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Abstract: Geomorphological surveys and terrain analysis are essential for geomorphology, hydrology,
and geographic information systems (GIS). Terrain characterization parameters are fundamental for
comprehending geomorphological processes, delineating landforms, and evaluating geohazards.
Hence, this study relies on data from the Gaofen-2 satellite (GF-2) and the Advanced Land Observing
Satellite Digital Elevation Model (ALOS DEM). Focusing on the ring tectonics landform of Dinosaur
Valley, the research utilizes visual interpretation, GIS terrain parameter extraction techniques, and
visual mapping to identify, measure, and analyze terrain features. The results indicate that ALOS
DEM can offer accurate geomorphic feature information. The optimal threshold for extracting the
surface water system network is 150, and the optimal analysis window for extracting terrain feature
parameters is 16 × 16 (0.04 km2), determined through statistical methods. This study reveals distinct
double-ring linear features and prominent ring-shaped terrain characteristics by extracting terrain
feature parameters and utilizing mathematical and statistical analysis. The topography gradually
ascends from the center to the ridgeline and then descends to the valley line, resembling a bowl shape.
This study highlights the potential application of ALOS DEM for accurately identifying topographic
features in the intricate mountains of the Yunnan Plateau. It establishes a practical research framework
for high-precision topographic datasets and geomorphological characterization, facilitating further
analysis of the evolution of topographic development and the assessment of tectonic activity.

Keywords: ring tectonics; feature parameters; GF-2 remote sensing images; ALOS DEM

1. Introduction

Topography is recognized as a fundamental natural geographic feature and a critical
determinant of surface processes [1]. The investigation of topographic and geomorphic
features consistently holds significant scientific value in enhancing our comprehension of
Earth’s surface morphology, the evolution of geomorphic development, and geological
history. Within this context, geomorphology encompasses mountains, valleys, plateaus,
and rivers, playing a vital role in shaping surface features and influencing the occurrence of
natural disasters [2,3]. Given the growing integration of geomorphometry and terrain anal-
ysis with associated disciplines, including mathematics, physics, and information science,
exploring terrain features has transitioned from qualitative to quantitative research [4].
Furthermore, it furnishes crucial primary data for geomorphology, hydrology, soil science,
and geographic information systems (GIS [5]).

Moreover, utilizing high-resolution terrain data can propel the advancement of terrain
analysis research. Due to the rapid advancements in photogrammetry, remote sensing (RS)
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technology and geographic information science have made high-precision topographic
data available, facilitating precise mapping and analysis of topographic features. Within
this context, terrain feature parameters can be derived from Digital Elevation Model
(DEM) [6–8] data. Furthermore, terrain feature parameters serve as effective metrics and
indicators for investigating regional morphological features and conducting quantitative
analysis of topographic and geomorphic features. Presently, they are extensively employed
to investigate geomorphic units and diverse studies on geomorphic features, including
glacial or aeolian geomorphology.

Various studies characterizing terrain topography have been conducted to date, utiliz-
ing the Digital Elevation Model (SRTM DEM) generated by the Shuttle Radar Topography
Mission and the Advanced Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model (ASTER DEM). Furthermore, ASTER DEM was employed
for topographic characterization of diverse terrains. For instance, Fang et al. [9] derived
a Digital Elevation Model (DEM) from digital topographic maps using interpolation to
extract and analyze the topographic features of the Yanwachuan watershed in the loess high
plateau gully area. Zhang et al. [10] conducted topographic characterization of the Qilian
Mountain Nature Reserve utilizing SRTM DEM data. Madavi Venkatesh [11] utilized SRTM
DEM and remote sensing satellite data for morphometric parameter analysis of the Betwa
River basin in central India. This enabled an understanding of spatial variations in morpho-
metric parameters for assessing hydrological, geological, and topographic features. Zhang
et al. [12] employed SRTM DEM for the geomorphic characterization and morphological
delineation of the Qinba Mountain Area. Su et al. [13] examined the geomorphological
features of the Niyang River basin using ASTER DEM data.

However, the spatial resolutions of SRTM and ASTER DEM are 90 m and 30 m,
respectively [14], introducing accuracy limitations for terrain characterization in smaller
areas. Hence, the employment of the Radiometric Terrain Correction (RTC) digital elevation
model (DEM) from the Advanced Land Observing Satellite Phased Array L-band Synthetic
Aperture Radar (ALOS-PALSAR) with a spatial resolution of 12.5 m is recommended
for terrain feature analysis. The 12.5 m spatial resolution of ALOS DEM data meets the
requirements for data analysis and mapping with heightened accuracy, representing the
globally available DEM data with the highest precision. Moreover, the globally accessible
DEM data is freely available [15]. Consequently, the ability to extract terrain characteristic
parameters from publicly available high spatial resolution DEM data for identifying and
quantitatively analyzing highland mountainous areas with intricate terrain structures is of
scientific significance.

