt + bii + Whi ∗ h(t−1) + bhi)

ft = σ(Wi f ∗ xt + bi f + Wh f ∗ h(t−1) + bh f )

gt = tanh(Wig ∗ xt + big + Whg ∗ h(t−1) + bho)

ot = σ(Wio ∗ xt + bio + Who ∗ h(t−1) + bho)

ct = ft ∗ c(t−1) + it ∗ gt
ht = ot ∗ tanh(ct)

(7)

3.3.2. TIME Module
In the TIME layer, each data point in the sequence is processed separately without

data interaction between different time points. This layer requires a sequence as input, so
it is generally added after the LSTM network. This layer separately calculates the data for
each time point on the LSTM output sequence. Therefore, this paper places this layer be‑
hind BILSTM to process each data point, that is, eachword. The TIMEmodule implements
separate processing of the data at each point in time.

In the TIME layer of this paper’s model, the internal implementation network is an en‑
coder consisting of four fully connected layers. The first two fully connected layers serve as
encoders and reduce the feature dimension from lstm_hidden_size to the specified value
of 10. The last two fully connected layers serve as decoders and increase the feature dimen‑
sion from 10 back to lstm_hidden_size. Therefore, the TIME layer can encode each data
point and extract deep semantic information. lstm_hidden_size is the output dimension
of the BILSTM, that is, ent_type_size*inner_dim*2. The process of forward propagation at
the TIME layer is described as follows. The feature is firstly reduced by the first encoder
to obtain the high‑density encoding feature. The encoding feature is then raised by the
second encoder to obtain the feature vector of the same size as the original feature. The
second encoder decodes the encoding feature. The TIME layer finally outputs the encoded
feature vector.

In the following chapters, this paper conducts ablation experiments on fully connected
encoders with different numbers of layers and finds that the encoder has the best perfor‑
mance under four fully connected layers. The structure of TIME is shown in Figure 4.

3.3.3. PN Module
The PN module separates the forward and backward temporal information in the

output vector of the BILSTM. Each piece of temporal information passes through its own
attention module and TIME layer to obtain two eigenvectors, ATT and Time. ATT and
Time have stronger temporal information and time unit semantic information, respectively.
These two feature vectors are fused through residual summation to obtain forward and
backward information, and the forward and backward information is similarly fused
through residual summation to obtain the final deep semantic vector.

The later comparative experiments show that the fusion method of summing the
forward and backward semantic information is more effective than the fusion method
of concatenation.
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3.3.4. GlobalPointer
The GlobalPointer module is a nested entity recognition model proposed by Su et al.

The module consists of two parts: rotation position encoding and entity boundary score
calculation. Su. [31] pointed out that experimental results show that adding rotation posi‑
tion encoding to the GlobalPointer module can significantly improve the performance of
themodel. Ablation experiments in later chapters demonstrate the effectiveness of rotation
position encoding and solid boundary calculations.

Firstly, the GlobalPointer module first uses rotation position encoding (RoPE) to ex‑
tract the position information for the sequence, and then injects the position information
into the feature vector. If themodel is not sensitive enough to entity boundaries, themodel
might predict the start boundary of the previous entity and the end boundary of the next
entity as one entity boundary. To address these issues, the GlobalPointer module uses en‑
tity boundary score calculations to make the model more sensitive to entity boundaries,
which prevents this from happening.

The other part of the GlobalPointer module is entity boundary score calculations. The
BILTAR module extracts deep semantic feature vectors q and k. The model adds rotation
position encoding information to the two feature vectors, and finally obtains the input data
of the entity boundary score calculations part. The inner product of vectors q and k is the
scorematrix of the entity boundaries corresponding to each class. Since q and k have a cate‑
gory dimension, each value on this dimension corresponds to a category, and the resulting
score vector has a dimension of (batch_size, ent_type_size, seq_len, seq_len). The model
excludes invalid entity boundaries for each categorical matrix. The final entity boundary
score matrixes contain the scores for all possible entity boundaries in each category.

The entity boundary represented by the element (a, b, c, d) of the score matrix is the
entity boundary T from index c to index d on the text sequence in training batch a, and the
element value is the score of the entity boundary T in category (b + 1). Figure 5 shows the
corresponding matrix for the score vector for the example text “北京大学”.

