3D Carbonate Digital Rock Reconstruction by Self-Attention Network and GAN Structure
Abstract
:1. Introduction
Discussion and Novelty
2. Methodology and Networks
2.1. Sequential Execution of Digital Rock Reconstruction
- (1)
- Training Phase:
- (2)
- Testing Phase:
2.2. Role of the Discriminator in Model Training
Functioning of the Discriminator
2.3. Model Architecture
- (1)
- Use the vector representation xi of the current position i as query, key, and value, respectively, and calculate their similarity scores with other positions.
- (2)
- Based on these scores, compute the weight vector Wi between the current position i and other positions.
- (3)
- Weight the values according to the weight vector and sum them up to obtain the output vector Yi of the current position i.
2.4. Evaluation Metrics
3. Experiment
3.1. Data Sources
3.2. Training Analysis
3.3. Test Result Analysis
3.4. Generated Carbonate Rock Digital Core Analysis
3.5. Pore Segmentation Analysis
3.6. Quantitative Comparison between Real and Generated Digital Cores
3.6.1. Grayscale Value Distribution Analysis
3.6.2. Porosity Distribution Analysis
3.6.3. Comparative Analysis of Pore Volume Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GAN | Generative Adversarial Network |
SAE-GAN | Self-Attention Enhanced Generative Adversarial Network |
IQR | interquartile range |
KDE | kernel density estimation |
WGAN | Wasserstein Generative Adversarial Networks |
References
- Andrä, H.; Combaret, N.; Dvorkin, J.; Glatt, E.; Han, J.; Kabel, M.; Keehm, Y.; Krzikalla, F.; Lee, M.; Madonna, C.; et al. Digital rock physics benchmarks—Part I: Imaging and segmentation. Comput. Geosci. 2013, 50, 25–32. [Google Scholar] [CrossRef]
- Andrä, H.; Combaret, N.; Dvorkin, J.; Glatt, E.; Han, J.; Kabel, M.; Keehm, Y.; Krzikalla, F.; Lee, M.; Madonna, C.; et al. Digital rock physics benchmarks—Part II: Computing effective properties. Comput. Geosci. 2013, 50, 33–43. [Google Scholar] [CrossRef]
- Blunt, M.J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 2013, 51, 197–216. [Google Scholar] [CrossRef]
- Dong, H.; Sun, J.; Zhu, J.; Liu, L.; Lin, Z.; Golsanami, N.; Yan, W. Developing a new hydrate saturation calculation model for hydrate-bearing sediments. Fuel 2019, 248, 27–37. [Google Scholar] [CrossRef]
- Dong, H.; Sun, J.; Arif, M.; Golsanami, N.; Yan, W.; Zhang, Y. A novel hybrid method for gas hydrate filling modes identification via digital rock. Mar. Pet. Geol. 2020, 115, 104255. [Google Scholar] [CrossRef]
- Sun, J.; Dong, H.; Arif, M.; Yu, L.; Zhang, Y.; Golsanami, N.; Yan, W. Influence of pore structural properties on gas hydrate saturation and permeability: A coupled pore-scale modelling and X-ray computed tomography method. J. Nat. Gas Sci. Eng. 2021, 88, 103805. [Google Scholar] [CrossRef]
- Xu, H.; Wang, G.; Fan, C.; Liu, X.; Wu, M. Grain-scale reconstruction and simulation of coal mechanical deformation and failure behaviors using combined SEM Digital Rock data and DEM simulator. Powder Technol. 2020, 360, 1305–1320. [Google Scholar] [CrossRef]
- Coelho, D.; Thovert, J.F.; Adler, P.M. Geometrical and transport properties of random packings of spheres and aspherical particles. Phys. Rev. E 1997, 55, 1959. [Google Scholar] [CrossRef]
- Torquato, S.; Lu, B. Chord-length distribution function for two-phase random media. Phys. Rev. E 1993, 47, 2950. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680. [Google Scholar] [CrossRef]
- Mosser, L.; Dubrule, O.; Blunt, M.J. Reconstruction of three-dimensional porous media using generative adversarial neural networks. Phys. Rev. E 2017, 96, 043309. [Google Scholar] [CrossRef] [PubMed]
- Mosser, L.; Dubrule, O.; Blunt, M.J. Stochastic reconstruction of an oolitic limestone by generative adversarial networks. Transp. Porous Media 2018, 125, 81–103. [Google Scholar] [CrossRef]
- Wang, Y.D.; Blunt, M.J.; Armstrong, R.T.; Mostaghimi, P. Deep learning in pore scale imaging and modeling. Earth Sci. Rev. 2021, 215, 103555. [Google Scholar] [CrossRef]
- Phan, J.; Ruspini, L.; Kiss, G.; Lindseth, F. Size-invariant 3D generation from a single 2D rock image. J. Pet. Sci. Eng. 2022, 215, 110648. [Google Scholar] [CrossRef]
- Zhang, F.; Teng, Q.; Chen, H.; He, X.; Dong, X. Slice-to-voxel stochastic reconstructions on porous media with hybrid deep generative model. Comput. Mater. Sci. 2021, 186, 110018. [Google Scholar] [CrossRef]
- Cao, D.; Hou, Z.; Liu, Q.; Fu, F. Reconstruction of three-dimension digital rock guided by prior information with a combination of InfoGAN and style-based GAN. J. Pet. Sci. Eng. 2022, 208, 109590. [Google Scholar] [CrossRef]
- Chi, P.; Sun, J.; Luo, X.; Cui, R.; Dong, H. Reconstruction of 3D digital rocks with controllable porosity using CVAE-GAN. Geoenergy Sci. Eng. 2023, 230, 212264. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, C. 3D reconstruction of digital rock guided by petrophysical parameters with deep learning. Geoenergy Sci. Eng. 2023, 231, 212320. [Google Scholar] [CrossRef]
- Wang, Y.D.; Mostaghimi, P.; Armstrong, R. A Super Resolution Dataset of Digital Rocks (DRSRD1): Sandstone and Carbonate. Digital Rocks Portal (April 2019). Available online: http://www.digitalrocksportal.org/projects/211 (accessed on 16 April 2019).
Phase | Dataset Size | Learning Rate | Batch Size |
---|---|---|---|
S1 | 4000 | 2 × 10−4 | 48 |
S2 |
Metric | Real Digital Rock | Generated Digital Rock |
---|---|---|
Mean | 0.5271451 | 0.5288587 |
Standard Deviation | 0.13320786 | 0.15230845 |
Minimum | 0.0 | 1.7905235 × 10−5 |
Maximum | 1.0 | 0.9993653 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, J.; Liu, Y. 3D Carbonate Digital Rock Reconstruction by Self-Attention Network and GAN Structure. Appl. Sci. 2023, 13, 13006. https://doi.org/10.3390/app132413006
Wang B, Wang J, Liu Y. 3D Carbonate Digital Rock Reconstruction by Self-Attention Network and GAN Structure. Applied Sciences. 2023; 13(24):13006. https://doi.org/10.3390/app132413006
Chicago/Turabian StyleWang, Bin, Jiahao Wang, and Ye Liu. 2023. "3D Carbonate Digital Rock Reconstruction by Self-Attention Network and GAN Structure" Applied Sciences 13, no. 24: 13006. https://doi.org/10.3390/app132413006
APA StyleWang, B., Wang, J., & Liu, Y. (2023). 3D Carbonate Digital Rock Reconstruction by Self-Attention Network and GAN Structure. Applied Sciences, 13(24), 13006. https://doi.org/10.3390/app132413006