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Abstract: Nonlinear systems are very common in real life, but because they are not superposed and
homogeneous, there are many difficulties in controlling nonlinear systems. Therefore, an adaptive
control method based on a multi-dimensional Taylor network (MTN) is proposed for a class of
nonlinear systems with strict feedback so that the output of the system can track the given signal. In
order to achieve the control effect, we define a new state variable and transform the strict feedback
system. After transformation, the original feedback system has a standard form, and two parameters
to be identified are obtained. Then, the state observer is designed, and the two parameters are
identified via the approximation of the MTN. On this basis, the controller design and a system
stability analysis are completed. The lemma is introduced, and the stability condition is established
by using this low-pass filter to ensure that all closed-loop signals are semi-globally uniform and
finally bounded and the output tracking error converges to the residual set near zero. Finally, a
numerical simulation of a hydraulic system is carried out to verify the effectiveness of the proposed
method. Under the three indexes, the proposed method has obvious advantages.

Keywords: adaptive control; multi-dimensional Taylor network; closed-loop control; strict
feedback systems

1. Introduction

Non-linear systems are almost ubiquitous in daily life and exist widely in various
applications, such as motor [1], power [2], and electrical systems [3]. After more than half a
century of development, the control of non-linear systems has made considerable progress,
and various control methods and strategies have emerged, e.g., backstepping control
strategies [4], neural networks [5], fuzzy-based control [6], and system identification [7].

For example, scenario-based model predictive control (MPC) approaches can mitigate
the conservatism inherent in robust open-loop MPC. Reference [8] presents a method for
evaluating the confidence intervals of RBNN predictions and determines the number of
samples required to estimate the confidence interval for a given confidence level. The
authors of [9] propose a security-model-based reinforcement learning approach to control
nonlinear systems described by linear parameter variation models.

In order to improve control accuracy, these methods require feedback. For example,
a state feedback Smith predictive controller was proposed for the effective temperature
control of a cement rotary kiln precalcining furnace [10]. The authors of [11] present a
fully distributed adaptive tracking control scheme for multi-agent systems with a strict
feedback form. Generally, this type of state feedback control requires all systems’ internal
state information, which is challenging to achieve in reality.

Therefore, control methods based on system output have also been proposed. These
control algorithms require only the system’s output information to complete the control
process. For example, the authors of [12] studied a linear–quadratic (LQ) control problem
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with irregular output feedback in which a noisy linear system measured the state. In [13],
the authors discuss the collaborative design of output-dependent switching functions and
full-order affine filters for discrete-time switched affine systems. This control method has
a certain degree of versatility and has achieved good application results. However, the
controlled system does not have a strict feedback form.

Strict feedback systems present a good lower triangle form, while the control systems
for a flexible manipulator and some temperatures are in a strict feedback form. Commonly,
the backstepping control method is used for such systems, e.g., in [14], a neural-network-
based adaptive gain scheduling backward sliding mode control (NNAGS-BSMC) method
is proposed for a class of non-linear systems with uncertain strict feedback. Reference [15]
presents a novel tracking controller utilizing an event-triggering implementation for un-
certain rigor feedback systems. Adaptive fuzzy decentralized optimal control problems
for a class of large-scale non-linear systems with a strict feedback form have also been
studied [16]. A backstepping method usually has specific prerequisite requirements for
the system or control strategy and needs to calculate a higher differential, imposing a
high calculation complexity. Such problems have been improved to a certain extent by
combining some improved backstepping methods with adaptive control ideas. For ex-
ample, [17] addresses the adaptive event-triggered control of non-linear continuous-time
strict feedback systems. However, the overall calculation process of this method must
meet trigger conditions before it is carried out, prohibiting it from meeting real-time perfor-
mance requirements.

With the development of neural networks, new methods have been proposed for non-
linear control problems, exploiting the appealing approximation characteristics of neural
networks. For example, [18] addresses the compound learning control of a perturbed
uncertain strict feedback system. In [19], the authors studied the data-based compound
neural control of an uncertain strict feedback system’s online record using a backstepping
framework. This algorithm provides a relatively general idea for non-linear control to a
certain extent, but as neuron cardinality increases, the computational complexity increases
geometrically. The multi-dimensional Taylor network is a newly proposed control structure.
Due to its simple structure and convenient application, some promising results have been
achieved. For example, the authors of [20] studied non-linear time-delay systems with
uncertainties. However, the use of the MTN control algorithm for a strict feedback system
has not been thoroughly studied.

