Impact of Production Methods and Storage Time on the Bioactive Compounds and Antioxidant Activity of Confitures Made from Blue Honeysuckle Berry (Lonicera caerulea L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Solvents
2.3. Production of Blue Honeysuckle Berry Confitures
2.4. Physicochemical Parameters Analysis
2.5. Total Phenolics, Anthocyanins and Antioxidant Activity Determinations
2.5.1. Preparation of Extracts
2.5.2. Total Polyphenol Content Analysis
2.5.3. Chromatographic Analysis of Anthocyanins
2.5.4. Determination of Antioxidant Activity
2.6. Chromatographic Analysis of Ascorbic Acid
2.7. Chromatographic Analysis of Hydroxymethylofurfural
2.8. Statistics
3. Results and Discussion
3.1. Selection of Optimal Confiture Recipe
3.2. Physicochemical Parameters
3.3. Ascorbic Acid Content
3.4. Total Polyphenol Content
3.5. Hydroxymethylofurfural Content
3.6. Anthocyanins Content
3.7. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grobelna, A.; Kalisz, S.; Kieliszek, M.; Giurgiulescu, L. Blue honeysuckle berry (Lonicera caerulea L.), as raw material, is particularly predisposed to the production of functional foods. Carpathian J. Food Sci. Technol. 2020, 12, 144–155. [Google Scholar] [CrossRef]
- Orsavová, J.; Sytařová, I.; Mlček, J.; Mišurcová, L. Phenolic compounds, vitamins C and E and antioxidant activity of edible honeysuckle berries (Lonicera caerulea L. var. kamtschatica Pojark) in relation to their origin. Antioxidants 2022, 11, 433. [Google Scholar] [CrossRef]
- Cassels, L.J. Experiences and conclusions from the last seven years of North American haskap cultivation: Varieties, fertilization and market trends. In Proceedings of the Haskap Conference 2017, Ozarow Mazowiecki, Poland, 9 November 2017. [Google Scholar]
- Gawroński, J.; Zebrowska, J.; Pabich, M.; Jackowska, I.; Kowalczyk, K.; Dyduch-Siemińska, M. Phytochemical characterization of blue honeysuckle in relation to the genotypic diversity of Lonicera sp. Appl. Sci. 2020, 10, 6545. [Google Scholar] [CrossRef]
- Molina, A.K.; Vega, E.N.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Kostić, M.; Soković, M.; et al. Promising antioxidant and antimicrobial food colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants 2019, 8, 394. [Google Scholar] [CrossRef]
- Gołba, M.; Sokół-Łętowska, A.; Kucharska, A.Z. Health properties and composition of honeysuckle berry Lonicera caerulea L. An update on recent studies. Molecules 2020, 25, 749. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Arumuggam, N.; Amararathna, M.; De Silva, A.B.K.H. The potential health benefits of haskap (Lonicera caerulea L.): Role of cyanidin-3-O-glucoside. J. Funct. Foods 2018, 44, 24–39. [Google Scholar] [CrossRef]
- Khattab, R.; Ghanem, A.; Brooks, M.S.-L. Stability of Haskap berry (Lonicera caerulea L.) Anthocyanins at different storage and processing conditions. J. Food Res. 2016, 5, 67. [Google Scholar] [CrossRef]
- Amararathna, M.; Hoskin, D.W.; Rupasinghe, H.P.V. Cyanidin-3-O-glucoside-rich Haskap berry administration suppresses carcinogen-induced lung tumorigenesis in A/JCr Mice. Molecules 2020, 25, 3823. [Google Scholar] [CrossRef]
- Pace, E.; Jiang, Y.; Clemens, A.; Crossman, T.; Rupasinghe, H.P.V. Impact of thermal degradation of cyanidin-3-O-glucoside of haskap berry on cytotoxicity of hepatocellular carcinoma HepG2 and breast cancer MDA-MB-231 cells. Antioxidants 2018, 7, 24. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, Y.S.; Park, E.J.; Lee, H.J. Honeysuckle berry (Lonicera caerulea L.) inhibits lipase activity and modulates the gut microbiota in high-fat diet-fed mice. Molecules 2022, 27, 4731. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, K.T.; Lin, J.A.; Chen, Y.T.; Chen, Y.A.; Wu, J.T.; Hsieh, C.W. Recent advances in processing technology to reduce 5-hydroxymethylfurfural in foods. Trends Food Sci. Technol. 2019, 93, 271–280. [Google Scholar] [CrossRef]
- Tomruk, D.; Devseren, E.; Koç, M.; Ocak, Ö.Ö.; Karataş, H.; Kaymak-Ertekin, F. Developing a household vacuum cooking equipment, testing its performance on strawberry jam production and its comparison with atmospheric cooking. Agron. Res. 2016, 14, 1475–1487. [Google Scholar]