Figure 5 shows the scores of the “北京大学” sequence in the person name, place name
and organization categories. In Figure 5, “北京大学” is a Chinese text, and every two suc‑
cessive characters build a Chinese entity boundary in the matrix. Each upper triangular
matrix represents the score of each subsequence in the corresponding category. For ex‑
ample, in the first figure, the scores of all subsequences in the person name category are
0, indicating that there is no person name entity in the predicted result for this sequence.
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In the second figure, the subsequence (0, 1) has a score of 1 in the place name category,
indicating that the entity fragment “北京” is a place name entity, and so on.
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4. Experiment
4.1. Datasets

This paper uses two fine‑grained Chinese entity recognition datasets, namely, the
CLUENER2020 and Weibo datasets.

CLUENER2020 [32] is a Chinese fine‑grained named entity recognition dataset based
on the THUCTC open‑source text classification dataset from Tsinghua University.
CLUENER2020 contains 10 tag types, including organization, name, address, company,
government, book title, game, movie, organizational structure, and attractions. Compared
with other available Chinese datasets, CLUENER2020 is annotated with more categories
and details, making it more challenging and difficult. Table 1 lists the information statistics
of the CLUENER2020 dataset.

Table 1. Statistics of the datasets.

Dataset Train Dev Test Classes Total Number

CLUENER 2020 10,748 1343 Null 10 12,091
Weibo 1350 270 270 8 1890

The Weibo dataset [33] is a Chinese fine‑grained named entity recognition dataset
from the social media field. This dataset consists of four entity types: personal names
(PRE), place names (LOCs), organization names (ORG), and geopolitical entities (GEPs).
Each type is further divided into two categories: explicit entities (NAM) and generic enti‑
ties (NOM). The Weibo dataset can test the model’s ability to distinguish between explicit
and generic entities. Table 1 lists the information statistics of the Weibo dataset.

4.2. Experimental Metrics
To evaluate the performance of themodel and compare the effects of differentmodels,

this paper uses three metrics: P (precision), R (recall), and F (F1 score). Among them, P
represents the ratio of correctly identified entities to all identified entities, R represents
the ratio of correctly identified entities to all entities that should be identified, and F is a
comprehensive evaluation index that combines P and R. The formulas for calculating the
three metrics are shown in Equations (8)–(10).

P = TP/(TP + FP)× 100% (8)

R = TF/(TP + FN)× 100% (9)

F = 2 × P × R/(P + R)× 100% (10)

In the above equations, TP represents the number of samples that are actually positive
and predicted as positive, FP represents the number of samples that are actually negative
but predicted as positive, and FN represents the number of samples that are actually posi‑
tive but predicted as negative.
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4.3. Parameter Settings
This paper uses Python 3.8.16 andPyTorch 1.12.0 as the configuration environment for

the experiments. The BERT pretrained language model is used to generate word vectors.
Table 2 shows the settings of the hyperparameters used in the experiments. The value
d_classes represents the number of categories for every dataset.

Table 2. Setting of the hyperparameters used in the experiment.

Parameter Value

BILSTM hidden size 128*d_classes
Number of BILSTM layers 1

Dropout rate 0.5
Optimizer Adam

Learning rate 2 × 10−5
Epoch 20 (CLUENER2020)/50 (Weibo)

Batch size 64
Bert output dimension 768

Learning rate adjustment strategy CosineAnnealingWarmRestarts
(CLUENER2020)/MultiStepLR (Weibo)

BERT Bert‑base‑chinese

4.4. Comparative Experiment
4.4.1. Baseline Models

To prove the effectiveness of the model, comparison experiments were conducted to
compare the proposed model with baseline models and classic entity recognition neural
network models proposed in recent years. The comparison results are shown in Tables 3
and 4. Bold data indicates the highest value of the corresponding indicator in the table.

Table 3. Contrast experiments of CLUENER2020 dataset.

Compare Models P% R% F1%

BERT‑ATT‑BILTAR‑GLOBALPOINTER 80.485 81.270 80.848
BERT‑GLOBALPOINTER 78.683 80.839 79.697

BERT‑CRF 72.337 80.273 76.099
BERT‑IDCNN‑CRF 74.244 78.352 76.243
BERT‑BILSTM‑CRF 73.396 80.468 76.770

BERT‑BILSTM‑IDCNN‑CRF 73.689 78.678 76.102

Table 4. Contrast experiments of Weibo dataset.