The circular landform in Dinosaur Valley, situated in the mountains of the Yunnan
Plateau, has garnered considerable attention due to its distinctive circular features cap-
tured in remote sensing images. Hence, its topographic characterization holds crucial
theoretical significance in the realm of remote sensing geology [16]. However, current
studies predominantly concentrate on small-area topographic characterization using UAV
data [17–19], often neglecting comprehensive consideration of the overall topographic fea-
tures. In addition, various terrain feature parameters depict terrain features from distinct
perspectives. Determining the optimal combination of these parameters holds specific
research significance for identifying and quantitatively analyzing terrain features across
multiple dimensions. This also presents a novel research concept and foundation for
exploring terrain features.

This study focuses on the annular landform in Dinosaur Valley, located in Lufeng
City, Chuxiong, Yunnan Province, as the designated study area. Utilizing ALOS DEM data,
terrain feature parameters are extracted and optimal combinations are explored for multi-
dimensional, qualitative, and quantitative identification, measurement, and analysis of the
terrain features. This is achieved through visual interpretation, DEM visualization, and
GIS terrain feature extraction and analysis. The study showcases the potential application
of ALOS DEM data in characterizing terrain in the intricate mountains of the Yunnan
Plateau. It offers precise and efficient technical methods for exploring terrain features,
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presenting fresh research perspectives and geomorphological foundations for resource and
environmental management; sustainable development; and erosion prevention and control
in the circumferential landform of Lufeng Dinosaur Valley.

2. Materials and Methods
2.1. Study Area

The study area is located in the mountains of the ring tectonic terrain in Chuxiong
City (Figure 1a), Lufeng County (Figure 1b), Yunnan Province, China. The geographic coor-
dinates of the area are latitude 24◦53′40′′~24◦58′30′′ N, longitude 102◦06′20′′~102◦01′30′′ E.
The terrain is characterized by high northeast and low southwest areas, as shown in Figure 1.
The climate belongs to the subtropical plateau monsoon climate, with significant daily
and minor annual differences, and two seasons which are each distinctly dry or wet. The
primary strata in the study area include the Quaternary and Tertiary of the Cenozoic; the
Cretaceous and Jurassic of the Mesozoic; and the Kunyang Group of the Metazoic. Triassic,
Devonian, Ordovician, Cambrian, and Aurignacian strata occur in surrounding areas. The
magmatic rocks are mainly purplish-red mudstone with grayish-purple and grayish-green
rocks; there are also basal intrusive and ultramafic intrusive rocks [20]. According to the
soil survey data of Lufeng City, there are five soil types: brown soil, yellow-brown soil, red
soil, purple soil, and rice soil. Among them, purple soil is the most dominant soil type in
the jurisdiction, with the most significant proportion, followed by red soil, yellow-brown
soil, and rice soil [21].
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  Figure 1. Location map of the study area: (a) location map of Chuxiong Yi Autonomous Prefecture,
(b) Location map of Lufeng County, (c) GF-2 image.

2.2. Data Sources and Processing

The Gaofen-2 satellite (GF-2) is characterized by high-speed positioning, sub-meter
spatial resolution, and fast-maneuvering side-swing capability, which effectively improves
the comprehensive observation capability of the satellite [22]. GF-2 plays a vital role
in land resource surveys; exemplary urban management; mineral resource monitoring;
forest resource surveys; desertification monitoring; geological disaster monitoring; flood
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monitoring; and post-disaster reconstruction. In this study, the high-resolution remote
sensing image covering Lufeng County was acquired via GF-2 (download address: https:
//data.cresda.cn (accessed on 14 April 2021)) on 13 March 2020, was utilized, and the
specific parameters are shown in Table 1.

Table 1. GF-2 satellite payload parameters.

Load Spectral Range
(µm)

Spatial
Resolution (m) Width (km) Revisit Period

(Day)
Coverage Period

(Day)

Panchromatic camera 0.45~0.90 µm 0.8 m

45 (Two cameras
combination) 5 69multispectral camera

0.45~0.52 µm

3.2 m
0.52~0.59 µm
0.63~0.69 µm
0.77~0.89 µm

In remote sensing image acquisition, satellite attitude, speed, altitude, atmospheric
disturbance, and other factors cause geometric deformation and information errors in
remote sensing images. Therefore, the remote sensing service platform ENVI5.3 was
utilized to preprocess the GF-2 images of the study area. First, radiometric calibration
and atmospheric correction were performed on the multispectral images; radiometric
calibration was performed on the panchromatic images; and the digital number (DN) of
the remote sensing image components was converted to radiance and reflectance. Then,
the images were orthorectified using DEM data with a resolution of 12.5 m. The calibrated
multispectral image was fused with the panchromatic image using the Nearest Neighbor
Diffuse (NNDiffuse) panchromatic-sharpening fusion algorithm—recently proposed by
the Rochester Institute of Technology (RIT)—resulting in suitable image fusion results [23].
Finally, the fused image is cropped; the preprocessed result is shown in Figure 1c.