- Kuşçu, A.; Bulantekin, Ö. Determination of phenolics, organic acids, minerals and volatile compounds of jujube (Ziziphus jujuba miller) jam produced by under vacuum evaporation compared with open pan method. J. Food Meas. Charact. 2021, 15, 1127–1138. [Google Scholar] [CrossRef]
- Korus, A.; Jaworska, G.; Bernaś, E.; Juszczak, L. Characteristics of physico-chemical properties of bilberry (Vaccinium myrtillus L.) jams with added herbs. J. Food Sci. Technol. 2015, 52, 2815–2823. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Goiffon, J.P.; Mouly, P.P.; Gaydou, E.M. Anthocyanic pigment determination in red fruit juices, concentrated juices and syrups using liquid chromatography. Anal. Chim. Acta 1999, 382, 39–50. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applaying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kruszewski, B.; Zawada, K.; Karpiński, P. Impact of high-pressure homogenization parameters on physicochemical characteristics, bioactive compounds content, and antioxidant capacity of blackcurrant juice. Molecules 2021, 26, 1802. [Google Scholar] [CrossRef]
- Rada-Mendoza, M.; Olano, A.; Villamiel, M. Determination of hydroxymethylfurfural in commercial jams and in fruit-based infant foods. Food Chem. 2002, 79, 513–516. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S.; Kieliszek, M. Effect of processing methods and storage time on the content of bioactive compounds in blue honeysuckle berry purees. Agronomy 2019, 9, 860. [Google Scholar] [CrossRef]
- Kuşçu, A.; Bulantekin, Ö. The effects of production methods and storage on the chemical constituents of apple pekmez. J. Food Sci. Technol. 2016, 53, 3083–3092. [Google Scholar] [CrossRef]
- Devseren, E.; Okut, D.; Koç, M.; Karataş, H.; Kaymak-Ertekin, F. Comparison of quality characteristics of tomato paste produced under atmospheric conditions and vacuum evaporations. An. Acad. Bras. Cienc. 2021, 93, e20200215. [Google Scholar] [CrossRef]
- Auzanneau, N.; Weber, P.; Kosińska-Cagnazzo, A.; Andlauer, W. Bioactive compounds and antioxidant capacity of Lonicera caerulea berries: Comparison of seven cultivars over three harvesting years. J. Food Compos. Anal. 2018, 66, 81–89. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Tiwari, B.K.; Butler, F. Stability and degradation kinetics of bioactive compounds and colour in strawberry jam during storage. Food Bioprocess Technol. 2011, 4, 1245–1252. [Google Scholar] [CrossRef]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V.I. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2014, 68, 121–129. [Google Scholar] [CrossRef]
- Mohdaly, A.A.A.; Roby, M.H.H.; Sultan, S.A.R.; Groß, E.; Smetanska, I. Potential of low cost agro-industrial wastes as a natural antioxidant on carcinogenic acrylamide formation in potato fried chips. Molecules 2022, 27, 7516. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Pasli, A.A.; Ozcelik, B.; Van Camp, J.; Capanoglu, E. Influence of different processing and storage conditions on in vitro bioaccessibility of polyphenols in black carrot jams and marmalades. Food Chem. 2015, 186, 74–82. [Google Scholar] [CrossRef]
- Kopjar, M.; Ivana, Đ.; Piližota, V. HMF formation and colour change of bitter orange and sweet orange jams during storage. Croat. J. Food Sci. Technol. 2010, 2, 11–15. [Google Scholar]
- Djaoudene, O.; Louaileche, H. Effect of storage time and temperature on the nutritional quality of commercial orange jam. SDRP J. Food Sci. Technol. 2017, 1, 78–84. [Google Scholar] [CrossRef]
- Gorzelany, J.; Basara, O.; Kapusta, I.; Paweł, K.; Belcar, J. Evaluation of the chemical composition of selected varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx. Molecules 2023, 28, 2525. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokól-Lȩtowska, A.; Oszmiánski, J.; Piórecki, N.; Fecka, I. Iridoids, phenolic compounds and antioxidant activity of edible honeysuckle berries (Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Meng, X.; Liu, S.; Mu, J.; Ning, C. Comparison of polyphenol, anthocyanin and antioxidant capacity in four varieties of Lonicera caerulea berry extracts. Food Chem. 2016, 197, 522–529. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Zhukovets, T.; Özcan, M.M. Determination of bioactive properties, phenolic compounds and mineral contents of boiled fruit juice types. Iran. J. Chem. Chem. Eng. 2021, 40, 2042–2048. [Google Scholar] [CrossRef]