Spurred by this, this paper proposes an output feedback control method for a strict
non-linear system based on an MTN so that the system’s output can automatically track
the desired signal. Our method initially transforms the original non-linear strict feedback
system and redefines the state variables to obtain the new standard form. The state observer
then completes the identification process of the adaptive system with the MTN’s good
approximation characteristics. The adaptive control law completes the system’s tracking
output based on this. Finally, a numerical simulation of a servo-hydraulic system model is
carried out, verifying the effectiveness of the proposed algorithm.

The main contributions of this paper are as follows:

1. The traditional MTN control method relies on the unique performance of its basic
structure and is designed and used for general controlled objects. Therefore, some
characteristics of the controlled object itself are not fully considered and utilized.
Therefore, this paper applies the MTN to strictly nonlinear feedback systems for the
first time, taking full advantage of the characteristics that different parameters of the
MTN can have different outputs with the same result and that processing two sets of
internal parameters at the same time can effectively improve control efficiency.

2. In the control process, a set of variable representation rules is designed so that the
general strict feedback system can be expressed in a standard form. On this basis, an
adaptive parameter-adjustment rule based on a state observer is designed to bring
the tracking error close to 0. Thanks to the simple structure of the MTN, compared
with a neural network algorithm, it can effectively reduce the number of calculations.



Appl. Sci. 2023, 13, 12864 3 of 14

The remainder of this paper is organized as follows. Section 2 introduces the strict
feedback system and transforms the original system into a standard form. Section 3 presents
the design of the state observer, while Section 4 introduces the multi-dimensional Taylor
network and its basic structure. Section 5 introduces a parameter identification method
based on a multi-dimensional Taylor network, and Section 6 presents the controller’s design
and a stability analysis of the system. Section 7 illustrates the effectiveness of the proposed
control scheme through a numerical simulation of a hydraulic control system. Finally,
Section 8 concludes this paper.

2. System Model

Consider the following strictly non-linear feedback system:

.
x1 = f1(x1) + h1(x1)x2
...
.
xi = fi(xi) + hi(xi)xi+1
...
.
xn = fn(xn) + hn(xn)u
y = x1

(1)

where xi = [x1, x2, · · · , xi] ∈ Ri, i = 1, 2, · · · , n is the system state variable, u ∈ R is the
system control input, y ∈ R is the system output, fi(·), i = 1, 2, · · · , n is the non-linear
system mapping, hi(·), i = 1, 2, · · · , n is the system’s non-linear control gain function, and
hi(·), . . ., hi(·) are not equal to 0.

The main task of this paper is designing an MTN-based output feedback controller
for the above-mentioned strictly non-linear feedback system, affording the output of the
system y to track a given signal yd.

Traditional control methods usually require all state variable information for such
problems, that is, x1, x2, · · · , xn. At the same time, the multi-step backstepping controller
design suffers from error accumulation, and the process is complicated and cumbersome.
Thus, this paper proposes a feedback algorithm based only on the output to simplify
the control algorithm and reduce the calculation burden. In order to realize the control
algorithm, the original strict feedback system needs to be transformed.

We define the state variables as
z1 = x1
...
zi =

.
zi−1 i = 2, · · · , n

y = x1 = z1

(2)

Then, there is
z2 =

.
z1 =

.
x1 (3)

z3 =
.
z2 = ∂ f1

∂x1

.
x1 +

∂h1
∂x1

.
x1x2 + h1

.
x2

= ∂ f1
∂x1

.
x1 +

∂h1
∂x1

.
x1x2 + h1( f2 + h2x3)

= ( ∂ f1
∂x1

+ ∂h1
∂x1

x2)( f1 + h1x2) + h1 f2 + h1h2x3

(4)

Setting A2 = ( ∂ f1
∂x1

+ ∂h1
∂x1

x2)( f1 + h1x2) + h1 f2 and B2 = h1h2, we obtain

z3 =
.
z2 = A2 + B2x3 (5)

By analogy, Equation (5) can be expressed as

.
zi = Ai + Bixi+1 (6)
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where Ai =
i−1
∑

k=1
(

∂Ai−1
∂xk

+
∂Bi−1

∂xk
xi)( fk + hkxk+1) + Bi−1 fi and Bi = Bi−1hi = Bi−2hi−1hi

=
i

∏
k=1

hk.