The Advanced Land Observing Satellite (ALOS), part of the Advanced Land Observing
Satellite-1 project of the Japan Aerospace Exploration Agency (JAXA), offers valuable
information for mapping; precise regional land-cover observation; disaster monitoring;
and resource surveys. It particularly excels in digital elevation mapping [24]. This study
utilizes the ALOS DEM acquired on 31 January 2009 at 15:45, with a spatial resolution
of 12 m. The data can be accessed from the open-source website (download link: https:
//search.asf.alaska.edu (accessed on 29 May 2022)).

2.3. Methods

Utilizing DEM and GF-2 data, ridgelines and valley lines were initially extracted to
define the boundaries of the study area. Subsequently, the surface water system of the
study area was extracted. The mean-variable-point method was employed to determine
the optimal analysis window for terrain feature parameters. Correlation analysis was
conducted to identify the optimal combination of terrain feature parameters. Subsequently,
correlation analysis, classification, statistical analysis, and mapping were employed to
visualize the spatial distribution of topographic features. This facilitated the quantification
and analysis of the topographic and geomorphological features of the ring structure in the
study area from various perspectives.

2.3.1. Extraction of Major Ridgelines and Valley Lines

As topographic features, the ridgelines and valley lines exert a certain control on the
terrain and geomorphology, which is crucial for investigating topographic and geomor-
phological characteristics. Using the ArcGIS spatial analysis tool for DEM, we extracted
ridgelines (Figure 2a) and valley lines (Figure 2b). Subsequently, in conjunction with the
preprocessed GF-2 data, the primary ridgelines (Figure 2c) and valley lines (Figure 2d)
were delineated based on visual interpretation, and the region within the valley lines was
designated as the study area. Finally, characteristic parameters for the ridgelines and valley

https://data.cresda.cn
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lines were statistically calculated (Table 2). For ease of subsequent reference, the ridgelines
and valley lines are now denoted as the inner ring (R1) and outer ring (R2), respectively.
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Figure 2. Ridge and valley line extraction results. (a) ridge line (b) valley line (c) main ridge lines
(d) main valley line.

Table 2. Correlation coefficient matrix table.

Feature Parameters Slope Slope
Direction RDLS Surface

Roughness ECV Surface
Cut Depth

Slope 1
slope aspect 0.006 1

RDLS 0.706 0.007 1
Surface Roughness 0.925 0.037 0.672 1

ECV 0.770 0.013 0.970 0.736 1
Surface Cut Depth 0.688 0.001 0.937 0.662 0.914 1

2.3.2. Surface Water System Network Extraction

The type and direction of a surface water system network can reflect topographic
and geomorphic features [25]. Using the ArcGIS hydrological analysis tool to calculate the
filling depression, flow direction, and flow rate of DEM, the river network was extracted for
the area within the inner ring. The extraction of the river network has a strong relationship
with the set threshold; the selection of the threshold will affect the scale and morphology of
the final extracted river network. In this paper, the threshold relationship curve method
for water system density and catchment area [26] was used to determine the optimal flow
threshold to extract the surface water system network within the inner ring.

Firstly, a series of catchment area thresholds were selected as 10, 50, 100, 150, 200,
250, 300, 350, 400, 450, and 500 rasters, respectively, (with each raster 12.5 m × 12.5 m in
size), and the corresponding water system structure was extracted to calculate the water
system density. Curve fitting was performed for the catchment area threshold and the river
network density, and the fitted curves are shown in Figure 3.
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From Figure 3, it is evident that the relationship curve initially experiences a sharp
decrease as the threshold increases, after which the change tends to level off. Analyzing the
second-order derivative of the fitted curve, it becomes apparent that the threshold value,
starting from 150, leads to a relatively smooth change in the second-order derivative curve
of water system density. Furthermore, as the threshold value increases, the rate of change
decreases, making this value the optimal threshold.

Subsequently, this optimal threshold value was used to delineate the water system net-
work within the inner ring. Following the river grading method proposed by Strahler [27],
we generated the grading diagram of the water system network within the inner ring, and
the results of linear measurements of the water system network within the inner ring.

2.3.3. Mean-Variable-Point Analysis Method

In accordance with the theory of geomorphic development, an optimal analysis area
for a specific geomorphic type exists, where the maximum elevation difference remains
relatively stable. Furthermore, this area can, to a certain extent, maximize the expression of
geomorphic integrity [28]. Hence, it is crucial to ascertain the optimal analysis window for
terrain characterization parameters. Consequently, the mean-variable-point method [29]
was utilized to determine the size of the optimal statistical window for extracting terrain
feature parameters in the study area, using the degree of terrain relief as an example.

First, using the Focused Statistics tool of the ArcGIS Neighborhood Analysis Toolbox
with the rectangle analysis window type, the statistical cell sizes (2 × 2, 3 × 3, . . ., 48 × 48)
were sequentially calculated to correspond to the relief degree of the land surface. Then,
the logarithmic fitting of the terrain undulation degree and the area corresponding to the
window was carried out using Excel2021 software, and the fitting equation was obtained: y
= 21.273ln(x) − 160.49, as well as the coefficient of determination: R2 = 0.9501, which was a
good fit.