- Abdelazim Mohdaly, A.A.; Ramadan, M.F. Characteristics, composition and functional properties of seeds, seed cake and seed oil from different Brassica carinata genotypes. Food Biosci. 2022, 48, 100752. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Iuhas, C.I.; Ayvaz, H.; Rugină, D.; Stanilă, A.; Dulf, F.; Bunea, A.; Socaci, S.A.; Socaciu, C.; Pintea, A. Phytochemical characterization of commercial processed blueberry, blackberry, blackcurrant, cranberry, and raspberry and their antioxidant activity. Antioxidants 2019, 8, 540. [Google Scholar] [CrossRef]
Ingredient | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
blue honeysuckle berry | 63.7 | 63.7 | 63.7 | 63.7 | 63.7 |
sugar | 28.85 | 28.7 | 28.55 | 28.45 | 28.35 |
water | 7.2 | 7.2 | 7.2 | 7.2 | 7.2 |
pectin | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
guar gum | 0 | 0.15 | 0.30 | 0.40 | 0.50 |
Confitures | Days of Storage | Ascorbic Acid (mg/100 g) | TPC (mg GAE/100 g) | HMF (mg/100 g) |
---|---|---|---|---|
From Thermomix (Normal Pressure) | 0 | 23.7 ± 0.4 aA | 431 ± 6 aB | 0.55 ± 0.01 cA |
30 | 18.5 ± 0.2 bB | 350 ± 3 bB | 0.59 ± 0.01 abA | |
120 | 11.2 ± 0.3 cB | 335 ± 8 bcA | 0.63 ± 0.04 abA | |
180 | 6.1 ± 0.2 dB | 322 ± 9 cA | 0.67 ± 0.05 aA | |
From Vacuum Evaporator (Lowered Pressure) | 0 | 23.5 ± 0.7 aA | 501 ± 7 aA | 0.14 ± 0.01 aB |
30 | 20.8 ± 0.4 bA | 378 ± 4 bA | 0.15 ± 0.01 aB | |
120 | 17.6 ± 0.3 cA | 351 ± 7 cA | 0.16 ± 0.01 aB | |
180 | 12.4 ± 0.2 dA | 332 ± 3 dA | 0.17 ± 0.01 aB |
Anthocyanin | From Thermomix (Normal Pressure) | From Vacuum Evaporator (Lowered Pressure) | ||||||
---|---|---|---|---|---|---|---|---|
0 day | 30 day | 120 day | 180 day | 0 day | 30 day | 120 day | 180 day | |
Cy-3.5-diglu | 6.4 ± 0.4 | 5.4 ± 0.5 | 4.4 ± 0.2 | 4.2 ± 0.1 | 8.4 ± 0.3 | 5.9 ± 0.2 | 4.7 ± 0.2 | 4.3 ± 0.2 |
Cy-3-glu | 224.4 ± 7.5 | 184.4 ± 5.9 | 176.1 ± 4.4 | 167.9 ± 3.4 | 309.3 ± 19.2 | 223.3 ± 5.2 | 203.4 ± 9.5 | 186.1 ± 5.5 |
Cy-3-rut | 14.8 ± 0.3 | 11.6 ± 1.4 | 11.2 ± 0.6 | 10.4 ± 0.7 | 19.9 ± 0.5 | 13.3 ± 0.5 | 12.0 ± 0.1 | 10.8 ± 0.7 |
Pn-3-glu | 2.2 ± 0.3 | 1.8 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 | 3.0 ± 0.1 | 2.3 ± 0.2 | 2.0 ± 0.1 | 1.8 ± 0.9 |
Total | 248.5 ± 7.9 aB | 203.8 ± 6.3 bB | 193.7 ± 4.0 bB | 184.5 ± 2.7 cB | 341.5 ± 19.3 aA | 245.3 ± 5.8 bA | 222.7 ± 9.3 bA | 203.4 ± 4.6 cA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalisz, S.; Polak, N.; Cacak-Pietrzak, G.; Cendrowski, A.; Kruszewski, B. Impact of Production Methods and Storage Time on the Bioactive Compounds and Antioxidant Activity of Confitures Made from Blue Honeysuckle Berry (Lonicera caerulea L.). Appl. Sci. 2023, 13, 12999. https://doi.org/10.3390/app132412999
Kalisz S, Polak N, Cacak-Pietrzak G, Cendrowski A, Kruszewski B. Impact of Production Methods and Storage Time on the Bioactive Compounds and Antioxidant Activity of Confitures Made from Blue Honeysuckle Berry (Lonicera caerulea L.). Applied Sciences. 2023; 13(24):12999. https://doi.org/10.3390/app132412999
Chicago/Turabian StyleKalisz, Stanisław, Natalia Polak, Grażyna Cacak-Pietrzak, Andrzej Cendrowski, and Bartosz Kruszewski. 2023. "Impact of Production Methods and Storage Time on the Bioactive Compounds and Antioxidant Activity of Confitures Made from Blue Honeysuckle Berry (Lonicera caerulea L.)" Applied Sciences 13, no. 24: 12999. https://doi.org/10.3390/app132412999
APA StyleKalisz, S., Polak, N., Cacak-Pietrzak, G., Cendrowski, A., & Kruszewski, B. (2023). Impact of Production Methods and Storage Time on the Bioactive Compounds and Antioxidant Activity of Confitures Made from Blue Honeysuckle Berry (Lonicera caerulea L.). Applied Sciences, 13(24), 12999. https://doi.org/10.3390/app132412999