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1. Introduction

Developments in the medical and technological fields have led to a longer life ex-
pectancy. However, this improvement has led to an increase in the number of older people
with critical health conditions who need care. Older people who cannot care for them-
selves need special assistance during their daily care. Long-term care involves medical,
welfare, rehabilitative, and social services that significantly impact the national social and
health system and involve a growing number of caregivers who are difficult to find [1].
Advances in information and communications technology (ICT), nanotechnology, and
artificial intelligence (AI) have made it possible to develop efficient home care systems [2],
contributing to the containment of public expenditure and the improvement of the living
conditions of older adults. The creation of intelligent objects, ordinarily present in the home,
the advent of IoT, and the existence of AI algorithms have created the right conditions
for the creation of smart environments (AmI) [3] and ambient assisted living (AAL) [4].
These systems make the home active, intelligent, and safe, making it possible to carry out
daily activities in the best possible way and with full autonomy, as well as ensuring timely
intervention in critical situations. The innovations in care for older people, introduced by
technological evolution, are evident in the creation of smartwatches [5] and fitness bracelets
for monitoring vital parameters such as blood pressure, heart rate, and physical activity;
telemedicine to remotely monitor health status and establish treatment plans [6]; and robots
to support social care [7].

The automatic detection of physical activities performed by human subjects is identi-
fied as human activity recognition (HAR). Its goal is correctly classifying data or images
into gestures, actions, and human-to-human or human–object interactions. Identification
is achieved using AI that analyzes activity data captured from different sources. Sources
range from wearable sensors [8] and smartphone sensors [9] to photographic devices or
CCTV cameras [10]. HAR is used in different fields of application ranging from video
surveillance systems, the assessment of the state of health or the analysis of patient behavior
in a natural environment by monitoring the actions carried out, or even for the detection of
anomalies predicting falls, to human–computer interaction and robotics. Depending on the
area of application, the sensors used will be different.

From a functional point of view, HAR consists of the following phases:

• Automatic acquisition of data on activities performed and vital signs through wearable
sensors and sensors connected to medical equipment.

• Data pre-processing (elimination of any noise or unwanted signals).
• Features extraction.
• Model training and testing.
• Activity recognition.

Two technologies can be used for activity recognition: recognition based on vision
or sensor-based recognition. Inertial sensors are preferred over video-based sensors that
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require the installation of cameras in all rooms in a house for motion recording. In ad-
dition, they are expensive, and the accuracy of reconnaissance is affected by brightness
problems and inevitable visual disturbances, as well as violating privacy. Sensors based on
MEMS technology are miniaturized, economical, and have low power consumption [11].
Monitoring activities in the environment where older people live is relevant to evaluating
their behavioral changes. Technology can help to detect and alert healthcare professionals
or family members about a patient’s behavioral changes, preventing serious problems.
Ultimately, with the help of these systems, we can monitor the patient’s status depending
on the specific pathology, the tracking data, and the exact location.

This Research Topic aims to create a collection of articles illustrating different method-
ological approaches to the subject of HAR in an exciting scenario. It contains eleven
articles that will be briefly described below to stimulate the reader’s interest and to
expand their understanding.

2. An Overview of Published Articles

Ojiako and Farrahi (contribution 1) experimented with an innovative predictive model
of human activities (HAR). They demonstrated that the sensor-based MLP mixer archi-
tecture enables competitive performance in vision-based tasks with lower computational
costs than other deep learning techniques. The MLP mixer recently created by Google
Brain [12] does not use convolutions or self-attention mechanisms, and instead consists
entirely of MLPs. The authors compared the performance of the MLP mixer with the
existing state-of-the-art literature:

*Ensemble LSTM.
*CNN-BiGRU.
*AttenSense.
*Multi-agent attention.
*DeepConvLSTM.
*Triple attention.
*Self-Caution*CNN.
*b-LSTM-S.

The performance was 10.1% better in the Daphnet Gait dataset, 1% better in the
PAMAP2 dataset, and 0.5% better in the Opportunity dataset.

