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Abstract: A neighborhood’s walkability is associated with public health, economic and environmental
benefits. The state of the walking surface on sidewalks is a key factor in assessing walkability, as it
promotes pedestrian movement and exercise. Yet, conventional practices for assessing sidewalks
are labor-intensive and rely on subject-matter experts, rendering them subjective, inefficient and
ineffective. Wearable sensors can be utilized to address these limitations. This study proposes a novel
classification method that employs a long short-term memory (LSTM) network to analyze gait data
gathered from a single wearable accelerometer to automatically identify irregular walking surfaces.
Three different input modalities—raw acceleration data, single-stride and multi-stride hand-crafted
accelerometer-based gait features—were explored and their effects on the classification performance
of the proposed method were compared and analyzed. To verify the effectiveness of the proposed
approach, we compared the performance of the LSTM models to the traditional baseline support
vector machine (SVM) machine learning method presented in our previous study. The results from
the experiment demonstrated the effectiveness of the proposed framework, thereby validating its
feasibility. Both LSTM networks trained with single-stride and multi-stride gait feature modalities
outperformed the baseline SVM model. The LSTM network trained with multi-stride gait features
achieved the highest average AUC of 83%. The classification performance of the LSTM model trained
with single-stride gait features further improved to an AUC of 88% with post-processing, making it
the most effective model. The proposed classification framework serves as an unbiased, user-oriented
tool for conducting sidewalk surface condition assessments.

Keywords: deep learning; gait analysis; sidewalk surface assessment; walkability; wearable sensor

1. Introduction

Walking is one of the most common forms of physical activity that promotes individ-
ual mental and physical well-being. There are many health, environmental and economic
benefits associated with high walking levels in communities [1–4], which has led to in-
creased interest in maintaining walkable neighborhoods through walkability assessments.
Walkability can be defined as the way individuals perceive the quality of the walking envi-
ronment by measuring the friendliness of the built environment to walking [1,4]. Although
many built environment features are used to define walkability, the presence and quality
of sidewalks serve as substantial indicators influencing the perceived safety and overall
satisfaction within the pedestrian environment [5,6]. Therefore, sidewalk assessments are
an essential component of walkability assessment tools [7].

Pedestrian interviews or surveys are examples of commonly practiced sidewalk as-
sessment methods that consider pedestrians’ perceptions [8]. Nevertheless, these responses
can be biased and lack expert insight. Government agencies also rely on trained experts to
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perform on-site inspections to identify violations of pre-defined regulations [9]. These con-
ventional practices are ineffective and inefficient because they require significant financial
expenditure, time and intensive labor.

Hitherto, the limitations mentioned above can be addressed with the advancement
of sensing technology. The methods for automated sidewalk assessments can be divided
into two categories: approaches based on infrastructure-based data collected from the
surroundings and approaches based on wearable sensor data.

For approaches based on infrastructure-based data, various advanced methods have
been presented for applying deep learning techniques on infrastructure-based data to auto-
mate sidewalk assessments. Some examples of these urban data include street-view images,
videos or geographic information system (GIS) data. Several works have also explored
using deep learning approaches on vehicle responses measured with smartphone inertial
sensors mounted on vehicles to identify sidewalk and roadway anomalies. However, these
approaches do not consider the involvement of pedestrians in their evaluations.

On the other hand, utilizing wearable sensors for automated sidewalk assessments
considers individuals’ behaviors. Wearable sensors can be placed on pedestrians to measure
human physiological reactions and the signals captured can in turn be used to examine how
human physiological reactions are influenced as a result of their surrounding environments.
Earlier studies demonstrated that various sidewalk features or defects led to changes in
human response. Yet, these studies focused on investigating the association of signal
magnitude or specific gait parameters with surface conditions or built environments with
statistical modeling.

Thus far, there have been limited studies involving pedestrians in sidewalk surface
condition assessments using machine learning or deep learning techniques. Nevertheless,
existing works were either not generalizable to individual differences due to the absence
of gait features, thereby lacking the ability to capture biomechanical characteristics, or the
focus was not on assessing sidewalk surface conditions for the purpose of a walkability
assessment. To the best of our knowledge, none of the existing works explored incorpo-
rating gait analysis techniques with machine learning or deep learning approaches for
sidewalk surface assessments. To bridge this gap, in our previous study [10], we identified
the ideal body location for placing a sensor, which is at the right ankle. Then, we developed
a traditional machine-learning-based classification framework for identifying irregular
walking surfaces using gait features extracted from the right-ankle sensor to train machine
learning models and demonstrated the effectiveness of the approach [10]. Nonetheless,
the traditional machine-learning-based method requires manual feature extraction and
selection, which can be time-consuming and labor-intensive. Considering one of the main
advantages of deep learning is its automated feature learning capability on raw data [11],
adopting a deep-learning-based approach could circumvent manual feature extraction and
selection. Furthermore, when a deep-learning-based approach is fed with handcrafted
features, knowledge can be distilled from those features to improve performance [12].
Therefore, in this paper, we introduced a novel deep-learning-based classification frame-
work that analyzed the acceleration data from a single right-ankle sensor for the automated
detection of irregular walking surfaces. The acceleration data collected from the right-ankle
sensors of 12 subjects from our previous experiment were labelled and applied to our pro-
posed approach. Concretely, because the acceleration data were collected in a time series
manner, we proposed using a deep LSTM network. Three different input modalities—raw
accelerometer data, single-stride and multi-stride hand-crafted accelerometer-based gait
features—were explored, and their effects on the classification performance of the proposed
framework were compared and analyzed. To verify the effectiveness and feasibility of our
approach, the classification performance of our proposed approach was compared to the
traditional machine-learning-based method from our previous study.
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This paper provided the following contributions:

1. We presented a novel classification framework using a deep LSTM network to distin-
guish good and irregular walking surfaces with a single wearable sensor placed on
the right ankle. To the best of our knowledge, no existing studies in the walkability
assessment domain have proposed a framework that combines deep learning and gait
analysis techniques to analyze wearable sensor data for the purpose of conducting
sidewalk surface assessments.