The calculation process of the mean-variable-point analysis method is as follows:

(1) The average terrain relief of N (2 × 2, 3 × 3, . . ., 48 × 48) under incremental windows
is obtained based on the terrain relief formula, and then the unit terrain relief Ti is
calculated sequentially using the formula:

Ti =
ti
Ai

(1)

where i is the rectangular analysis window; Ti is the topographic relief under the
analysis window; ti is the average relief under the analysis window; and Ai is the
area under the analysis window (m2).

(2) Ti is taken logarithmically (ln T) to obtain the sample series X{xt, t = 2, 3, . . . , 48}.
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(3) The arithmetic mean X and the sum of squared deviations S for X is computed:

X =
N

∑
t=j

xi
N

, S =
N

∑
t=j

(xi − x)2 (2)

where X is the arithmetic mean of all samples; N is the total number of samples; S is
the total sum of squared deviations.

(4) Let i = 2, 3, . . ., N, and for each i divide the sample into 2 segments: x1, x2, . . . , xi−1,
and xi, xi+1, . . . , xN , then compute the arithmetic mean for each segment of samples
Xi1 , Xi2 , and Si:

Si =
i−1

∑
t=1

(
xt − Xi1

)2
+

N

∑
t=i

(
xt − Xi2

)2 (3)

where Si is the difference between the sum of squared deviations of the two sample
segments.

(5) Calculate the expected value:

E(S− Si) = E
(

N−1(i− 1)(N − i + 1)
(
Xi1 − Xi2

)2
)

. (4)

A scatterplot was made with serial number i as the horizontal coordinate and S− Si
as the vertical coordinate (Figure 4), where the vertex, which is the change point, is the
point with the largest S− Si value.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 
Figure 4. Variation curve of 𝑆 − 𝑆. 

As shown in Figure 4, the variable point is serial number 15. Therefore, the point 
corresponds to an optimal analysis window of 16 × 16 and an optimal statistical area of 
0.04 km2. 

2.3.4. Selection of Optimal Terrain Feature Parameters 
Six terrain characterization parameters (slope; slope direction; relief degree of land 

surface (RDLS); surface roughness; elevation coefficient of variation (ECV); and depth of 
surface cut) were selected in this study. In order to maximize the expression of terrain 
feature information, terrain feature parameters with low correlation coefficients were 
used. Therefore, the correlation analysis of the six selected terrain feature parameters was 
performed to ultimately select the best combination to reflect the geomorphic features. 

In order to eliminate the influence of the magnitude, the topographic feature 
parameters were first normalized via the polar deviation method (Equation (5)) so that 
their values were all in the range of 0 to 255. 𝑥ᇱ = 𝑥, − 𝑥𝑥௫ − 𝑥 × 255 (5) 

where 𝑥ᇱ   is the normalized value, a constant; 𝑥,  is the calculated value of the 
topographic indicator; 𝑥௫ is the maximum value; 𝑥 is the minimum value. 

After the correlation analysis (Table 2), the correlation coefficients of the relief degree 
of the land surface, the elevation coefficient of variation and the depth of surface cut were 
all above 0.937, which were highly correlated. Most studies have selected the degree of 
relief degree of the land surface as the primary terrain characterization parameter for 
describing the overall morphology of the terrain. Therefore, the relief degree of the land 
surface was retained, and the elevation coefficient of variation and depth of surface cut 
were excluded. In this paper, we finally choose four topographic parameters: slope, slope 
direction, slope direction, relief degree of land surface, and surface roughness. 

2.3.5. Extraction of Topographic Factors 
Slope and slope direction are two crucial parameters for depicting topographic and 

geomorphic features, capable of illustrating the undulation pattern of the terrain and its 
structural characteristics [30]. Initially, the ArcGIS slope and slope direction tools were 
employed to extract these parameters from the DEM in the study area. Subsequently, the 
reclassification tool in the spatial analysis toolbox of ArcGIS was used to categorize the 
slope values. 

Following the standards established by the International Geographical Union 
Commission on Geomorphological Surveys and Geomorphological Mapping (IGU 
CGSCGM) for the application of detailed geomorphological maps [31], and considering 
the specific conditions of the study area, the slope values were classified into six grades: 

Figure 4. Variation curve of S− Si.

As shown in Figure 4, the variable point is serial number 15. Therefore, the point
corresponds to an optimal analysis window of 16 × 16 and an optimal statistical area of
0.04 km2.

2.3.4. Selection of Optimal Terrain Feature Parameters

Six terrain characterization parameters (slope; slope direction; relief degree of land
surface (RDLS); surface roughness; elevation coefficient of variation (ECV); and depth of
surface cut) were selected in this study. In order to maximize the expression of terrain
feature information, terrain feature parameters with low correlation coefficients were
used. Therefore, the correlation analysis of the six selected terrain feature parameters was
performed to ultimately select the best combination to reflect the geomorphic features.