Velasco et al. (contribution 2) used the HAR approach to understand human behavior
by analyzing data representative of domestic routines. Their study is oriented towards
establishing a connection between the activities of daily living, the spaces in which they
take place, and the times related to the performance of the activities in a given place. Re-
search has shown that this information is helpful for healthcare professionals to assess the
health status of patients, for family members to keep track of the habits of relatives, and
for home designers to assess the architectural characteristics of home interiors for acces-
sibility and movement of residents. The authors used the knowledge discovery database
(KDD) approach with the data analyst variant as a key player in the knowledge discovery
process [13]. The KDD approach is an interactive and iterative knowledge discovery pro-
cess that identifies relationships between data that must be valid, new, potentially useful,
and understandable. The analyst gains a greater understanding of the domestic routine
with each process iteration. The parameters used for the evaluation are the sequence
of places visited, times of day at which they are visited, and average duration of visits;
the signals are acquired using PIR sensors connected to a Raspberry Pi4, placed inside
each room of the house. Transitions between positions are detected by measuring the
RSSI power of the Bluetooth signal emitted by a BLE device worn by the subject being
monitored. The evaluation of the method was verified through workshops with seventeen
multidisciplinary participants: architects, engineers, health professionals, and caregivers.
The feedback obtained was positive, confirming the validity of the method adopted as a
source of significant information on the status of the monitored subjects.
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In the third manuscript, Huang et al. (contribution 3) proposed a new multiscale
hierarchical adaptive network structure for HAR called HMA Conv-LSTM. In this model,
there are:

• a multi-scale hierarchical convolution module (HMC) that performs finer-grained
feature extraction on the spatial information of feature vectors;

• an adaptive channel feature fusion module that can blend functionality at different
scales, improving model efficiency and removing redundant information;

• a dynamic channel-selection module-LSTM based on the attention mechanism to
extract time context information.

This multi-scale convolution module uses convolutional cores of different scales for
extracting and splicing multi-scale features in both sensory and temporal dimensions. This
strengthens the network’s ability to recognize features of different scales, improves its
adaptability, and enhances its ability to characterize features.

The diversity and duration of the actions detected by sensors placed on different
body positions dictate longer sliding window sizes for segmentation. This sizing can
result in some fine-grained subtle action processes being overlooked, thus affecting action
recognition. In contrast, the proposed hierarchical architecture can split the action window
and extract features from the sensor sequence data with finer granularity to recognize
the finer action processes effectively. To validate the efficacy of the proposed model, the
authors carried out experiments on several public HAR datasets: Opportunity, PAMAP2,
USC-HAD, and Skoda. Their model was built using Google’s open-source TensorFlow
2.9.0 deep learning framework. The proposed model achieves competitive performance
compared to several state-of-the-art approaches. The evaluation results also show that
the proposed HMA Conv-LSTM can effectively obtain the temporal context and spatial
information from sensor sequence data.

Again, Mekruksavanich et al. (contribution 4) used an innovative approach based
on a DL network and the nature of the data. Exploiting the potential offered by WiFi-
based detection techniques, they used channel status information (CSI) [14] rather than
the received signal strength indicator (RSSI). The authors proposed a hybrid deep learning
network called CNN-GRU-AttNet that leverages the strengths of CNN and GRU to extract
informative spatio-temporal features from raw CSI data automatically and to efficiently
classify tasks. They also integrated an attention mechanism into the network that prioritizes
important features and time steps, thereby improving recognition performance. The
network consists of five layers: the input layer, two CNN layers, a GRU layer, an attention
layer, a fully connected layer, and an output layer. To assess the effectiveness of the
proposed model, the authors used two publicly accessible datasets, CSI-HAR and Stan
WIFI. They refer to seven activities: walking, running, sitting, lying down, standing up,
bending, and falling. Because these datasets did not have predefined training and test sets,
they adopted the cross-validation technique five times to evaluate the model’s performance.
They also performed a comparative evaluation of the performance of five core deep learning
models: CNN, LSTM, BiLSTM, GRU, and BiGRU.