2. We compared the performance of three different input modalities for the LSTM-
based framework and identified the most suitable modality. It was shown that the
LSTM networks that took gait feature modalities as the input were able to achieve
convergence and robust performance with limited samples compared to the LSTM
networks fed with raw data modalities.

3. We demonstrated that the LSTM networks with gait feature modalities could outper-
form conventional machine-learning-based methods in the problem domain.

4. We showed that post-processing on several consecutive per-stride predictions of LSTM
networks fed with single-stride gait feature modalities to generate final predictions
on a larger segment could improve classification performance.

The rest of the paper is organized in the following manner: We first discuss a review of
related works. Next, we present the research methodology utilized in this work, followed
by the experiments section where the experimental setup and results are presented. Lastly,
a discussion on the findings and implications of this study is provided.

This paper was based on Chapter 4 of the first author’s master’s thesis [13].

2. Related Works
2.1. Conventional Methods for Sidewalk Assessments

Some of the prevalent methods employed to maintain sidewalk facilities have relied
on conducting pedestrian surveys, interviews and self-reporting [8]. However, these
methods are subjective, rely on pedestrians’ voluntary participation, lack reliability and are
inadequate in providing a comprehensive analysis of sidewalk defects [8]. Governmental
agencies also often conduct field inspections carried out by trained inspectors to identify
regulatory violations [9]. Studies have also explored new ways to enhance conventional
sidewalk assessment practices. Sousa et al. presented a multi-criteria sorting methodology
to evaluate sidewalk performance [14]. Meanwhile, Corazza et al. proposed an evaluation
index for sidewalk conditions that was derived from the standardized pavement condition
index (PCI) used for roads and airports [15]. Nonetheless, these methods require significant
labor and financial resources [9]. Additionally, scaling these methods for larger cities poses
considerable challenges.

2.2. Machine Learning Methods with Hand-Crafted Features for Automated Sidewalk Assessments

With the rapid progress in sensing technologies, multiple research studies have shown
the feasibility of detecting various sidewalk features or defects by utilizing wearable sensors
to measure pedestrians’ physiological responses [8,16,17]. Studies have also examined
the impacts of irregular and uneven surfaces on human walking patterns [18–22]. How-
ever, these studies were inference-based, aiming to uncover relationships between signal
magnitude or specific gait parameters and surface conditions or the built environments.

Consequently, to stimulate advancements in automated sidewalk assessments, few
studies have explored the automated assessment of road or surface conditions that integrate
human bodily responses utilizing robust machine learning or deep learning techniques. One
study [23] utilized features extracted from raw acceleration data gathered from pedestrians’
smartphones to train a conventional machine learning model to detect barriers and obstacles
in a large area. Takahashi et al. [24] proposed a step-classifying algorithm to detect steps
based on features extracted from x-axis accelerations gathered from smartphones affixed
onto cyclists. Kobayashi et al. predicted different sidewalk surface types using random
forest and acceleration data from smartphones stored in pedestrians’ front pockets [25]. In
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our previous study [10], we proposed a traditional machine learning approach that analyzes
hand-crafted accelerometer-based gait features extracted from a right-ankle sensor.

2.3. Deep Learning Methods for Automated Sidewalk Assessments

Numerous advanced deep-learning-based approaches have been developed for the
automated evaluation of roadways or sidewalks utilizing infrastructure-based data such
as images, videos or GIS technologies [26–32]. In one study [33], acceleration data from
smartphones mounted on vehicles were used to train deep learning models for road surface
monitoring and pothole detection. However, determining the presence of poor sidewalk
conditions relies on how individuals interact with sidewalks [34], and such interactions can
vary in different contexts [35]. Infrastructure-based data and data collected from moving
vehicles, nonetheless, fail to address how the human body reacts to external walking
environments [36]. Individuals respond differently to the same surroundings based on
their characteristics; therefore, their variability must be analyzed [8].

Limited studies have applied deep neural networks to analyze human responses for
walking surface condition detection. Kim et al. verified the effectiveness of a cascaded
LSTM-based deep recurrent neural network method to classify abnormal and normal
gaits, and demonstrated that the ratio of abnormal gaits could indicate the existence of an
environmental barrier to walkability, as they were highly correlated [37]. The confirmed
relationship between the ratio of abnormal gaits and the presence of an environmental
barrier is in line with our observation of a higher rate of disrupted gaits on irregular
walking surface segments. However, the focus of their study on the environmental barrier
was on surrounding facilities instead of sidewalk conditions. Hu et al. demonstrated the
effectiveness of using deep learning approaches to analyze data from six wearable sensors
placed on different body locations to identify irregular walking surfaces [38]. However, the
surfaces that were tested in the study did not accurately reflect the usual uneven surfaces
found on sidewalks in neighborhoods. Furthermore, deploying sensors at various locations
for continuous monitoring in real-time is impractical due to the computational demands of
processing data from multiple locations [39], as well as the discomfort caused by wearing
multiple sensors. Kobayashi et al. also expanded their study to propose a deep learning
approach by training a convolutional neural network (CNN) with acceleration data and
window-based features extracted from smartphones [40]. The limitation of this approach
is that the models trained with features extracted from smartphone data using a sliding
window were unable to be generalized to individual differences.