Compare Models P% R% F1%

BERT‑ATT‑BILTAR‑GLOBALPOINTER 79.227 72.720 75.751
BERT‑GLOBALPOINTER 71.691 67.838 69.644

BERT‑CRF 62.831 69.607 66.046
LLPA 57.440 67.010 61.860
MFT 63.720 65.030 64.380

BERT + para‑lattice + CRF 68.920 69.740 70.570
AT‑CBGP 74.110 68.700 71.190

BERT + BILSTM + CRF 55.701 62.254 58.796

BERT‑CRF encodes the semantic features of the text with the BERTmodel and applies
the CRF layer for sequence decoding to obtain the prediction results. BERT‑GlobalPointer
uses rotation position encoding (RoPE) on the output features of the BERTmodel to add po‑
sition information and extracts entities by calculating the score of the entity boundary in the
diagonal matrix. AT‑CBGP [34] improves the robustness and generalization of the model
by adding an adversarial neural network on the GlobalPointer module. LLPA [35] adds
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relative position encoding on the bidirectional Lattice‑LSTM module. MFT [36] adds Chi‑
nese word root information and improves the structure of the transformer. BERT + para‑
lattice + CRF [37] adds Chinese character vectors as features to enhance performance.

This paper proves the effectiveness of the proposed model on the CLUENER2020
dataset by comparing its performance with that of classic models in comparative exper‑
iments. The following models are classic entity recognition network structures that were
reimplemented in this paper. BERT‑CRF extracts the semantic information of the text with
the BERT layer and learns the constraint information between entity tags with the CRF
conditional random field. On the basis of the BERT‑CRF module, three complex entity
recognition models are created by adding the feature extraction layer IDCNNmodule, the
BILSTM module, and the IDCNN‑BILSTM module, respectively, to obtain four classic en‑
tity recognition models.

The experimental results of AT‑CBGP, LLPA, MFT, and BERT + para‑lattice + CRF are
the experimental results of other papers, and the remaining six baseline models are the ex‑
perimental results obtained by reproducing other papers’ models. TheWeibo dataset is di‑
vided into training, testing, and validation sets. The training method on theWeibo dataset
is to verify the validation set after each round of training, and after 50 rounds of training,
the model selects the model parameters with the highest performance on the validation
set, tests the performance on the test set with the best model parameters, and the experi‑
mental results on the test set are the final results of the model. The CLUENER 2020 dataset
is divided into training and validation sets. The training method on the CLUENER2020
dataset is to validate the validation set after each round of training, and after 20 rounds of
training, the model selects the best performance on the validation set as the final result of
the model.

4.4.2. Comparative Experiment
Tables 3 and 4 show the comparative experimental results of the proposed model

on the CLUENER2020 dataset and the Weibo dataset. The analysis of the comparative
experiments is as follows.

According to the comparison between BERT‑ATT‑BILTAR‑GlobalPointer and BERT‑
GlobalPointer, the F1 value of themodel increased by 1.151%on theCLUENER2020dataset
and increased by 6.107% on the Weibo dataset. BERT‑ATT‑BILTAR‑GlobalPointer adds
the BILTAR module and attention mechanism to BERT‑GlobalPointer. The improvement
in performance shows that the BITAR module can extract deeper semantic information,
and the attention mechanism can highlight important information, thereby improving the
performance of the model.

In the comparative experiments on theWeibodataset, comparedwith the LLPAmodel,
the F1 value of the proposed model was increased by 13.89%. Compared with the MFT
model, the F1 value of the proposed model was increased by 11.37%. Compared with
BERT + para‑lattice + CRF, the F1 value of the proposed model was increased by 5.18%.
Compared with AT‑CBGP, the F1 value of the proposed model was increased by 4.56%.
The experimental results prove that the combination of the GlobalPointer module and the
deep semantic feature extraction layer BILTAR can achieve good performance of themodel.