The results show exceptional efficacy in the classification of HAR activities, superior to
the five basic DL models, producing an average accuracy of 99.62%, an accuracy of 99.61%,
and an F1 score of 99.61% in all movements.

Kim and Lee (contribution 5), aware that some physical activities may include similar
features that lead the automatic classification phase to incorrect evaluations, proposed
a new approach to improve recognition accuracy. Their proposed method uses a smart-
phone’s three-axis acceleration and gyroscopic data to define activity patterns visually. In
particular, the method expands the sensor data into 2D and 3D images. This generates
new characteristics of human activities that cannot be detected in one-dimensional data.
These new features allow, on the one hand, the recognition of more diverse types of human
physical activity and, on the other hand, the identification of unique characteristics among
similar types of activities. The raw values from the accelerometer and gyroscope that
correspond to the breadth of the continuous data of the activities performed are used to
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represent 2D image models. Each time-series value is transformed into a luminosity value,
obtaining the Brightness Intensity Distribution Model (BIDP) for each physical activity
data. Each point is expressed as a distinct brightness value based on the measured value.
This type of representation includes areas of intense and low brightness depending on the
location of the data waveform that can degrade the model’s performance. To overcome this
problem, the authors carried out a processing step to generate a standardized visual image.

The image data were used in the training phase along with the raw 1D data to increase
the precision and accuracy of the HAR. The sensor data from the triaxial accelerometer
and gyroscope used in this study came from the “WISDM Activity and Biometrics for
Smartphones and Smartwatches” published by Weiss [14]. The neural network used was of
the multidimensional convolutional type. The model achieved a 90% or higher performance
for all 18 classes of physical activity examined.

This model’s HAR performance was superior to previous studies’ corresponding performance.
Caramaschi et al. (contribution 6) experimented with a model for the recognition

of human activity independent of the orientation of the worn device that classified five
predefined activities within a range of actions that could occur in a clinical setting. Their
proposal stems from the study of how changes in sensor orientation affect the classification
of deep learning (DL) human activity recognition (HAR) targeting activities such as slow
and assisted walking and wheelchair use. The HAR model is orientation-agnostic, uses data
augmentation, and is trained with acceleration measurements recorded from five sensor
positions on the participant’s trunk. The wearable sensor data augmentation approach,
first used by Ohashi et al. [15], positively affects time-series computing and potentially
improves data-driven tasks such as HAR. They used two datasets. The first is the Wearing
Position Study (WPS) acquired at Philips Research Laboratories (2022). It contains three-axis
acceleration measurements from nineteen healthy volunteers, comprising ten males and
nine females. The second is the Simulated Hospital Study (SHS) acquired at Philips
Research Laboratories (2019). It includes ten healthy male and ten female volunteers.
Five GENEActive (GA) sensors were used for monitoring: two in contact with the skin,
two dangling from the neck, and one in the pocket of the clinical gown. The implemented
HAR model is a modified version of the DNN proposed by Fridriksdottir et al. [16]. The
main difference is replacing the long short-time memory layer with a convolutional layer.
This change in architecture was introduced to simplify the model and did not generate
significantly different results from the previous DNN. The performance achieved by the
two sets was evaluated to choose the number of augmented rotation intervals to be applied
to the training data. The first set consisted of seven rotations between 0 and 90 degrees,
while the second set consisted of seven rotations between 0 and 180 degrees. In light
of this preliminary analysis, the final augmentation settings for the augmented model’s
training set consisted of ten rotations from 0 to 180, with a 20-degree pitch on the frontal,
longitudinal, and sagittal axes separately. Cross-validation was used five times to train
both the base and augmented model. The cross-validation performance was used to
evaluate the augmentation approach (i.e., the range of rotations) and the effect of rotation
on the baseline model. The control data results confirmed the augmented model’s good
performance obtained during cross-validation. Testing showed that as the data increased,
the model could learn additional configurations not provided by the initial dataset.