In order to eliminate the influence of the magnitude, the topographic feature parame-
ters were first normalized via the polar deviation method (Equation (5)) so that their values
were all in the range of 0 to 255.

x′ij =
xi,j − xmin

xmax − xmin
× 255 (5)
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where x′ij is the normalized value, a constant; xi,j is the calculated value of the topographic
indicator; xmax is the maximum value; xmin is the minimum value.

After the correlation analysis (Table 2), the correlation coefficients of the relief degree of
the land surface, the elevation coefficient of variation and the depth of surface cut were all
above 0.937, which were highly correlated. Most studies have selected the degree of relief
degree of the land surface as the primary terrain characterization parameter for describing
the overall morphology of the terrain. Therefore, the relief degree of the land surface was
retained, and the elevation coefficient of variation and depth of surface cut were excluded.
In this paper, we finally choose four topographic parameters: slope, slope direction, slope
direction, relief degree of land surface, and surface roughness.

2.3.5. Extraction of Topographic Factors

Slope and slope direction are two crucial parameters for depicting topographic and
geomorphic features, capable of illustrating the undulation pattern of the terrain and its
structural characteristics [30]. Initially, the ArcGIS slope and slope direction tools were
employed to extract these parameters from the DEM in the study area. Subsequently, the
reclassification tool in the spatial analysis toolbox of ArcGIS was used to categorize the
slope values.

Following the standards established by the International Geographical Union Commis-
sion on Geomorphological Surveys and Geomorphological Mapping (IGU CGSCGM) for
the application of detailed geomorphological maps [31], and considering the specific condi-
tions of the study area, the slope values were classified into six grades: 0◦–5◦ (gentle slope);
5◦–15◦ (slow slope); 15◦–25◦ (incline slope); 25◦–35◦ (steep slope); 35◦–45◦ (slanted slope);
and >45◦ (rapid steep slope) grades [32]. Additionally, the slope direction values were
divided into nine directions, creating slope and slope direction maps for the study area.

Detailed statistical analyses were conducted using Origin2022 software to gain a
comprehensive understanding of the distribution of slope degree and slope direction
grades and their respective area proportions.

The degree of topographic relief is a macro-indicator describing the topographic
characteristics of a region, which is used to indicate the height difference between the
highest and lowest points in a specific area and can compare the regional geomorphology
and delineate landform types [33]. The value range of the topographic relief degree in the
study area is 0–173 m. According to the topographic relief degree division method [34]
and combined with the actual situation of the study area, the ArcGIS reclassification tool
was utilized to classify it into four types of terrain: plains (<30 m); plateaus (30–50 m); hills
(50–100 m); and mountains (100–200 m). The expressions (Equation (6)) are as follows:

RDLS = Hmax − Hmin (6)

where D denotes the degree of terrain undulation, Hmax denotes the maximum elevation
value, and Hmin denotes the minimum elevation value.

Surface roughness can effectively represent the degree to which the terrain within a
particular area has been eroded and cut. The larger the value, the more complex the terrain
and the more severe the erosion [35]. The natural interval point classification method
divides the surface roughness reclassification into four classes, with values ranging from
low to high. The expression (Equation (7)) is as follows:

R =
1

cos(S)
(7)

where R denotes surface roughness and S denotes terrain slope.
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3. Results and Analysis
3.1. Ridgeline and Valley Line Mapping Analysis

From Figures 2 and 5, the significant ridgelines and valley lines in the study area show
a clear linear pattern of double rings. The inner and outer rings are almost like a “heart.”
The ridgelines and valleys exhibit a dense distribution, particularly in the topography of
the ring zone between the inner and outer rings, which is characterized by radiating ridges
and valleys. ArcGIS was employed for a more detailed characterization of the outer and
inner rings, encompassing parameters such as area, perimeter, width, and others (Table 3).
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Table 3. Statistical table of characteristic parameters of ridgelines and valley lines.

Title Area
(km2) Perimeter (km) East-West

Width (km)
North-South
Length (km)

Inner Ring Line (R1) 13.997 15.044 4.152 4.846
Outer Ring Line (R2) 34.750 27.919 7.459 7.863

R1/R2 0.403 0.539 0.557 0.616

According to the statistics in Table 3, the area ratio of the inner ring to the outer ring is
0.403, the perimeter ratio is 0.539, the east-west width ratio is 0.557, and the north-south
length ratio is 0.616.

3.2. Characterization of the Surface Water System Network

Based on Figure 6, the river network within the inner loop of the study area originates
from the northeast, extends along the southwest, converges to the southwest outlet, and
discharges downstream, creating a relatively closed hydrological system. The morphology
of the river network takes on a tree branch-like appearance, exhibiting a lattice shape in the
central part of the area. The northern part of the area has a denser river network, while
sparser rivers characterize the southern part. Overall, the morphology of the river network
in the study area is influenced by the topography and terrain features.
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Figure 6. Classification of the water system network within the inner ring of the study area.