Comparative experiments on the two datasets show that the entity boundary score
calculation method of GlobalPointer is significantly better than the sequence decoding
method of CRF. The BILTAR feature extraction layer is significantly better than the BIL‑
STM and BILSTM‑IDCNN modules. The BILTAR module is superior to the IDCNN mod‑
ule in terms of both model parameter volume and performance. Splitting the forward and
backward information separately in the BILSTM module can extract more sequence infor‑
mation, adding attention mechanisms at multiple positions can denoise the features, and
adding the TIMEmodule on the output of BILSTM can extract more semantic information
based on each word.
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4.5. Ablation Experiments
The BILTAR module of this study is divided into six ablation experiment modules.

The six modules are the attention mechanism module ATT, the positive and negative di‑
rectionmodule PN, the timemodule TIME, the rotation position encoding RoPE, the entity
boundary score calculation of GlobalPointer, and the overall BILTAR module. This study
adopted themethod of controlling variables for the experimental design. In order to prove
the effectiveness of the six modules, this study used uniform data processing methods,
the same operating environment, and training parameter settings. The only difference be‑
tween the models existed in the different structural compositions, and the common parts
were consistent. The hyperparameters of the models are the same when the models are
trained on the same dataset. A total of 18 module combinations were tested in the abla‑
tion experiment. Table 5 shows the ablation experiment results of the modules. Bold data
indicates the highest value of the corresponding indicator in the table.

Table 5. Eighteen ablation experiments of the present model.

CLUENER2020 Weibo

Compare Models P% R% F1% P% R% F1%

BERT‑ATT‑BILTAR‑GlobalPointer 80.485 81.270 80.848 79.227 72.720 75.751
BERT‑BILTAR‑GlobalPointer 80.203 79.611 79.845 70.034 60.886 65.019

BERT‑GlobalPointer 78.683 80.839 79.697 71.691 67.838 69.644
BERT‑ATT‑GlobalPointer 76.746 81.047 78.801 76.533 67.004 71.116

BERT‑BiLSTM‑GlobalPointer 76.638 80.233 78.370 71.625 68.167 69.767
BERT‑ATT‑BiLSTM‑ATT‑GlobalPointer 78.689 81.778 80.162 67.894 70.224 68.882

BERT‑ATT‑BiLSTM‑PNATT‑GlobalPointer 79.858 79.775 79.773 75.468 68.006 71.451
BERT‑BiLSTM‑PNTIMER‑GlobalPointer 75.394 81.580 78.337 72.701 70.223 71.306

BERT‑BiLSTM‑PN‑GlobalPointer 75.602 81.716 78.515 69.242 68.885 69.012
BERT‑BiLSTM‑TIMER‑GlobalPointer 76.715 79.956 78.274 70.780 64.475 67.352

BERT‑BiLSTM‑ATT‑TIMER‑GlobalPointer 78.752 80.751 79.731 72.603 73.487 72.749
BERT‑ATT‑BiLSTM‑ATT‑TIMER‑GlobalPointer 79.608 81.856 80.683 76.927 67.653 71.939

BERT‑BILTAR‑CRF 73.064 80.175 76.455 62.272 67.156 64.622
BERT‑CRF 72.337 80.273 76.099 65.446 70.098 67.692

BERT‑ATT‑BILTAR‑CRF 74.182 79.785 76.882 62.962 66.666 64.761
BERT‑ATT‑CRF 74.133 67.653 71.939 62.831 69.607 66.046

BERT‑ATT‑BILTAR‑GlobalPointer(without RoPE) 79.628 80.330 79.948 76.342 65.979 70.778
BERT‑GlobalPointer(without RoPE) 77.421 80.850 79.237 66.719 68.568 67.306

This study conducted five ablation experiments on the encoder of the TIME module
by changing the number of fully connected layers and found that the encoder composed
of two fully connected layers and the decoder composed of two fully connected layers had
the best performance as the encoder of the TIMEmodule. Below are the introductions and
analyses of each ablation experiment:

4.5.1. Ablation Experiments of Rotation Position Encoding RoPE
To prove the effectiveness of the rotation position encoding RoPE, this study removed

the RoPE from the GlobalPointer module and conducted two comparative experiments.
In the comparison between BERT‑ATT‑BILTAR‑GlobalPointer and BERT‑ATT‑

BILTAR‑GlobalPointer (without RoPE), the F1 value of the model decreased by 0.841%
on the CLUENER2020 dataset, and the F1 value of the model decreased by 4.972% on the
Weibo dataset.