Adherence to cardiac rehabilitation does not currently produce the expected results,
negatively affecting the health status of patients and the use of available resources. To
improve this trend, Filos et al. (contribution 7) set up a study based on machine learning
techniques to predict the adherence of patients with cardiovascular disorders to a six-month
home cardiac telerehabilitation program. Their approach is based on the use of clinical in-
formation available before the start of a program and behavioral and cardiovascular fitness
characteristics acquired during the preliminary phase of familiarization with the program.
As a first step, the methodology applied involves classifying patients into different clusters.
Hierarchical clustering, an algorithm that groups objects with similar characteristics in a tree
hierarchy, was used for classification. The baseline data led to the formation of three groups
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of patients: an active, low-risk patient group, sedentary, high-risk patients, and a group
of patients at high cardiovascular risk but who are fit and motivated. Familiarity with
exercise showed three adherence behaviors (high adherence, low adherence, and transient
adherence), while exercise sessions after the familiarization phase resulted in adherent
and non-adherent clusters. Two model types, namely repetitive decision trees (DT) and
random forest (RF), were used to predict long-term adherence. The data to develop the DT
model were patient clusters created based on baseline characteristics and clusters related
to adherence to the exercise program. Since the DT model is unstable, a slight variation
in the training dataset can lead to changes in the tree. A random forest (RF) technique,
which is more stable, was thus applied. The first model showed both high accuracy and
high recall, at 80.2 ± 19.5% and 94.4 ± 14.5%, respectively, which were better than the
performance of the second model, which displayed a precision of 71.8 ± 25.8% and a recall
of 87.7 ± 24%. Network analysis was applied to discover correlations of their characteristics
that relate to adherence. This study highlighted how important the combination of basic
clinical data with the characteristics acquired during a brief familiarization phase is for
the high-accuracy prediction of adherence to the long-term RC program. The proposed
methodology can be generalized to facilitate the identification of patients who are more
adherent to telerehabilitation programs.

Obesity increases the risk of many chronic diseases, especially cardiovascular disease,
and is a cause of death. Faced with the rapid increase in obesity in the population, Vidal
et al. (contribution 8) developed a cross-sectional analytical study of residents of the United
States of America (USA) who have an Instagram account to determine whether using any
meal tracking platform to record food consumption correlated with an improvement in
body mass index (BMI). The survey was conducted on a sample of actual or graduate
students from Mary Hardin Baylor University, Oakland University, the University of
Kentucky, and Queens University in Charlotte. Eight hundred and ninety-six subjects with
an Instagram account signed up to participate in an anonymous online survey, of which
78.7% were women, 20.6% were men, and 0.7% were classified as others. As for generations,
11.5% belonged to Generation Z, 75.6% to the Millennials, 11.4% to Generation X, and 1.6%
to the Baby Boomers. Overall, 93.5% of the sample did not smoke, 2.3% smoked, and 4.1%
smoked occasionally. Concerning academic qualifications, 3.7% had high school graduates,
6.1% had some university credits, 0.6% had technical training, 3.2% had an associate degree,
43.2% had a bachelor’s degree, 15.1% had a master’s degree and 28.1% had a doctorate. The
information acquired through the questionnaire included the number of hours per week
dedicated to Instagram or physical activity and the intensity of physical activity performed.
In order to test the influence of using any meal tracking platform to record food intake
on BMI, they were asked if they had used any digital platform in the past month. The
chi-square test was used to study the relationships between the use of any digital platform
in the last month and gender, generation, smoking habits, highest academic degree earned,
and time spent on Instagram. The Mann–Whitney U test was adopted to compare BMI,
weekly hours spent on Instagram looking at nutrition- or physical activity-related content,
vigorous physical activity, moderate physical activity, time spent walking, and time spent
sitting among participants who did not eat meals. The survey showed that the platform
was used by 34.2% of the sample. Participants who used any meal tracking platform
also had a higher BMI, invested more hours per week on Instagram looking at nutrition-
or physical activity-related content, and performed more minutes per week of vigorous
physical activity. The survey showed that participants rely on new technologies for optimal
weight without obtaining practical results. The authors believe that combining care with
digital app-based tools and support from healthcare professionals can help individuals to
effectively achieve a healthy weight.