The network can be roughly divided into three parts: the first part is a “bow”-shaped
fourth-order branch channel in the north, which has a dense network, with more and
longer tributaries along the right side of the downstream direction; the second part is a
“Y”-shaped fourth-order branch channel in the south-central part of the river; and the
third part is a dendritic tertiary branch channel in the south. The tributary systems of
the three components meet in the mainstem (Class V) and flow out of a single outlet in a
southwesterly direction.

According to the statistics in Table 4, the total length of the water system is 46.519 km,
with 281 rivers in total. The water system is graded into five levels, which are positively
proportional to the number of rivers. Among them, there are 144 first-class water systems
with a total length of 21.400 km, which account for more than half of the river network,
indicating that the first-class water systems play a dominant role in geography and geomor-
phology. There are 64 second-class water systems with a total length of 12.574 km, or 4/9
of the first-class water systems, which means that about every two first-class water systems
converge into a second-class water system. There are 41 third-class water systems with
a total length of 7.982 km, 23 water systems with a total length of 3.307 km, and 9 water
systems with a total length of 1.257 km.

Table 4. Linear measurement results of the water system network within the inner ring line.

Level I II III IV V Total

Number of rivers 144 64 41 23 9 281
Length of river (km) 21.420 12.574 7.982 3.307 1.260 46.519

3.3. Slope and Slope Direction Analysis

The maximum slope value in the study area was 56.59◦, and the mean value was
15.540◦. According to the statistics in Figure 7, it was found that the distribution of slopes at
all levels in the study area was not uniform, and the slope structure was mainly dominated
by gentle slopes (5◦ to 15◦) and slopes (15◦ to 25◦). Among them, the area of gentle slopes
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is the largest, with an area of 14.595 km2, accounting for 42.372%. Slopes come next with
an area of 12.958 km2, accounting for 37.589%. Steep slopes have an area of 3.402 km2,
accounting for 9.876%. The remaining gentle slopes, steep slopes, and sharp slopes are
fewer, with a combined area of 10.163%.
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Figure 7. Slope distribution and percentage share of the study area at all levels.

The slope classification map (Figure 8a) shows differences in the distribution of slopes
between the inner and outer parts of the inner ring. Areas with large slopes (>35◦) are
represented on the map as a ring with a notch at the base and are mainly distributed in
the outer areas of the inner ring. The terrain extends from ridges to valleys with dramatic
slope shifts and interspersed ridges and valleys. Several steep and sharply steep slopes are
also distributed in the eastern region. The terrain slopes in the inner loop show large slope
values (>35◦) on the banks on both sides of the main stem of the water system, which may
be related to erosion from surface runoff. The remainder consists of slopes, gentle slopes,
and a few flat slopes.
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Figure 8. Distribution of microtopographic feature parameters (a) slope and (b) slope direction.

According to regulations and related studies [36], it is known that areas with a slope
greater than 25◦ are areas with a high incidence of landslide hazards. That is to say, under
specific environmental and meteorological conditions, areas within this slope range are
more susceptible to landslides. The landslide hazard-prone area in the study area is 9.876%,
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mainly distributed in the outer slopes of the inner ring road, the riverbanks on both sides
of the main streams of the water system, and the small mountains in the east.

Statistically (Figure 9), the average slope direction of the study area is 184.797◦ (south-
ward). The slope direction in the study area is mainly dominated by five directions:
southeast, south, southwest, west, and northwest, with a combined area share of 70.298%.
Among them, the southeast slope direction accounted for the most significant proportion
at 16.743%. The planar area accounts for a minor proportion at 1.046%, mainly the Dasha
River tailings pond located in the southwestern part of the study area.
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Figure 9. Slope direction, distribution, and area share of the study area.

From the slope orientation distribution map (Figure 8b), it can be seen that there are
several dominant directions of slope orientation in the study area, and the distribution
of slope orientation is uneven and asymmetrical. It also implies that the topography of
the study area is complex, containing landform types such as flats, hills, and mountains.
Among them, the distribution of slope directions reflects the direction of ridges, and
ridgelines are often the dividing line of slope directions. In particular, the ridges and
valleys on the outer side of the inner ring show a radial and outward-expanding character.

3.4. Analysis of Relief Degree of Land Surface and Surface Roughness

According to Table 5, the study area has four classes: plains, plateaus, hills, and
mountains. The landform type is mainly dominated by hills, which occupy 40.991% of the
total area. Plateaus accounts for 33.441% of the total area. Plains accounted for 18.140% of
the total area. Mountains accounted for 7.428% of the total area, which is the smallest.

Table 5. Topographic feature parameters and their distribution.