In the comparison between BERT‑GlobalPointer and BERT‑GlobalPointer (without
RoPE), the F1 value of the model decreased by 0.460% on the CLUENER2020 dataset, and
the F1 value of the model decreased by 2.338% on the Weibo dataset.

Therefore, it is shown that the rotational position encoding RoPE can extract the po‑
sition information of the sequence, thereby improving the predictive ability of the model.
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Putting rotation position encoding into the GlobalPointer module has significant perfor‑
mance on Twitter datasets.

4.5.2. Ablation Experiments of Entity Boundary Score Calculation of GlobalPointer
To prove that the entity boundary score calculation method of GlobalPointer was bet‑

ter than the conditional random field (CRF), this study replaced the CRF module with the
GlobalPointer module and conducted four comparative experiments.

In the comparison between BERT‑GlobalPointer and BERT‑CRF, the F1 value of the
model increased by 3.597% on the CLUENER2020 dataset, and the F1 value of the model
increased by 1.952% on the Weibo dataset.

In the comparison between BERT‑ATT‑BILTAR‑GlobalPointer and BERT‑ATT‑
BILTAR‑CRF, the F1 value of themodel increased by 3.965% on the CLUENER2020 dataset,
and the F1 value of the model increased by 10.990% on the Weibo dataset.

In the comparison between BERT‑BILTAR‑GlobalPointer and BERT‑BILTAR‑CRF, the
F1 value of the model increased by 3.390% on the CLUENER2020 dataset, and the F1 value
of the model increased by 0.397% on the Weibo dataset.

In the comparison between BERT‑ATT‑GlobalPointer and BERT‑ATT‑CRF, the
F1 value of the model increased by 6.862% on the CLUENER2020 dataset, and the F1 value
of the model increased by 5.069% on the Weibo dataset.

Through the four experiments, it is found that the F1 value of the model can increase
significantly by replacing the CRF layer with the GlobalPointer module in various module
combinations. Therefore, it is concluded that the performance of theGlobalPointermodule
is superior to that of the CRF layer. The span‑based GlobalPointer module avoids the CRF
problem of predicting invalid element labels with the sequence tagging method.

4.5.3. Ablation Experiments of Attention Mechanism
To demonstrate the effectiveness of the attention mechanism, this study conducted

five comparative experiments by adding attention mechanisms to multiple locations in
the model.

In the comparison between BERT‑ATT‑BILTAR‑GlobalPointer and BERT‑BILTAR‑
GlobalPointer, the F1 value of themodel increased by 0.944%on theCLUENER2020dataset
and by 10.732% on the Weibo dataset.

In the comparison between BERT‑ATT‑GlobalPointer and BERT‑GlobalPointer, the F1
value of the model did not improve on the CLUENER2020 dataset but increased by 1.471%
on the Weibo dataset.

In the comparison between BERT‑ATT‑BiLSTM‑ATT‑GlobalPointer and BERT‑
BiLSTM‑GlobalPointer, the F1 value of the model increased by 1.792% on the
CLUENER2020 dataset but did not improve on the Weibo dataset.

In the comparison between BERT‑ATT‑BiLSTM‑PNATT‑GlobalPointer and BERT‑
BiLSTM‑PN‑GlobalPointer, the F1 value of the model increased by 1.257% on the
CLUENER2020, and the F1 value of the model increased by 2.438% on the Weibo dataset.

In the comparison between BERT‑ATT‑BILTAR‑GlobalPointer and BERT‑BiLSTM‑
PNTIMER‑GlobalPointer, the F1 value of the model increased by 2.451% on the
CLUENER2020 dataset, and the F1 value of the model increased by 4.445% on the
Weibo dataset.

The experiments show that adding the attentionmechanism tomostmodule combina‑
tions can improve the F1 value of the models. It can be concluded that processing features
with an attention mechanism in most positions can achieve a denoising effect and improve
the performance of the model.

4.5.4. Ablation Experiments of the Time‑Step Function
In the comparison between BERT‑ATT‑BILTAR‑GlobalPointer and BERT‑ATT‑

BiLSTM‑PNATT‑GlobalPointer, the time‑stepmodule TIMEbehindPNwas added. On the
CLUENER2020 dataset, the F1 value of the model increased by 1.016%, and on the Weibo
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dataset, the F1 value of the model increased by 4.300%. This indicates that the time‑step
module TIME canmine deep semantic information ofwords and improve the performance
of the model. It should be noted that the model generally does not converge if the output
vector of the time‑step function is not residualwith the output vector of the attention vector
or the output vector of the BERT layer.