To address the gaps in existing works and to improve the prediction performance of the
traditional machine-learning-based classification framework from our previous study [10],
we introduced a novel deep-LSTM-based classification framework to automatically detect
irregular walking surfaces with a single wearable sensor in this paper. In our previous
study [10], we identified the right ankle as the ideal location for sensor placement for
detecting irregular walking surfaces. Hence, in this paper, we used the acceleration data
collected from a right-ankle sensor from our previous experiment and the traditional
machine learning approach as the benchmark to validate the feasibility of our proposed
deep LSTM framework.

3. Materials and Methods
3.1. Proposed Framework

Figure 1 illustrates the overview of the proposed framework. The data collection and
labelling process is described in Section 3.2. The measured raw acceleration data from
the previous study were pre-processed in three different ways to generate three different
modalities to feed distinct LSTM networks, because the workflow for implementing a
recurrent deep learning method differs based on the input modality, which is discussed in
Section 3.3. Next, hyper-parameters for each LSTM network had to be tuned to determine
the optimal network structure for each input modality. The setup is discussed in Section 4.1.
Finally, all LSTM networks were then evaluated with the leave-one-subject-out test set
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procedure. All five scenarios of irregular walking surfaces were consolidated into a single
class labeled as “Irregular”, framing the problem as a binary classification task.
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Figure 1. Overview of the proposed framework.

3.2. Data Collection

We used the data collected from the accelerometer positioned at the right ankle of
12 subjects from our previous experiment [10] for this study, since the right ankle was
determined to be the most suitable location to identify irregular walking surfaces. To
collect the acceleration data, we conducted the experiment at The Peter Kiewit Institute
of the University of Nebraska at Omaha. We selected a segment of a well-paved, smooth
and leveled walking route in that area and denoted the starting and ending points. Then,
four irregular walking surface segments were set up within that path: a segment covered
in grass, an object-obstructed segment, an uneven segment and a segment covered with
debris. These segments represented irregular sidewalk walking surfaces that are highly
probable in less walkable neighborhoods in the real-world. The good and irregular walking
segments are shown in Figure 2.

We recruited twelve healthy participants, comprising eight males and four females, for
this study. A tri-axial accelerometer was affixed at the right ankle on each subject, as shown
in Figure 3. It was affixed to the outer side of the shoe of each participant. We measured
the linear acceleration along the X, Y and Z axes of the subject’s body with Mbient sensors
(MetaMotionR, Mbient Lab, San Francisco, CA, USA) that were configured to capture data
at a rate of 100 Hz. The subjects were directed to walk at their usual pace along the path,
starting from the initial point, proceeding towards the endpoint and then returning to
the starting point along the reverse path. Video recordings were taken throughout the
experiment for each subject to help facilitate data labeling.
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Figure 3. Placement of sensor at the right ankle of a subject.

Figure 4 displays the raw acceleration measurements captured with the right-ankle
sensor of a subject. The figure visualizes an individual’s gait for five seconds, which
is equivalent to 500 data points. The raw acceleration data points were categorized by
cross-referencing with the experiment videos.
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Figure 4. Five seconds of raw walking acceleration signal of a subject captured with a sensor
positioned at the right ankle.

3.3. Data Pre-Processing

The acceleration data from the accelerometer positioned at the right ankle of subjects
were analyzed to discriminate between good and irregular walking surfaces. As shown in
Figure 5, the X, Y and Z axes of the right ankle accelerometer captured acceleration data
corresponding to motion in the vertical (V), antero-posterior (AP) and medio-lateral (ML)
directions, respectively.
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To compare how the three different modalities affected the classification performance
of the proposed network, three distinct LSTM models had to be trained and fed with differ-
ent data dimensions. The raw acceleration data needed to be pre-processed as described in
the following section.
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3.3.1. Raw Data Modality

We collected a total of 646,500 samples of right-ankle raw acceleration data, with
426,500 samples falling on good walking surfaces and 220,000 samples on irregular walking
surfaces, as shown in Table 1. Since taking large values directly to train a LSTM network
could lead to large gradient updates that would result in a slower convergence or even
divergence of the training process, we normalized our input data to have a standard
deviation of 1 and a mean of 0. The input to be fed into the network had to be fixed-size
sequential data, which was a short time series segmented from the raw acceleration signal.
Therefore, the acceleration data were sampled into each segment with a 1.10 s fixed-width
sliding window, which is equivalent to 110 data points, with a 90% overlap between them.
Since the acceleration data had X, Y and Z dimensions, the sliding window would sample
data points from all three dimensions into each segment, resulting in a three-dimensional
input segment vector.

Table 1. Distribution of class labels of raw acceleration data.

Label Count Percentage

Good 426,500 66%
Irregular 220,000 34%

Total 646,500 100%

This window size was chosen because each window should have included at least
one complete period [41], which was one stride. The average stride time for all subjects
was 1.10 s. The 90% overlap rate was chosen because it would result in more segmented
data samples due to the limitation of our sample size. Additionally, an overlap between
windows would carry information from the previous window.

3.3.2. Single-Stride and Multi-Stride Gait Feature Modalities

For the training of the proposed network using gait features, we adopted the same
gait features employed in our previous study [10]. The extracted features were shown to
be useful and robust in training predictive models in previous mobility studies [42,43],
since these features captured the biomechanical gait characteristics of various phases of
a person’s gait cycle. To extract the gait features from raw acceleration data, the first
step involved segmenting the raw acceleration data into strides using the AP directional
acceleration of the accelerometer [42]. Next, we computed 20 base gait features from the
segmented strides before computing the variability of those gait features between strides,
thereby resulting in a total of 40 gait features [10]. A complete description of the base gait
features can be found in Table 2, while the distribution of stride samples for each label is
shown in Table 3.