After the above changes, the original strict-feedback non-linear system can be expressed as

.
z1 = z2.
z2 = z3
...
.
zi−1 = zii = 2, · · · , n− 1
...
.
zn = An + Bnu
y = z1

(7)

In addition, An and Bn include the unknown non-linear mappings fi and hi of the
original system. Since hi in the original hypothesis is not equal to 0, it is assumed that the
gain function Bn is a bounded function greater than 0 and that 0 < Bmin ≤ Bn ≤ Bmax,
where Bmin and Bmax are constants greater than 0.

After the transformation, the original strict feedback system has a general standard
shape. Since z1 = x1, after the transformation, the system output is unchanged, and the
original control target is consistent. However, An and Bn are unknown, and except for z1,
the higher-order state zi is unavailable, so a state observer needs to be designed.

3. State Observer

According to [21], for the above-mentioned strict feedback system, the following state
observer can be constructed to observe the high-order state of z.

.
ẑ1 = α1

α1 = K1|y− ẑ1|
n

n+1 sign(y− ẑ1) + ẑ2
...
.
ẑi = αi

αi = Ki|αi−1 − ẑi|
n−i+1
n−i+2 sign(αi−1 − ẑi) + ẑi+1 i = 2, · · · , n− 1

...
.
ẑn = αn

αn = Kn|αn−1 − ẑn|
1
2 sign(αn−1 − ẑn) + ẑn+1.

ẑn+1 = Kn+1sign(αn − ẑn+1)

(8)

where K1, · · · , Kn+1 > 0 is the observation gain and ẑ1, · · · , ẑn is the estimation of the state
quantity z1, · · · , zn. It has been proven in the literature that the above observer converges
in a finite time.

4. Experimental Investigation

The MTN can approximate any non-linear functions with a finite point of discontinuity.
A neat structure is the merit of the MTN, whose terms are easy to adjust. For further details
on the MTN, the reader is referred to [22–28].

Let
z = [z1, z2, . . . zn] (9)

The basic structure of the MTN is illustrated in Figure 1.
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In other words, there exists a set of parameter vectors w = [w1, w2, . . . wN(n,t)] such
that the output of the MTN Out can be expressed as

Out =
N(n,t)

∑
i=1

wi

n

∏
s=1

zλs,i
i (10)

where N(n, t) is the total number of the expansion, wi is the weight of the product term,

λs,i is the power of zs in the ith product term, and
n
∑

s=1
λs,i ≤ t.

Setting η(z) = [1, z1, z2, . . . , zn, . . . , z2
1, z1z2, . . . , zt

n]
T , we obtain

Out = w · η(z) (11)

Similar to Reference [29], there is no fixed standard for the highest power of the MTN,
but with an increase in the power of the MTN, the internal function will increase, and it is
usually appropriate to choose three times in practice.

5. Adaptive System Identification

In order to design an ideal feedback controller, An and Bn are required; thus, system
identification is involved, with traditional identification methods usually considering An
and Bn separately. Due to problems in Bn such as zero crossing, it is easy to cause singularity
problems like system divergence. To solve this difficulty, we modify the system as follows.

We rewrite the last subsystem and obtain

u =
1

Bn

.
zn −

An

Bn
(12)

Therefore, the system can be identified for the two unknowns 1
Bn

and An
Bn

to avoid the
singularity problem.

According to the basic structure of MTN, we obtain{
1

Bn
= w∗1

Tη(z) + ε1
An
Bn

= w∗2
Tη(z) + ε2

(13)

where η(z) is the polynomial combination of MTN.



Appl. Sci. 2023, 13, 12864 6 of 14

Since z is unknown, it can be replaced by ẑ from the foregoing equation. Despite an
error between them, it can be compensated through weight adjustment. w∗1 and w∗2 are
ideal-weight MTN vectors.