In the ninth paper, Alemayol et al. (contribution 9) proposed a gait and pose analysis
study based on estimating the angle of the lower limb joint from a single inertial sensor.
Gait analysis is critical in healthcare; it is mainly adopted for precise patient monitoring,
the identification of movement abnormalities, the evaluation of surgical findings, and
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the detection of osteoarthritis of the knee and hip to diagnose Parkinson’s disease. Gaits
are interpreted through three types of parameters: spatiotemporal (e.g., stride speed and
length/stride), kinematic (e.g., hip extension/flexion), or kinetic parameters (e.g., ground
reaction moments and forces). The authors used kinematic parameters, the joint angles
of the lower limb, and preferred wearable sensors for data collection. These sensors are
preferred to non-wearable ones, which generally consist of optical motion acquisition
systems with high position accuracy, as they are expensive and require longer installation
times and specific skills. Motion analysis in a real-world environment requires precise
and reliable sensors. The investigations identified the Xsens inertial sensors as the most
suitable for this purpose. The literature has various testimonies on the number of sensors,
their positioning and estimation methods, and the analysis of movement. The authors
employed various neural network algorithms to determine the number and placement
of sensors for estimating the joint angle of both legs. To calculate the actual values of the
lower limb joint angle, seven individual Awinda sensors were mounted on the lower half
of the body of each of the sixteen subjects, in particular one on the pelvis at the height of the
anterior-superior iliac spine, another on each of the lateral thighs, two more on the upper
parts of the tibiae and finally two more on the upper anterior parts of the feet. The goal
was the estimation of leg kinematics (joint angles) from any of the sensors attached to the
body. The authors used four different neural network models for the estimation: long-term
bidirectional memory (BLSTM), convolutional neural network, wavelet neural network,
and unidirectional LSTM. Two groups of target angles of the leg joint were examined. The
first set contained only four corners of the leg joint in the sagittal plane, while the second
included six angles of the leg joint in the sagittal plane and two angles of the leg joint in
the coronal plane. By evaluating different combinations of networks and datasets, it was
found that the BLSTM network was the best performer with both datasets, with an absolute
mean error (MAE) of between 3.02◦ and 4.33◦ for the four dominant angles of the leg joint
in the sagittal plane. The results improved with an increased number of sensors and the
introduction of biometric information. From the investigation of the placement of the single
sensor, it was found that the shin or thigh is the optimal position for estimating the angle of
the leg joint. Actual leg movement was compared to a computer-generated simulation of
leg joints, which demonstrated the possibility of estimating leg joint angles during walking
with a single inertial sensor.

Bibbò et al. (contribution 10) developed an innovative model to detect subjects’
emotional health using a self-normalizing neural network (SNN) containing an ensemble
layer. In the context of HAR, computer vision technology can be applied to recognize
emotional states through facial expressions using facial positions such as the nose, eyes,
and lips. The recognition of facial emotions is important because, from the analysis of the
face, it is possible to detect the subject’s health status, such as anxiety, depression, stress,
malaise, and neurodegenerative disorders, making facial diagnosis possible. This is a
beneficial technique in caring for older adults; through the information provided, medical
staff can evaluate the type of intervention required to reduce the subjects’ discomfort. Some
facial manifestations can be associated with the first pathological symptoms, preventing
diseases that can degenerate. The innovation produced by the authors is the development
of an AI classifier based on a set of classifier neural networks whose outputs are directed to
an ensemble layer. In particular, the networks are self-normalizing neural networks (SNNs).
The model comprises six SNNs, each trained to identify six emotions (anger, disgust, fear,
happiness, sadness, and surprise). The networks cascade, and each is dedicated to detecting
the presence or absence in the input image of a single specific emotion (among the six
present in this study) assigned to and associated with it. Each neural network is trained
with its images for a specific emotion. Each network produces two outputs, among which
the first, identified with EM through a numerical enhancement (from 0 to 1), confirms the
correspondence of the emotion detected with that assigned to the network. The second,
identified with AM, similarly through a numerical enhancement (from 0 to 1), signals the
presence of a different emotion from that assigned to the specific network. These outputs
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are then transferred to the ensemble layer, which provides an accurate result by analyzing
the outputs of the individual networks according to statistical logic. Kaggle was used as the
dataset. The authors used an approach to validate the results through the control network
in the experiments. The results showed a success rate for almost all emotions of around
80%, with a peak of 95% for the emotion “Fear”.