Table 2. Description of extracted base features.

Gait Feature Gait Feature Description Gait Feature Formula

VM Magnitude of the vector for the entire stride
√

ML2 + V2 + AP2 computed from the acceleration
of the three axes for the entire stride

VM5 Magnitude of the vector for the first 5% portion of
the stride

√
ML2 + V2 + AP2 computed from the acceleration

of the three axes for the first 5% portion of the stride

LVM Magnitude of the vector of the ML axis for the
entire stride

√
ML2 computed from the acceleration of the ML axis

for the entire stride

VVM Magnitude of the vector of the V axis for the entire
stride

√
V2 computed from the acceleration of the V axis for

the entire stride
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Table 2. Cont.

Gait Feature Gait Feature Description Gait Feature Formula

AVM Magnitude of the vector of the AP axis for the
entire stride

√
AP2 computed from the acceleration of the AP axis

for the entire stride

VMD Magnitude of the vector for the double stance

√
ML2 + V2 + AP2 computed from the acceleration

of the three axes for the ±10% portion surrounding
the heel strike event

LVMD Magnitude of the vector of the ML axis at the time
of a double stance

√
ML2 computed from the acceleration of the ML axis

for the ±10% portion surrounding the heel strike event

VVMD Magnitude of the vector of the V axis at the time of
a double stance

√
V2 computed from the acceleration of the V axis for

the ±10% portion surrounding the heel strike event

AVMD Magnitude of the vector of the AP axis at the time
of a double stance

√
AP2 computed from the acceleration of the AP axis

for ±10% portion surrounding the heel strike event

VM30 Magnitude of the vector for the mid-stance
√

ML2 + V2 + AP2 computed from the acceleration
of the three axes for the 30% portion of the gait cycle

LVM30 Magnitude of the vector of the ML axis at the time
of the mid-stance

√
ML2 computed from the acceleration of the ML axis

for the 30% portion of the gait cycle

VVM30 Magnitude of the vector of the V axis at the time of
a mid-stance

√
V2 computed from the acceleration of the V axis for

the 30% portion of the gait cycle

AVM30 Magnitude of the vector of the AP axis at the time
of a mid-stance

√
AP2 computed from the acceleration of the AP axis

for the 30% portion of the gait cycle

LHM Magnitude of heel strike of the ML axis Max (ML) at the heel strike

LHSD Standard deviation of the acceleration of the ML
axis for the first 10% portion of the stride

Std (ML) computed from the acceleration of the ML
axis for the first 10% portion of the stride

VHM Magnitude of heel strike of the V axis Max (V) at the heel strike event

VHSD Standard deviation of the acceleration of the V axis
for the first 10% portion of the stride

Std (V) computed from the acceleration of the V axis
for the first 10% portion of the stride

AHM Magnitude of heel strike of the AP axis Max (AP) at the heel strike event

AHSD Standard deviation of the acceleration of the AP
axis for the first 10% portion of the stride

Std (AP) computed from the acceleration of the AP
axis for the first 10% portion of the stride

ST Stride time Duration of two consecutive heel strike events

Table 3. Distribution of class labels of stride samples.

Label Count Percentage

Good 3774 65%
Irregular 1995 35%

Total 5769 100%

The stride samples were also normalized to have a standard deviation of 1 and a mean
of 0. Subsequently, the stride samples were also segmented into a fixed-size data sequence.
To prepare the stride samples for the training of the single-stride gait feature modality,
since one sample was equivalent to one stride, a sliding window with the width of one
sample with no overlap was used to segment the data, as shown in Figure 6. Since there
were 40 features, the input segment vector would contain 40 dimensions.

In our previous study [10], we observed that gaits were not always disrupted when
subjects traversed irregular walking surfaces. Abnormal gaits would intermittently occur
alongside normal gaits. Therefore, compared to walking on a good walking surface,
there was a higher rate of interrupted gaits. Based on this observation, we hypothesized
that aggregating multiple consecutive strides to train an LSTM network would improve
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classification performance. This led to the experimentation of the multi-stride gait feature
modality. For this modality, a larger sliding window width of five samples was used to
segment the data, which was equivalent to five strides, with an 80% overlap, as illustrated
in Figure 7. The input segment vector had the shape of 40 dimensions as well.
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3.4. Proposed Architecture

Since the architecture of a LSTM model is input-dependent, the number of layers
and the optimal network structure for each of the three modalities differed. For ease of
reference, the LSTM networks trained with raw data, single-stride gait features and multi-
stride gait features were referred to as LSTM-Raw, LSTM-Features-1 and LSTM-Features-5,
respectively. The tuning methodology is delineated in Section 4.1.1.

The resulting optimal architectures turned out to be identical for all three networks, as
illustrated in Figure 8. It consisted of four layers of a LSTM layer with dropout layers in
between each LSTM layer. At the end of the architecture was a dense layer, followed by a
Sigmoid activation function that yielded the probability of the pre-processed sample being
an irregular class.

However, the optimal number of neurons per LSTM layer for LSTM-Raw was 224,
while the optimal number of neurons for both LSTM-Features networks was 100. This
meant that the dimensionality of the input vector per time-step fed into a LSTM layer in
LSTM-Raw was three and the output vector, which was also the hidden state vector, of
the layer had a dimensionality of 224. On the other hand, the dimensionality of the input
vector per time-step fed into a LSTM layer in the LSTM-Features networks was 40 and
would output a hidden state vector with a dimensionality of 100.