Unlike traditional neural network methods, our technique requires two sets of basis
vectors in which each is calculated separately, imposing a significant computational burden.
Moreover, there is a suitable polynomial combination compared with the MTN, i.e., the
identification effect can be achieved only by changing the parameter value.

By introducing the MTN, the system input value can be rewritten as

u = w∗1
Tη(z)

.
zn −w∗2

Tη(z) + ε (14)

where ε = ε1
.
zn − ε2 is the total error of the MTN.

In the above formula,
.
zn is unknown and can be replaced by

.
ẑn, so we can obtain

u = w∗1
Tη(ẑ)

.
ẑn −w∗2

Tη(ẑ) + ξ (15)

where ξ = ε + w∗1
Tη(ẑ)

.
z̃n is the total system identification error.

Since the unknown network weights w∗1 and w∗2 have not been estimated, the control
strategy described below is designed.

In the above calculations, only ẑn is estimated, while the derivative of the system ẑn,
i.e.,

.
ẑn, is unknown. Thus, a low-pass filter 1

1+θs is introduced where θ is the filter constant.
Using the inverse Laplace transform and without considering the influence of the initial
value, the following formula can be obtained:{

ẑnθ = ẑn
1+θs.

ẑnθ = ẑn−ẑnθ
θ

(16)

letting the initial value of ẑnθ be 0, i.e., ẑnθ(0) = 0.
Correspondingly, the low-pass filter can be applied to other variables, and the initial

value is set to 0.

Lemma 1. Consider the continuous function G(x) = G1(x)G2(x), where G1(x) and G2(x) are
both continuous mappings. After applying the low-pass filter, the following conclusions can be drawn:

Gθ(x) = G1θ(x)G2θ(x) + ρ (17)

where G1θ and G2θ are the functions of G1 and G2 passing through the low-pass filter and ρ is the
high-order truncation error.

From Lemma 1, we obtain

(η(ẑ)
.
ẑn)θ = η(ẑ)θ

.
ẑnθ + ρ (18)

Substituting the previous formula, we obtain

uθ = W∗TΨθ + λ (19)

where λ = ρ + ξθ is the lumped error, W∗ = [w∗T1 , w∗T2 ]
T is the generalized weight vector,

and Ψθ = [
η(ẑ)θ(ẑn−ẑnθ)

θ ,−η(ẑ)θ ] is the generalized control vector of input u.

6. Adaptive Control Law Design

By adjusting Ŵ to make it infinitely close to W∗, we finally achieve the control purpose.
To this end, we designed an error-based adaptive adjustment rate that is W̃ = W∗ − Ŵ.
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Parameter definition:
F =

βΨθ

ΨT
θ Ψθ + γ

(20)

where β and γ are positive constants.
We design two auxiliary variables, P ∈ R2N×2N and Q ∈ R2N×1, based on F:{ .

P = −βP + FΨT
θ P(0) = 0

.
Q = −βQ + FuT

θ Q(0) = 0
(21)

Since both β and γ are greater than 0, it can be guaranteed that P and Q are both
bounded.

We calculate the above formula to obtain

Q = PW∗ −
∫ t

0
eβ(τ−t)Fλdτ (22)

By setting δ =
∫ t

0 eβ(τ−t)Fλdτ, we obtain

Q = PW∗ − δ (23)

where the norm of δ is a bounded function, that is, ‖δ‖ ≤ δmax.
The error vector is defined as

S = PŴ−Q (24)

By subtracting the above two formulas, we obtain

S = δ− PW̃ (25)

Then, after the low-pass filter, the auxiliary variables F, P, and Q are calculated and S
is obtained. An adaptive rate based on S can be designed as

∆Ŵ = −λ · S (26)

where λ > 0 is an adaptive adjustment step.

Theorem 1. If the above-mentioned adaptive rate is used, the weight error vector finally converges
near the 0 point under the condition of a continuous excitation of Ψθ .