4.5.5. Ablation Experiments of the Positive–Negative Module PN
To demonstrate the effectiveness of the positive–negative module PN, this study con‑

ducted five comparative experiments by adding PN behind the BILSTM module.
In the comparison between BERT‑BILTAR‑GlobalPointer and BERT‑BiLSTM‑ATT‑

TIMER‑GlobalPointer, the F1 value of themodel increased by 0.114%on theCLUENER2020
dataset but did not improve on the Weibo dataset.

In the comparison between BERT‑BiLSTM‑PN‑GlobalPointer and BERT‑BiLSTM‑
GlobalPointer, the F1 value of themodel increased by 0.145%on theCLUENER2020dataset
but did not improve on the Weibo dataset.

In the comparison between BERT‑BiLSTM‑PNTIMER‑GlobalPointer and BERT‑
BiLSTM‑TIMER‑GlobalPointer, the F1 value of the model increased by 0.063% on the
CLUENER2020 dataset and by 3.954% on the Weibo dataset.

In the comparison between BERT‑ATT‑BILTAR‑GlobalPointer and BERT‑ATT‑
BiLSTM‑ATT‑TIMER‑GlobalPointer, the F1 value of the model increased by 0.106% on the
CLUENER2020 dataset and by 3.812% on the Weibo dataset.

This study conducted four comparative experiments on the PN module and found
that adding the PNmodule to most module combinations can improve the F1 value of the
models. It can be concluded that separately processing the forward and backward outputs
of the BILSTM module can extract more sequence information.

4.5.6. Ablation Experiments of the BLITAR Module
To demonstrate the effectiveness of the BLITAR module, this study conducted five

comparative experiments by adding the BLITAR module to the experimental model.
In the comparison between BERT‑ATT‑BILTAR‑GlobalPointer and BERT‑ATT‑

GlobalPointer, the F1 value of themodel increased by 1.987%on theCLUENER2020dataset
and by 4.635% on the Weibo dataset.

In the comparison between BERT‑BILTAR‑GlobalPointer and BERT‑GlobalPointer,
the F1 value of the model increased by 0.148% on the CLUENER2020 dataset but did not
improve on the Weibo dataset.

In the comparison between BERT‑BILTAR‑CRF and BERT‑CRF, the F1 value of the
model increased by 0.678% on the CLUENER2020 dataset but did not improve on the
Weibo dataset.

In the comparison betweenBERT‑ATT‑BILTAR‑CRF andBERT‑ATT‑CRF, theF1 value
of the model increased by 0.530% on the CLUENER2020 dataset but did not improve on
the Weibo dataset.

Adding the BLITAR module to the model combinations did not have a significant ef‑
fect on the model performance with CRF on the Weibo dataset. However, adding the BLI‑
TAR module to the BERT‑ATT‑GlobalPointer model improved the F1 value of the model.
Therefore, the BLITAR module can extract deeper semantic information from text
sequences. Compared with the CRF, the BILTAR module is more suitable for the Glob‑
alPointer module.

Compared to CRF modules, it is better to add a GlobalPointer module after the BIL‑
TAR module under the same conditions.

Through these four module combination experiments, it is shown that the BILTAR
module can extract the deep features of the text sequence. In the BILTARmodule, BILSTM
can extract the connections between words, the PN module processes the forward and
backward information of the sequence, respectively, the attention mechanism denoises
the data, the TIME module encoder extracts the deep semantic features of the words, the
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residual summation method efficiently fuses the forward and backward information of
the sequence, and the fused information is the deep semantic information of the sequence.
Finally, the effect of the model is improved by the various submodules in the
experimental results.

4.5.7. Ablation Experiment on the Number of Fully Connected Layers in TIME Module
The encoder of the TIME module changes the number of fully connected layers to

do five groups of ablation experiments and compare the experimental effect. The experi‑
mental results show that the model performs best when the encoder is set with two fully
connected layers and the decoder also with two fully connected layers. It is concluded
that the TIME module can extract deeper semantic information by feature dimension re‑
duction and dimension increase. (A,b) indicate that the encoder of the module has A fully
connected layers and the decoder has B fully connected layers. (A) indicates that the mod‑
ule consists of A fully connected layers. The experimental results are shown in Table 6.
Bold data indicates the highest value of the corresponding indicator in the table.