Stacking multiple LSTM layers could transform the raw acceleration and gait feature
inputs into a more abstract representation that enabled the network to learn the complex
relationships between the inputs and walking surface conditions [44]. We kept the number
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of neurons the same for each layer when tuning, because using the same number of neurons
for all layers performed generally better than increasing or decreasing the neurons down the
network [45]. As shown in Figure 8, the pre-processed data were fed into the stacked LSTM
layers to extract temporal features. The temporal features were then processed with the
dense layer, followed by a sigmoid function to obtain the probability of the pre-processed
sample being an irregular class.
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3.4.1. LSTM Layer

LSTM is a specialized variant of the recurrent neural network (RNN), and it was
introduced by Hochreiter et al. [46]. Unlike a traditional neural network, which is incapable
of capturing temporal information as the nodes in each layer are disconnected, the RNN
compensates for that limitation by mapping input sequences to output sequences. However,
the RNN has the disadvantage of recognizing data for only short periods of time due to
the vanishing/exploding gradient [47]. The LSTM solves the problem of the RNN with
special memory cells that can solve complex, artificial, long-time-lag tasks, which resulted
in it being an appropriate solution for our problem, since acceleration data are time series
data [46]. The LSTM network introduced a new mechanism called a memory cell.

A memory cell is regulated with three main gates: an output gate, an input gate and a
forget gate. The output gate protects other neurons from being perturbed by a currently
irrelevant memory cell state, while the input gate determines what input can alter the
memory cell state [46]. Lastly, the forget gate is responsible for gathering prior data and
what past information to forget from the cell’s previous state [46].

A LSTM memory cell would take in an input xt at time t, the hidden state ht−1 and
the cell state ct−1 from the previous LSTM memory cell, and would output the current
hidden state ht plus the memory cell state ct. U, W and V denote the weight matrices,
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while b represents the bias vector. The forward pass of the LSTM unit could be expressed
as follows:

ft = σ(W f xt + U f ht−1 + b f ) (1)

it = σ(Wixt + Uiht−1 + bi) (2)

c̃t = tanh(Wcxt + Ucht−1 + bc) (3)

ct = it ◦ c̃t + ft ◦ ct−1 (4)

ot = σ(Woxt + Uoht−1 + Voct + bo) (5)

ht = ot ◦ tanh(ct) (6)

where ◦ represents the element-wise multiplication, while ft, it, c̃t and ot represent the
forget, input, cell, output gates’ outputs, respectively. ct and ht are passed on to the next
time step.

As mentioned above, the LSTM-Raw network had 224 memory cells for each LSTM
layer and would take in a three-dimensional input vector xt per time-step. Each of the
LSTM layers would produce a hidden state output vector ht with 224 dimensions. As for
the LSTM-Features networks, it would take in an input vector xt with 40 dimensions per
time step. As each LSTM layer had 100 memory cells, each layer would generate a hidden
state output vector ht with 100 dimensions.

3.4.2. Dropout Layer

Dropout is a technique commonly used to prevent overfitting in a deep neural network
with a vast number of parameters [44]. Limited training data in our study would lead to
overfitting, since we were using multiple LSTM layers. The main idea is to randomly drop
input units into the next layer during training, which prevents the units from co-adapting
too much [44]. We set the dropout rate to be 50%. This meant that when the hidden state
vector output by the previous LSTM layer was fed to the dropout layer, the dropout layer
would randomly set 50% of the hidden state vector dimensions to 0, which would be the
input vector into the next layer.

3.4.3. Dense Layer

The dense layer and a Sigmoid function were necessary to process feature representa-
tions extracted with the LSTM layers to complete our classification task. The dense layer
was also a fully connected layer, which meant that hidden state vectors generated by each
LSTM neuron after being randomly dropped out were being fed to every node in the
dense layer.

Since the output of the dense layer was not interpretable, it was fed into a Sigmoid
function so that it could be converted into a probability of the given sample being an
irregular class. The formula for Sigmoid is as follows:

S(x) =
1

1 + ex (7)

where x is the one-dimensional output vector of the densely connected layer.

4. Experiments Section
4.1. Experimental Setup
4.1.1. Hyper-Parameter Tuning

To determine the optimal network structure for each of the three modalities, the
number of neurons and layer hyper-parameters had to be tuned independently for each
modality. We first split the samples for each modality into training and test data subsets
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using an 80:20 split. The training data subset was further split into 80% for training and
20% for validation during the model fitting, so that the model learning behavior could
be monitored through training and validation learning curves to avoid underfitting or
overfitting. The test set was used to evaluate the structure.

We tuned the number of layer and number of neuron hyper-parameters with the
automated tuning package in Keras Tuner [48]. The hyper-parameters were optimized
using random searches to minimize validation loss in 30 maximum trials.

Neural networks are commonly trained using mini-batch processing. According to
Keskar et al. [49], using a larger batch size would lead to a less generalizable model. Hence,
upon determining the network structure, we also examined the effect of the batch size on
the classification performance to determine the most effective batch size.