Proof. We define the Lyapunov function as

V =
1
2

W̃
T

Step−1W̃ (27)

Deriving the above formula provides

.
V = W̃

T
Step−1

.
W̃ = W̃

T
δ− W̃

T
PW̃ (28)

Since Ψθ continues to excitate, there is a normal number, κ, for ∀t > 0:∫ t+∆t

t
FΨT

θ dτ ≥ κ I (29)

It can be seen from the auxiliary variable P that

P(t) ≥ e−β∆t
∫ t

t−∆t
FΨT

θ dτ ≥ e−β∆tκ (30)
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For simplicity, we define ς = e−β∆tκ and obtain

.
V = W̃

T
δ− W̃

T
PW̃ ≤ δ2

max
2ς
− ς

λmax(Step−1)
V (31)

Since both δ2
max
2ς and ς

λmax(Step−1)
are greater than 0, it can be known from the Lyapunov

theorem that V and the error vector W̃ converge to around 0 according to the exponential law.
The proof is complete. �

Compared with the traditional gradient method, the auxiliary variables F, P, and Q
are constructed in this paper, and then an adaptive rate based on S is designed, ensuring
that the error vector W̃ converges to near 0, i.e., Ŵ is infinitely close to W∗. Thus, the system
estimation affords guaranteed accuracy.

Controller Design and Stability Analysis

In order to achieve the ultimate control goal, we define the error vector and the
generalized Hurwitz polynomial

e = z− xd (32)

where xd = [xd, · · · , x(n−1)
d ] are the tracking target and its higher-order derivative.

Set
ν = [ΛT, 1]e (33)

where Λ = [Λ1, · · · , Λn−1]
T makes Λ1 + Λ2s + · · ·+ Λn−1sn−2 + sn−1 satisfy the Hurwitz

polynomial.
When ν converges and is bounded, e also converges and is bounded accordingly.
Here, the observation state ẑ is used instead of z, and the actual errors ê and ν̂ are

defined accordingly. That is,
ê = ẑ− xd (34)

ν̂ = [ΛT, 1]ê (35)

The difference between the replacement and the original state is represented by z̃ and
ν̃, as shown below.

z̃ = e− ê= (z− xd)− (ẑ− xd) =z− ẑ (36)

ν̃ = ν− ν̂ = [ΛT, 1]z̃ (37)

Taking the derivative of ν, we obtain

.
ν = [0, ΛT]e + An + Bnu− x(n)d (38)

We multiply both ends of the equation by 1
Bn

, substitute the expressions above, and
sort them to obtain

1
Bn

.
ν = w∗1

Tη(z)[0, ΛT]e + ε1[0, ΛT]e + w∗2
Tη(z) + ε2 + u−w∗1

Tη(z)x(n)d − ε1x(n)d (39)

We replace z with the observation state ẑ. Let Φ = [η(ẑ)[0, ΛT]ê− η(ẑ)x(n)d , η(ẑ)] be

the augmented polynomial vector, and let ρ = (w∗1
Tη(ẑ) + ε1)[0, ΛT]z̃ + ε2 − ε1x(n)d be the

sum of the approximation errors of the differential observer and the MTN network. Then,
we obtain

1
Bn

.
ν = W∗TΦ + ε1[0, ΛT]ê + ρ + u (40)
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In order to achieve the final control purpose, the control quantity u is constructed as
shown below.

u = −kν̂− ŵT
1 η(ẑ)[0, ΛT]ê− x(n)d − ŵT

2 η(ẑ) (41)

Where k is the gain parameter, and ŵ1 and ŵ2 are estimates of the ideal weight vectors
ŵ∗1 and ŵ∗2 .

We substitute u to obtain

1
Bn

.
ν = −kν̂ + W̃

T
Φ + ρ + ε1[0, ΛT]ê (42)

Similar to Theorem 1, the following adaptive law is designed:

∆Ŵ = −Step · (βS−Φν̂) (43)

where Step > 0 is the adaptive adjustment step and β > 0 is the correction parameter.

Theorem 2. Given the strict feedback system of Equation (1), when the differential state observer of
Equation (8), the control input of Equation (41), the parameter vector adaptive law of Equation (43),
and the MTN polynomial η(z) preserve a continuous motivation, then all signals in a closed-loop
system are bounded and the error variables e and ν and the weight vector error W̃ all converge to a
compact set near the 0 point.