Parameter Indicator Total Area (km2) Percentage (%)

Relief Degree

Plains (<30 m) 6.829 18.140
Plateaus (30~50 m) 12.589 33.441

Hills (50~100 m) 15.431 40.991
Mountains (100~200 m) 2.796 7.428

Surface Roughness

1 (Low roughness) 20.418 59.278
2 (Medium-low roughness) 10.164 29.509
3 (Medium-high roughness) 3.046 8.844

4 (High roughness) 0.816 2.370
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Analysis based on the relief degree of the land surface map (Figure 10a) reveals that
the landform type on the outer side of the inner ring is mountains, with a substantial relief
degree of land surface, steep ridges, and sharp changes in slope. When the terrain extends
from the inner ring to the outer ring, the relief degree of the land surface decreases step by
step. At the same time, the slope of the terrain also decreases gradually, which is positively
correlated with the relief degree of the land surface. Its landform type shows a transition
from mountains–hills–plateaus–plains (valleys). In the inner area of the Inner Ring Road,
the landform type is mostly a striped plateau and hills with gentle surface undulation.
Among them, the riverbanks on both sides of the main streams of the water system are
strongly undulating.
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Like the relief degree of land surface (RDLS), surface roughness is divided into four
classes (Table 5). However, their area share did not show the same trend. The surface
roughness gradually increases from grade 1 to grade 4, but their area share shows a
decreasing trend. Among them, the area of grade 1 is 20.418 km2 with a percentage of
59.278%. Grade 2 follows it with 29.509%. Grade 3 is 8.84%. Grade 4 has the minor share,
at 2.37%.

Analysis of the surface roughness map (Figure 10b) revealed that surface roughness
and relief degree of land surface (RDLS) have similar spatial distribution. The highest values
of surface roughness were distributed in the outer part of the annular ridgeline, on both
sides of the water system’s mainstream channel, and in the eastern part of the freestanding
hills. On the outer side of the inner ring line, the surface roughness gradually decreases
from the inner ring line outward. In the inner area of the inner loop, the riverbanks on both
sides of the water system’s main streams have a high degree of roughness. The remaining
areas have low surface roughness.

In general, the study area exhibits a circular pit shape. As shown in Figure 10, within
the inner ring there is a distinctly raised crest in the center of the terrain, with a high
Relief Degree of Land Surface (RDLS) and roughness on both sides of the water system’s
mainstem channels in the southwest. In the ring belt area between the inner and outer
rings, raised hills enclose a ring of ridges. Relief Degree of Land Surface (RDLS) values
and surface roughness decrease gradually from the inner to the outer ring. The terrain
within the inner ring is roughly divided into three major parts by the water system. In the
northern and northwestern parts, the terraces and hills are arranged in a radial row with
a roughly north-south orientation; in the central part, the terrain consists of terraces and
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hills with a moderately low degree of roughness; and in the southeastern part, the terrain
is mostly hilly with a moderately high degree of roughness.

4. Discussion
4.1. Selection of Data Sources

Advancements in high spatial resolution terrain data enable accurate mapping and
analysis of intricate terrain, more efficient terrain investigations, and convenient acquisition
of detailed geomorphic feature information [37]. However, terrain data with varying
resolutions may impact analysis results [38]. UAV data offer high-resolution images and
real-time monitoring with enhanced flexibility. However, UAV have load capacity and flight
time limitations, and their efficiency in collecting data for large-scale terrain is relatively
low [17,19]. LiDAR point cloud data can offer high-density and high-precision 3D terrain
data, making it suitable for accurate terrain modeling and analysis of intricate terrain.
However, it comes with high costs and large data volumes, and demands substantial
storage and processing resources. Satellite-borne high-precision terrain data cover extensive
areas and are better suited for large-scale terrain characterization.

In this study, GF-2 data with sub-meter spatial resolution and high positioning accu-
racy was utilized. Compared to widely utilized remote sensing images like Sentinel-2 and
Landsat8, GF-2 exhibits fast data transmission speed and superior image quality, and pre-
serves finer topographic features. The ALOS DEM utilized in this study features a spatial
resolution of 12.5 m, representing the highest precision global DEM data available free of
charge. In comparison to widely used SRTM3 (90 m) and ASTER (30 m) data, it can offer
more detailed topographic information, aiding in the capture of small-scale topographic
features and obtaining reliable research results.

4.2. Selection of Research Methods

Traditional methods for measuring and analyzing terrain features rely on manual field
surveys and GIS statistical analysis [39]. While these methods have been widely employed,
they pose challenges in measuring complex terrain features and demand significant labor
and time investment. In contrast to Hu’s study [40], this research utilizes terrain feature
parameters for terrain analysis. This approach enables measurements of landforms in mul-
tiple dimensions and scales, incorporating both qualitative and quantitative assessments to
characterize the terrain visually.