Table 6. Ablation experiments of summing and splicing.

CLUENER2020 Weibo

Compare Models P% R% F1% P% R% F1%

BERT‑ATT‑BILTAR‑GlobalPointer 80.485 81.270 80.848 79.227 72.720 75.751
BERT‑ATT‑BILTAR‑GlobalPointer

(Concatenate) 79.000 81.729 80.317 76.921 68.068 72.169

4.5.8. Ablation Experiment of Information Fusion Method of Summation
and Concatenation

In the fusion of forward and backward information, two sets of ablation experiments
were performed by summation and cascade, respectively. The results shows that the resid‑
ual summation method is superior to the concatenation method. On the CLUENER2020
dataset, the F1 value of the model increased by 0.531%, while on the Weibo dataset, the
F1 value of the model increased by 3.582%. It is concluded that the summation method
for fusing forward and backward information can retain more effective information com‑
pared to the concatenation method. The experimental results are shown in Table 7. Bold
data indicates the highest value of the corresponding indicator in the table.

Table 7. Ablation experiments where the encoder of the TIME module changes the number of fully
connected layers.

CLUENER2020 Weibo

Compare Models P% R% F1% P% R% F1%

(2,2) 80.485 81.270 80.848 79.227 72.720 75.751
(1,1) 77.796 83.386 80.449 74.571 67.582 70.797
(1) 79.958 81.264 80.575 74.966 68.155 71.368
(3,3) 79.710 80.856 80.232 74.155 68.776 71.348
(4,4) 79.180 81.819 80.447 68.813 72.035 70.206

4.5.9. Summary and Analysis of Ablation Experiment
In short, the performance of the model is improved when the submodules of the

model are added to various combinedmodels. Eighteen sets of ablation experiments show
the validity of each submodule of the model. The CLUENER2020 dataset contains ten cate‑
gories, and each category represents a domain. TheWeibo dataset contains four categories,
and each category is labeled with two markers, explicit entities (NAM), and generic enti‑
ties (NOM). The CLUENER2020 dataset focuses on distinguishing between multiple cat‑
egories, and the Weibo dataset has a lower requirement for distinguishing between cate‑
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gories. But theWeibodataset requires themodel to recognizewhether entities are explicitly
or generically referred to. The difficulties of the two datasets are different, so in the same
ablation experiment, the model has different enhancement effects on the two datasets.

5. Conclusions and Future Work
In fine‑grained entity recognition tasks, it is difficult to distinguish between similar

categories, and simple neural network layers cannot extract enough semantic features to
distinguish between similar categories. This paper proposes the BILTAR deep semantic
extraction module to extract more semantic information from the data, thereby improv‑
ing the model’s ability to distinguish between fine‑grained categories. Sequence labeling
tasks are insensitive to entity boundaries. Therefore, this paper uses the GlobalPointer
module instead of the conditional random field to calculate the score of each possible en‑
tity boundary in each category, thereby fully considering all entity boundaries. The exper‑
iments show that the BILTAR module can improve the model’s feature extraction ability,
each sub‑module of the BILTAR module can also individually improve the model’s per‑
formance, the model’s performance is slightly improved after the GlobalPointer module
replaces the CRF layer, and the multi‑head self‑attention mechanism added to multiple
positions can also improve the model’s performance. Therefore, the experimental results
fully prove the effectiveness of the multi‑head self‑attention mechanism, the BILTARmod‑
ule, and the GlobalPointer module.

The performance improvement of entity recognition model is of great significance to
the development of the knowledge graph. The identified entities and entity categories can
serve as knowledge for knowledge fusion, knowledge reasoning, and other downstream
tasks of the knowledge graph. In each knowledge graph task, improving the entity recog‑
nition ability of the model can reduce the error propagation in the entity recognition stage
and improve the realization effect of each downstream task. In view of the above situation,
the entity recognition task is prospected as follows.

In the future, improvements can be made to the BILTAR module by incorporating
more complex network structures. The stronger semantic extraction module enables the
model to extract deeper semantic features and improve the model performance. It is pos‑
sible to optimize the GlobalPointer module to improve the model’s ability to compute en‑
tity boundaries.
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