Proof. From the definition of the observation error, we obtain

1
Bn

.
ν̂ = −kν̂ + W̃

T
Φ + ρ + ε1[0, ΛT]ê +

1
Bn

[ΛT, 1]z̃ (44)

Let γ = ρ + 1
Bn
[ΛT, 1]z̃ be the observation error of the differentiator and bounded, that

is, γ ≤ γmax, where γmax is a normal constant.
We choose the Lyapunov function as follows:

V =
1
2

ν̂2 +
1
2

BminW̃
T

Step−1W̃ (45)

By deriving the above formula, we obtain

.
V = ν̂

.
ν̂ + BminW̃

T
Step−1

.
W̃ (46)

Substituting the previous form into Equation (41), we obtain

.
V = −Bnkν̂2 + (Bn − Bmin)W̃

T
Φν̂ + Bnε1[0, ΛT]êν̂

+Bnγν̂− BminβW̃
T

PW̃ + BminβW̃
T

δ
(47)

From Equation (35), we know that |ν̂| ≥ |ê|
λmin([ΛT,1]) , so we obtain

.
V ≤ −Bnkν̂2 + (Bn − Bmin)W̃

T
Φν̂ + Bnγν̂ + Bnε1

λmax([0,ΛT])
λmin([ΛT,1]) |ν̂|

2

−BminβW̃
T

PW̃ + BminβW̃
T

δ

≤ −Bn(k− ε1
λmax([0,ΛT])
λmin([ΛT,1]) )ν̂

2 + (Bn − Bmin)W̃
T

Φν̂

+Bnγν̂− BminβW̃
T

PW̃ + BminβW̃
T

δ

(48)

Therefore, k− ε1
λmax([0,ΛT])
λmin([ΛT,1]) > 0 can be established by setting a larger k.
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From Theorem 1, we know that λmin(P) > κ, so we have

.
V ≤ −Bn(k− ε1

λmax([0,ΛT])
λmin([ΛT,1]) )ν̂

2 + (Bmax + Bmin)
∥∥∥W̃

T
Φ
∥∥∥|ν̂|

+Bnγmax|ν̂| − Bminβκ
∥∥∥W̃
∥∥∥2

+ Bminβ
∥∥∥W̃
∥∥∥δmax

(49)

By applying Young’s inequality to
∥∥∥W̃

T
Φ
∥∥∥|ν̂|, Bnγmax|ν̂|, and

∥∥∥W̃
∥∥∥δmax, and substi-

tuting the result into the above formula, we obtain

.
V ≤ −min

{
Bn(k− ε1

λmax([0,ΛT])
λmin([ΛT,1]) )−

2(Bmax+Bmin)‖Φ‖2

κBminβ , βκ

λmax([0,ΛT])

}
V

+ B2
maxγ2

max

2Bmin(k−ε1
λmax([0,ΛT ])
λmin([Λ

T,1])
)
+ Bminβδ2

max
κ

(50)

Equation (50) reveals that by appropriately increasing the gain parameter k and the
correction parameter β, it can be ensured that

min

{
Bn(k− ε1

λmax([0, ΛT])

λmin([ΛT, 1])
)− 2(Bmax + Bmin)‖Φ‖2

κBminβ
,

βκ

λmax([0, ΛT])

}
> 0 (51)

B2
maxγ2

max

2Bmin(k− ε1
λmax([0,ΛT])
λmin([ΛT,1]) )

+
Bminβδ2

max
κ

> 0 (52)

From the Lyapunov theorem, we know that the errors ν̂ and W̃ are bounded and
converge to a compact set near the 0 point. At the same time, from Equations (35) and (43),
and since z̃ is bounded, we conclude that ν, e, and ê are bounded and that the weight vector
Ŵ is bounded. From Equation (41), the control signal u is bounded.

The proof is completed. �

In this paper, the adaptive law based on an MTN ensures that the estimated weight
vector approaches the true weight vector in a direction with infinitely small errors. At the
same time, compared with the traditional dual-neural-network identification method, the
number of calculations is reduced, and the identification process of the unknown dynamics
of the entire system is completed.

7. Simulation Example

Consider the servo-hydraulic system of [28], as illustrated in Figure 2.
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Figure 2. Schematic diagram of servo-hydraulic system. 