4.1.2. Model Implementation

The proposed LSTM structure was implemented with Keras libraries [48], written in
Python and utilizing Tensorflow [50] as the backend. All the LSTM models with different
modalities were trained in a supervised manner. Each layer’s weights and biases were
initialized with randomly selected values. The LSTM parameters were optimized through
minimizing the binary cross-entropy loss function. The binary cross-entropy loss function
measures the distance between the predicted probability and the actual class. The binary
cross-entropy loss for a batch of N samples was defined as:

L = −∑N
i=1 yilog(ŷi) + (1− yi)log(1− ŷi) (8)

where yi denotes the truth value, taking the value 1 or 0, and ŷi is the predicted Sigmoid
probability.

An optimizer used to update the network parameters to minimize the loss function
needed to be selected as well. We chose the Adam optimizer, since it was shown that it had
the best fitting effect for the purpose of human activity recognition [41]. A learning rate of
0.0001 was used to control the extent of the parameter updates.

4.1.3. Evaluation Metrics

We had a disproportionate sample of irregular classes in our dataset, as shown in
Tables 1 and 3. Hence, we used the area under the receiver operating characteristic (ROC)
curve (AUC), which described the relationship between the false positive rate and true
positive rate, as our performance metric because it is unaffected by skewed data [51,52].

Furthermore, once we determined the optimal network structure for all three modali-
ties, to verify the generalizability of the models to subject differences, we employed the
leave-one-subject-out test set procedure for the evaluation of each modality. During each
iteration of the protocol, to avoid overfitting for each model, the best epoch to halt training
was determined by utilizing the early-stopping strategy [45]. We initially set the training
epoch to an arbitrary large number of 200 in Keras and configured the early-stopping
criterion to halt training when there was no improvement in the validation AUC after
15 epochs. The optimal number of epochs for each respective model was then used to
retrain the models, and the models were evaluated with the test set.

4.1.4. Traditional Machine Learning Baseline Method

We verified the effectiveness of the proposed approach by benchmarking the approach
against the shallow machine learning method that was presented in our previous study [10].
We used an SVM model as our baseline shallow machine learning model for this experiment.
The workflow of training an SVM model is shown in Figure 9.
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We pre-processed the raw data and performed stride segmentation prior to extracting
the 40-dimensional gait features described in Table 2, which was identical to the pre-
processing steps performed for the gait feature modalities delineated in Section 3.3.2.
The optimal feature subset was, subsequently, identified from the extracted gait feature
set to train the SVM model. The trained SVM model would generate predictions on a
stride-by-stride basis to discern whether a stride occurred on an irregular surface or not.

Our preliminary study also demonstrated that the classification performance of the
SVM model could be improved with post-processing on the per-stride predictions of the
SVM, since there were more frequent gait interruptions on irregular walking surfaces
compared to the good walking surfaces. We segmented the per-stride predictions by
sampling them into five consecutive strides for each segment using a sliding window
with the step size of one stride and averaging the predicted probability to obtain the final
prediction of that segment. The ground truth of the segment was based on the majority of
stride labels in the segment. Furthermore, for a complete comparison, we also conducted
the same pre-processing steps on LSTM-Features-1’s per-stride predictions and compared
the classification performance of the per-stride and post-processing predictions between
our proposed approach and the shallow SVM approach.

4.2. Experimental Results
4.2.1. Selected Architectures

After hyper-parameter tuning, the resulting optimal structure for LSTM-Raw was four
hidden layers with 224 neurons at each layer. For both the LSTM-Features-1 and LSTM-
Features-5 modalities, the optimal architecture was identical, consisting of a configuration
with four hidden layers and 100 neurons at each layer. Tables 4–6 summarize the list of
the selected hyper-parameters for all three models, as well as the total number of trainable
parameters for each network.

Table 4. List of selected hyper-parameters for LSTM-Raw.

Stage Hyper-Parameters Selected Values

Data Pre-Processing Window Size 110
Step Size 11

Architecture

LSTM_1 Neurons 224
LSTM_2 Neurons 224
LSTM_3 Neurons 224
LSTM_4 Neurons 224

Dropout Rate 0.5

Training
Optimizer Adam
Batch Size 32

Learning Rate 0.0001

Total Trainable Parameters 1,411,425

Table 5. List of selected hyper-parameters for LSTM-Features-1.

Stage Hyper-Parameters Selected Values

Data Pre-Processing Window Size 1
Step Size 1
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Table 5. Cont.

Stage Hyper-Parameters Selected Values

Architecture

LSTM_1 Neurons 100
LSTM_2 Neurons 100
LSTM_3 Neurons 100
LSTM_4 Neurons 100

Dropout Rate 0.5

Training
Optimizer Adam
Batch Size 32

Learning Rate 0.0001

Total Trainable Parameters 297,701

Table 6. List of selected hyper-parameters for LSTM-Features-5.

Stage Hyper-Parameters Selected Values

Data Pre-Processing Window Size 5
Step Size 1

Architecture

LSTM_1 Neurons 100
LSTM_2 Neurons 100
LSTM_3 Neurons 100
LSTM_4 Neurons 100

Dropout Rate 0.5

Training
Optimizer Adam
Batch Size 32

Learning Rate 0.0001

Total Trainable Parameters 297,701

4.2.2. Effect of Batch Size

We tuned our hyper-parameters using the default batch size of 32, which is widely
considered as a practical and effective value [45]. Here, we examined the effect of batch sizes
of 16, 32, 64, 128 and 256 on the classification performance for all three architectures. Table 7
shows the classification results of different batch sizes for LSTM-Raw, LSTM-Features-1
and LSTM-Features-5. It was noticeable that boosting the batch size resulted in a reduction
in the prediction accuracy of each LSTM, which was in line with the conclusions drawn
by Keskar et al. [49]. At a batch size of 16, the classification results were similar to those
attained at the batch size of 32. Since a larger batch size yielded faster computation [45], we
picked 32 as the best batch size and used it for the training of our LSTM models.