The exciting topic of the metaverse is addressed in the eleventh article of this collection.
One of the areas in which the metaverse is applied is digital games. Virtual reality and ani-
mation allow virtual characters to take on natural roles and generate new immersive ways
to live their lives. Oliveira et al. (contribution 11) aimed their research at understanding
the impact of the concept of the metaverse on ordinary people’s lives. The definition of the
concept of the metaverse was first postulated by Neal Stephenson in his book Snow Crash
in 1992. It was defined as a virtual world capable of reaching, interacting, and influencing
human existence [17]. There currently needs to be a single definition.

The metaverse can be understood as a network of interconnected 3D virtual worlds
rendered in real time that can be experienced synchronously and persistently by an unlim-
ited number of users. This study is part of the research on the metaverse, virtual reality,
and gaming. It was produced in three focus groups with Portuguese adults who are regular
video game players. The focus group originated in the work of the Bureau of Applied
Social Research at Columbia University in 1940. It is used in research in several disciplines.
It is a qualitative method of collecting data on a particular topic in an informal discussion
between selected people. During the discussion, information is gained about what people
think or feel and how they act. The developed investigation has the following aims:

• To verify how the metaverse is represented and characterized;
• To identify which technologies stimulate the immersion experience;
• To identify the main dimensions that influence the acceptance of the metaverse concept;
• To understand perceptions of metaverse and VR regarding socialization and well-being;
• To test perceptions of a player’s daily life regarding the concepts of the metaverse,

virtual reality, and gaming;
• To understand the impact of social representations on the concept of play;
• To understand animation’s perceived role in relation to the Metaverse, Virtual Reality,

and gaming concepts.

The data collected during the focus groups are the answers provided by the 13 partici-
pants to the twenty-eight questions distributed across the three themes: games, animation,
and metaverse. The results obtained from player responses produced accurate information
on how the metaverse is represented and characterized and relates to virtual reality and
gaming. In conclusion, the metaverse is considered a game that allows immersive experi-
ences through virtual reality technology and the style and esthetics of animation. It is also
seen as a means of socialization and communication, and a promoter of well-being.

In the future, its expansion into the world of social networks as a means of communi-
cation is foreseeable.

3. Conclusions

AI-based automated HAR monitoring systems are exceptional tools that can be inte-
grated into current practices to improve quality of life. The role of AI is essential in HAR
systems because of its ability to extract hidden information and the level of accuracy shown
in its classification activities. However, using these innovative technologies raises several
issues related to divergent considerations among stakeholders concerning security, privacy,
and health implications due to the use of these technologies. The approach in the design
phase to the role of AI, from the point of view of its responsibilities, needs to be sufficiently
clear. It should be highlighted whether the ML model is assistive or autonomous. Assis-
tive models provide healthcare professionals with treatment, diagnosis, and management
suggestions, leaving them responsible for making decisions. Autonomous models provide
direct diagnoses without any interpretation or supervision from the doctor. Since the de-
veloper’s choice regarding the level of autonomy has clear implications for accountability,
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it should be the subject of dialogue and discussion between stakeholders. Implementing
machine learning systems requires considering both clinical and ethical aspects to produce
benefits in health care, facilitate independent living, and reduce healthcare spending. One
of the biggest challenges we will see in the future is the development of increasingly high-
performance artificial intelligence models in new application domains that comply with
moral and ethical requirements [18].
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