The system has typical strict-feedback non-linear characteristics where qx  is the out-
put displacement, aF  is the output driving force of the hydraulic drive, iP  is the pres-
sure, m  is the mass of the load, sk  is the spring coefficient, and c  is the damping coef-
ficient. 
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tV  is the total volume of the hydraulic cylinder, eβ  is the elastic modulus of the 
hydraulic fluid, ω  is the effective acting area of the piston in the hydraulic cylinder, and 
χ  is the effective conversion ratio of the servo valve input and output. 
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The system has typical strict-feedback non-linear characteristics where xq is the output
displacement, Fa is the output driving force of the hydraulic drive, Pi is the pressure, m is
the mass of the load, ks is the spring coefficient, and c is the damping coefficient.

The system model is as follows:
.
x1 = x2.
x2 = − f11(x)x1 − f12(x)x2 + x3.
x3 = − f21(x)x2 − f22(x)x3 + f23(x)u
y = x1

(53)

where f11(x) = ks
m , f12(x) = c

m , f21(x) = 4βeω2

Vtm , f22(x) = 4βe
Vtm Ct, and f23(x) = 4βeω

Vtm χ.
Vt is the total volume of the hydraulic cylinder, βe is the elastic modulus of the

hydraulic fluid, ω is the effective acting area of the piston in the hydraulic cylinder, and χ
is the effective conversion ratio of the servo valve input and output.

In order to verify the validity, we select data close to reality:
m = 38 kg; ks = 1.425× 104 N/m; c = 1.425× 103 N · s/m; Vt = 5.6× 10−5 m3;

βe = 600 MPa; ω = 2.8× 10−4 m2; Ct = 4× 10−13 m3 · Pa/s; χ = 1× 10−2 m3 ·V/s.
The unit step response curve of the MTN is illustrated in Figure 3.
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Figure 3. Output comparison.

In Figure 3, the BPNN controller and RBFNN controller are given. As traditional
control methods, the neural network controllers work well and have the ability to resist
disturbance. From these experimental results, it is shown that the method proposed in this
paper is faster than another.

To accurately assess the performance of the three control methods, we employed three
error metrics: the (1) Root Mean Square Error (RMSE), which represents the square root
of the ratio of the squared differences between the actual values and the predicted values
and is sensitive to outliers in the data; (2) the Mean Absolute Error (MAE), which measures
the average distance between the model’s predicted values and the actual values and is
less sensitive to outliers; and (3) the Mean Absolute Percentage Error (MAPE), which is a
relative measure that quantifies the accuracy of predictions using relative error. The values
of these metrics obtained using the three control methods are shown in Table 1.
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Table 1. The unit step response comparison among three metrics obtained using different control
methods.

Error Comparison RMSE MAE MAPE

MTN 0.03360 0.04857 1.0844
BPNN controller 0.06321 0.11697 1.18105

RBF controller 0.03682 0.06465 1.15638

As shown in Table 1, the proposed method outperforms the NN and the RBF in terms
of most metrics.

In order to verify the tracking performance of the system, yd = 1 + 0.1 sin(t) was
chosen as the desired signal, and the system outputs are illustrated in Figure 4.
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Similarly, the results of the three indicators are shown in Table 2.

Table 2. The tracking response comparison among three metrics obtained using different control
methods.

Error Comparison RMSE MAE MAPE

MTN 0.01997 0.04468 0.65589
BPNN controller 0.03958 0.10296 0.7236

RBF controller 0.02232 0.06112 0.69082

The latter figure presents the system output and the ideal tracking signal, highlighting
that the system has a good tracking performance, i.e., the effectiveness of the proposed
method is highlighted from the simulation results.

8. Discussion

This paper proposes an output feedback control method based on the MTN that is
appropriate for non-linear strict systems so that the system output can automatically track
the desired signal. The original strict-feedback system is first transformed in the proposed
method, and the state variables are redefined to obtain the new standard form. A state
observer is then designed to complete the identification process of the adaptive system
under the good approximation characteristics of the MTN. Based on this, the adaptive
control law is designed to complete the system tracking process. Numerical simulations
on a servo-hydraulic system model as the control object verify the effectiveness of the
suggested method.
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