Table 7. Classification results of different batch sizes across all LSTM models.

Batch Size LSTM-Raw (AUC) LSTM-Features-1 (AUC) LSTM-Features-5 (AUC)

16 0.92 0.86 0.93
32 0.92 0.86 0.93
64 0.91 0.85 0.92

128 0.91 0.85 0.91
256 0.90 0.85 0.90

4.2.3. Leave-One-Subject-Out Assessment

The classification outcomes for every test subject of the leave-one-subject-out assess-
ment for each LSTM model and the SVM baseline model are summarized in Table 8.
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Table 8. Classification results for each test subject for all LSTM models and SVM.

Test Subject LSTM-Raw
(AUC)

LSTM-Features-1
(AUC)

LSTM-Features-5
(AUC) SVM (AUC)

A 0.62 0.82 0.86 0.74
B 0.60 0.84 0.80 0.81
C 0.78 0.87 0.87 0.83
D 0.77 0.78 0.79 0.70
E 0.85 0.84 0.85 0.85
F 0.55 0.82 0.83 0.70
G 0.85 0.91 0.94 0.84
H 0.70 0.77 0.84 0.87
I 0.70 0.79 0.82 0.82
J 0.65 0.76 0.76 0.72
K 0.51 0.71 0.72 0.75
L 0.70 0.85 0.87 0.92

Average 0.69 0.81 0.83 0.80

LSTM-Raw was the least efficient, as it exhibited an inferior classification performance
compared to the SVM baseline, and had the lowest average AUC. Both the LSTM-Features
models slightly outperformed the SVM model, with LSTM-Features-5 achieving the highest
average AUC of 83%. These results validated the feasibility of utilizing hand-crafted
features to guide the learning of a LSTM network into convergence with the limited
sample size and subject count. When comparing the individual subject outcomes between
LSTM-Features-1 and LSTM-Features-5, we observed that introducing multiple strides
during training in LSTM-Features-5 resulted in an AUC improvement ranging from 1%
to 7%, leading to a 2% increase in the average AUC performance. This finding confirmed
the hypothesis that incorporating multiple strides during training could enhance the
performance of the LSTM-Features model. The LSTM-Features-5 model demonstrated
the highest level of robustness, as it was able to consistently attain an AUC of over 71%
regardless of the selection of subject data excluded from training. Compared to the LSTM
model trained with raw acceleration data, the impact of individual differences on the
performance of both the LSTM and SVM models was less noticeable when trained with
gait features. For completeness, Figure 10 shows the ROC curve of LSTM-Features-5 with
one of the test subject iterations that was closest to the average AUC. The area under the
ROC curve was 83%.
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Figures 11 and 12 depict the training process of one of the leave-one-subject-out it-
erations for LSTM-Features-5. During the network training, the training loss decreased
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gradually, while the validation AUC stabilized, indicating that the model achieved con-
vergence. With the early-stopping strategy, the training stopped at epoch 78 when the
validation AUC stopped improving after 15 epochs to prevent overfitting. As shown in
Figure 11, the gaps between the training and validation curves in the binary cross-entropy
loss were small. Figure 12 shows that the gaps between the training and validation curves
in terms of the AUC were exceedingly small. These results indicated that the dropout
technique was effective in preventing overfitting. After the learning curves stabilized and
the model achieved a good fit, training beyond that point could lead to overfitting. To
prevent this, the early-stopping strategy was employed.
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4.2.4. Post-Training Stride Aggregation Post-Processing

The five-stride post-processing classification results for the SVM and LSTM-Features-1
for each test subject are shown in Table 9. The subject-wise classification results of the
SVM and LSTM-Features-1 improved across the board with post-processing compared
to the per-stride predictions in Table 8. The SVM’s average classification performance
was approximately 5% higher after post-processing, while LSTM-Features-1′s average
AUC improved by 7%. Post-processing on the SVM’s per-stride predictions resulted in
an AUC improvement for all subjects in the range of 1% to 10%, while post-processing
on LSTM-Features-1’s per-stride predictions led to an AUC improvement in the range of
3% to 9%. Comparing the post-processing results of the SVM and LSTM-Features-1, we
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could see that LSTM-Features-1 outperformed the SVM by an average of 2%. This meant
that LSTM-Features-1 with post-processing was the most effective model, as it exceeded
LSTM-Features-5’s classification performance by 5%. This finding suggested that post-
training stride aggregations could lead to better classification results, and they could be
more effective than incorporating multiple strides during the training stage.

Table 9. Five-stride post-processing classification results for each test subject for SVM and LSTM-
Features-1.

Test Subject SVM (AUC) LSTM-Features-1 (AUC)

A 0.77 0.91
B 0.91 0.90
C 0.88 0.92
D 0.79 0.83
E 0.91 0.87
F 0.73 0.89
G 0.94 0.96
H 0.94 0.86
I 0.89 0.87
J 0.77 0.79
K 0.76 0.80
L 0.95 0.91

Average 0.85 0.88

5. Discussion

In this study, we endeavored to improve upon the traditional baseline support vector
machine (SVM) machine learning method from our previous study [10] by leveraging the
LSTM network’s automated feature learning and knowledge distillation abilities. We first
examined how three input modalities impacted the performance of the LSTM network
and verified their effectiveness by using the baseline model as the benchmark. The results
showed that the LSTM trained with single-stride and multi-stride gait features improved the
overall performance compared to the baseline model, as the model’s ability was enhanced
to capture relevant patterns. This also confirmed the feasibility of the proposed approach.