The choice of terrain feature parameters holds significance as it directly impacts the
integrity of terrain feature identification. Considering each terrain feature parameter’s
unique geological significance, choosing representative indicators that comprehensively
depict terrain features from numerous parameters becomes crucial. This helps minimize in-
formation overlap and data redundancy, enhancing computational efficiency and accuracy.
In contrast to Li’s study [41], this research conducted a correlation analysis of terrain feature
parameters and excluded indicators with a correlation of 0.937 or higher. This approach
identifies the optimal combination of parameters describing the topographic features in the
study area, reducing redundancy in topographic feature information.

4.3. Limitations of the Study

Topographic characterization studies extend beyond the scope of geomorphometry
and terrain analysis, frequently establishing significant connections with other subfields
of earth science. Examples encompass tectonics, hydrology, ecology, and geology [42,43].
However, acquiring information related to hydrogeology, tectonics, and fault data in the
study area poses significant challenges. Integration of this data would enhance the precision
and richness of geomorphological characterization.

The utilization of ALOS DEM and GF-2 data in this study remains to be explored in
a more detailed investigation of topographic feature identification. Multi-source, multi-
modal data yield a more comprehensive set of terrain feature information than individual
datasets, as they support, complement, and correct each other. Subsequent research en-



Appl. Sci. 2023, 13, 13137 15 of 18

deavors can leverage multi-source and multi-mode data, conduct varied comparisons, and
choose the most suitable data source based on specific research requirements.

Theoretically, this study offers insights and methods applicable to surface feature
identification and the analysis of geomorphic tectonic evolution within a similar complex
environment. However, the specific applicability requires thorough practical validation.

5. Conclusions

Geomorphology and terrain analysis represent foundational and leading-edge dis-
ciplines capable of investigating the spatial structure and macroscopic performance of
topography and geomorphology comprehensively and systematically. Among these, the
swift extraction and analysis of terrain feature parameters using DEM offer an efficient
means to acquire surface information. Building upon this foundation, this study integrates
statistics, information science, and other relevant disciplines to perform multi-dimensional,
qualitative, and quantitative identification, measurement, and visual mapping analyses of
the annular tectonic landforms in Dinosaur Valley, situated in the mountainous regions of
the Yunnan Plateau. This approach enhances and refines the investigation of the annular
tectonic landforms in the Dinosaur Valley.

(1) This study determines that the optimal threshold for extracting the river network
using ALOS DEM in this area is 150. The river network displays a characteristic
dendritic pattern. The number and length of rivers show an inverse relationship
with their order. The observation that first-order streams constitute over half of the
river network distribution implies that the study area experiences abundant and
well-established surface runoff, with the likelihood of additional tributaries forming
over time.

(2) The procedural steps for extracting terrain characteristic parameters from ALOS
DEM offer valuable insights for studying complex terrain. This study determines
that the optimal analysis window for extracting terrain feature parameters in this
area is 16 × 16, with an optimal statistical area of 0.04 km2. Conducting correlation
analysis on terrain characteristic parameters can mitigate information redundancy.
The optimal combination of parameters to describe the terrain characteristics in the
study area includes slope, slope direction, surface undulation, and surface roughness.

(3) Statistical methods prove effective in analyzing the outcomes of terrain characteristic
parameters. In this study, the slope gradient primarily spans from 0◦ to 56.59◦ and is
characterized by slopes and steep inclines. Landslide-prone areas constitute 9.876%
of the entire area. The slope direction exhibits uneven distribution, with the southeast
slope representing the majority and a lower percentage of flat land overall. The
predominant landform is hilly, with the majority of terrain exhibiting low roughness.

(4) GIS visualization methods excel in emphasizing the spatial distribution of topographic
features. The study area exhibits a generally intricate topography, characterized by a
descent in elevation from northeast to southwest and prominent ring-like features.
The ridgelines and valley lines exhibit distinct double-ring features reminiscent of a
“heart” shape, radiating outward in the ring area. The topographic parameters are
notable on the outer side of the ring ridge, featuring high slope values, surface relief,
and surface roughness, diminishing from the inner to the outer ring.

(5) Extracting topographic feature information in the intricate mountain environment of
the plateau utilizing ALOS DEM data, offers advantages in terms of scale, non-contact,
and ease of acquisition. This approach provides high-precision foundational data for
research in topographic feature identification, measurement, and analysis.
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Abbreviations

GIS Geographic Information System
GF-2 Gaofen-2 satellite
DEM Digital Elevation Model
ALOS Advanced Land Observing Satellite
PALSAR Phase Array type L-band Synthetic Aperture Radar
RTC Radiometric Terrain Correction
ALOS DEM Advanced Land Observing Satellite Digital Elevation Model
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ASTER GDEM Advanced Spaceborne Thermal Emission and Reflection Radiometer Global

Digital Elevation Model
SRTM Shuttle Radar Topography Mission
SRTM DEM Shuttle Radar Topography Mission Digital Elevation Model
RS Remote sensing
UAV Unmanned Aerial Vehicle
NNDiffuse Nearest Neighbor Diffusion
RIT Rochester Institute of Technology
JAXA Japan Aerospace Exploration Agency
RDLS Relief Degree of the Land Surface
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