The leave-one-subject-out test set assessment evaluated the robustness of the models
to individual differences. Our results, displayed in Section 4, showed that the LSTM
models trained with gait features outperformed the LSTM model with raw data and were
more generalizable to individual walking pattern differences. As presented in Table 8, the
prediction results of LSTM-Raw were considerably low, with only 51% AUC for subject K
and 55% AUC for subject F, which were deemed unacceptable. The LSTM-Feature models,
on the other hand, could produce satisfactory outcomes for both subjects. The analysis
presented here examined the causes of the inadequate performance of LSTM-Raw for
Subjects F and K. Figures 13 and 14 illustrate the boxplots of two top gait features identified
in our previous study, VM and VMD, and the distribution of values of each subject for those
gait features. Subjects F and K were distributed towards the lower fence of the boxplots.

Figure 15 illustrates the walking patterns of all subjects by combining those two
features on a scatterplot to examine if clusters were formed. Three distinct clusters could
be observed in the plot. Subjects F and K’s walking patterns were distinctively different
from the general pattern of the other two clusters. The plausible explanation for the less
than satisfactory performance of the LSTM network trained with raw data was that deep
learning models are negatively affected by noise effects in a raw signal, limited sample size
and subject variety [53,54]. The limited subject sample size and variety of walking patterns
led to the less comprehensive learning of feature representation from raw signals. This
constraint was mitigated by using hand-crafted gait features to train the LSTM network so
that the LSTM model could focus on identifying discriminative features [53]. Furthermore,
raw signals measured with the accelerometer were noisy, therefore, producing large intra-
class variances. Acceleration data that varied significantly for the same walking surface
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condition led to overfitting. Utilizing gait features would reduce noise and overfitting,
hence, making the model more generalizable. Additionally, the LSTM networks trained
with gait features also required less training time and computational cost, as the optimal
models had fewer parameters to train. This is highly desirable for the development of a
real-time irregular walking surface detection application.
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The experimental results also indicated that post-processing on several consecutive
per-stride predictions and incorporating multiple strides per window in the training stage
to generate a final prediction for a larger segment could improve the classification perfor-
mance. This observation was consistent with Kobayashi et al.’s research, which showed
that accuracy improved when segmenting smartphone acceleration into a larger window
size for convolutional neural network training for a sidewalk type estimation [40]. If the
recommended LSTM technique was to be applied in a real-world scenario, it would be
essential to capture at least five seconds of data, since a typical stride time for pedestrians
is approximately 1.10 s.

Conventional practices for sidewalk condition assessments, which depend on trained
experts from governmental agencies or the voluntary participation of residents or pedes-
trians, are subject to staffing and budget constraints. As a result, the time span between
assessments becomes extended [8]. Besides being user-oriented, the practicality of the
proposed deep learning approach was also evident, as it achieved a high classification
performance in detecting irregular walking surfaces using just a single wearable sensor. In
contrast to the shallow machine learning approach, the proposed deep learning approach
had an inherent ability to automatically distill knowledge from a high dimensional feature
set to extract a good representation, which is analogous to automated feature selection,
while simultaneously enhancing the classification performance. This scalable deep learning
method could be deployed as a tool to continuously analyze pedestrians’ acceleration data
to monitor the surface conditions of sidewalks. The system, by removing human biases
during the evaluation, could introduce new perspectives to walkability assessments and
minimize the time and expense needed for on-site inspections.

Nonetheless, this study had its limitations. One of them was that the experiment was
conducted in an experimental setting instead of real-world neighborhoods that vary in
walkability. The subjects could have demonstrated distinct walking patterns in a real-world
environment as opposed to the experimental setting. Another limitation was the small
sample size of subjects. Therefore, we evaluated the approach by iterating through each
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subject to draw conclusions repeatedly. Another drawback of the proposed framework was
its inability to track the subjects’ locations due to the lack of global positioning system (GPS)
data. Finally, the LSTM is inherently a sequential model that relies on recurrence. This
sequential nature impeded parallelization during training [55] and could present challenges
in capturing long-term dependencies for longer data sequences in future experiments.

In the future, we plan to include more subjects to increase the number of subject sam-
ples and conduct our experiment in real-world walkable and less walkable neighborhoods.
Furthermore, GPS data could be integrated in future works to locate participants and
pinpoint the source of problematic sidewalk walking surfaces. To address the limitations
of the LSTM and to further enhance the classification performance, we also plan to con-
sider the use of a state-of-the-art deep network called the Transformer, which relies on a
self-attention mechanism instead of recurrence.

6. Conclusions

In this study, we presented a novel classification approach for the automated detection
of irregular walking surfaces based on a LSTM network using a single wearable accelerom-
eter placed at the right ankle. Three input modalities for the training of the LSTM network
were explored and their effectiveness was evaluated by comparing their classification
performance to the traditional baseline support vector machine (SVM) machine learning
method [10]. Based on the experimental results, it was found that the LSTM network
trained with single-stride hand-crafted gait features with post-processing achieved the
best performance. This affirmed the feasibility and effectiveness of the proposed approach.
The results indicated that the proposed method could be used as an unbiased tool for
detecting potentially problematic walking surfaces. Furthermore, this study unveiled new
avenues for the development of real-time sidewalk assessment systems. Considering the
sensitivity of our method to subtle variations in gait patterns, which is critical in clinical and
therapeutic settings, the proposed method could potentially be extended to the healthcare
domain as well. The application of the proposed method in monitoring gait patterns in
individuals with neurological disorders or assessing the effectiveness of gait-improving
interventions presents a promising direction for future research.
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