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Abstract: The sphericity error is a critical form and position tolerance for spheres. We explored the
distribution of sphericity errors within the solution space to achieve a high-precision evaluation
using the minimum zone criteria. Within local solution spaces, we propose treating the evaluation of
sphericity errors as a unimodal function optimization task. And computational geometric methods
are employed to achieve highly accurate solutions within the local solution spaces. Subsequently,
we integrated the computational geometric method with the differential evolution algorithm (DE
algorithm). By centering on individual population members of the DE algorithm, we partitioned the
local solution spaces and utilized the best solutions within them to optimize the population. With
the gradual convergence of the DE algorithm, we successfully achieved the high-precision resolu-
tion of sphericity errors. The experimental results demonstrate a significant order-of-magnitude
improvement in precision compared to traditional algorithms in the field of sphericity error evalua-
tion, with uncertainty levels reaching magnitudes of 10−14 mm. Moreover, this method enhances
the accuracy of sphericity error evaluation by approximately 10% for three-coordinate measuring
machines. Additionally, we conducted ablation experiments to validate the effectiveness of the
proposed computational geometric method. In summary, this approach enables the high-precision
evaluation of sphericity errors and provides a practical methodology for applying ultra-precision
spheres in precision engineering.

Keywords: high precision; sphericity error; minimum zone criteria; computational geometric method;
differential evolution algorithm

1. Introduction

The high-precision sphere constitutes a pivotal component within the realm of preci-
sion instruments. A sphere’s primary form tolerance characteristic manifests as a sphericity
error. This inherent sphericity error, in turn, introduces unwelcome vibrations and noise,
directly exerting a tangible influence on these precision instruments’ precision and service
longevity [1,2]. The measurement and evaluation of the sphericity error are primarily
conducted using three-coordinate measuring machines (CMMs) [3,4]. This advanced tech-
nology enables the acquisition of extensive contour data for the spheres under examination,
which are then meticulously stored in the XYZ coordinate format, forming a substantial
dataset [5]. It is crucial to underscore that this dataset’s precise and efficient processing
stands as a critical imperative for the accurate evaluation of the sphericity error in spherical
objects.

According to the standards set by the American Society of Mechanical Engineers
(ASME) and the International Organization for Standardization (ISO) [6,7], the processing
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of datasets can be executed by applying four distinct criteria: the least squares criterion,
the minimum circumscribed criterion, the maximum inscribed criterion, and the minimum
zone criterion. The minimum zone criterion is the general default criterion for evaluating
the sphericity error [8–10]. The aforementioned criterion enables the acquisition of a unique
minimum sphericity error, and it is also the arbitration method when there is inconsistency
in the evaluation of the sphericity error. The minimum zone criterion is an unconstrained
and non-differentiable optimization problem, which poses significant challenges in terms
of finding a viable solution [11–13].

Although the ASME and ISO standards stipulate that the evaluation of sampling
point determination should be based on the minimum zone criterion, these standards
do not provide a specific computational method for evaluating the spherical error based
on the minimum zone criterion. Therefore, the development of a highly accurate and
robust method for evaluating sphericity errors is of utmost urgency. Many scholars have
extensively examined this issue by presenting a range of computational geometric meth-
ods [8,14–18], region search techniques [19], heuristic algorithms [20–22], multi-objecitve
optimization methods [23–25], and bio-inspired intelligent optimization algorithms [26–30]
to address the problem.

Among these approaches, region search methods are subject to inherent limitations
that hinder their ability to accurately determine solutions for sphericity errors. Computa-
tional geometric methods for sampling point filtration exhibit enhanced search efficiency
and improved results when dealing with fewer sampling points. Nevertheless, as the num-
ber of sampling points increases, the search cost escalates rapidly, resulting in unpredictable
and fluctuating results. Heuristic algorithms are prone to being influenced by local optima
and often struggle to converge effectively. Bio-inspired intelligent optimization algorithms
yield more accurate results. However, they involve complex computations and numerous
parameters that require optimization. Moreover, a sphericity error assessment, which is
carried out to determine the optimal sphere center, minimizing the radius difference of
concentric spheres that encompass the sampled contour, is fundamentally a single-objective
optimization problem. Despite the potential advantages of applying multi-objective opti-
mization methods to this evaluation, there is a paucity of scholars incorporating them into
sphericity error assessment.

To address the problem of inadequate precision in sphericity error evaluation methods,
we conducted an in-depth examination of the spatial distribution characteristics of spheric-
ity errors. Based on our research, it is recommended to approach the issue of sphericity
errors in the local solution space by treating it as a problem of optimizing a unimodal
function. By utilizing computational geometric techniques, it is possible to achieve highly
accurate solutions within the confines of the local solution space. Subsequently, by leverag-
ing the advantages of heuristic algorithms for global space exploration, we successfully
achieved a high-precision evaluation of sphericity errors. This method presents a novel
research avenue for sphericity error evaluation methodologies.

2. Methods
2.1. Mathematical Model of the Minimum Zone Sphericity Error

According to the definitions of the minimum zone spherical error in ASME and ISO,
for a given set of sampled contour points, if all data points fall within two concentric
spheres, the difference in the radii of these two spheres is referred to as the minimum zone
spherical error. Therefore, when evaluating spherical error based on the minimum zone
criterion, the central task is to find an ideal sphere center p∗0 that minimizes the difference
in radii between the two concentric spheres (where the radius difference represents the
sphericity error, denoted as e) [27,28,31–33]. This task is expressed by Equation (1).

e = min
P0∈Q

{
max
i∈[1,n]

‖pi − p0‖2 − min
i∈[1,n]

‖pi − p0‖2

}
(1)
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In the equation, e represents the spherical error, where pi ∈ Rd, i = 1, 2, . . . ; n denotes
the measurement points in a d-dimensional space; and p0 is the center of the concentric
sphere. Q is a cubic region containing the globally optimal solution, which we call the
global solution space.

Figure 1 illustrates the spatial geometric structure of spherical error evaluation based
on the minimum zone criterion and the various parameters involved. The construction of
the global solution space Q requires the computation of the least squares sphere center and
the least squares spherical error based on the least square criterion. Subsequently, a cube
with a side length equal to the least squares spherical error is constructed around the least
squares sphere center, allowing us to infer that the ideal sphere center must lie within this
search region.
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2.2. Sphericity Error Spatial Distribution Characteristics

From Equation (1) and Figure 1, it can be observed that the problem of evaluating
the sphericity error based on the minimum zone criterion is non-differentiable and uncon-
strained. Finding an ideal sphere center p∗0 within three-dimensional space, such that the
difference in the radii is minimized when the concentric spheres encompass the spherical
contour, poses a highly challenging problem. Meanwhile, existing studies suggest that the
ideal sphere center p∗0 is not unique [10,21]. There are several local optimal solutions near
the optimal solution of the sphericity error, and the sphericity error decreases rapidly with
a large gradient at the location far from the optimal solution [21].

Therefore, we have undertaken a study on the spatial distribution characteristics
of spherical error. We conducted an analysis of the data sourced from reference [15].
Subsequently, we performed 27,000 samplings from the global solution space, calculating
the spherical errors for each sampled point. Figure 2a illustrates the distribution of these
sampled points, with the color gradient representing the magnitudes of the associated
spherical error values. Following this, within this array of 27,000 points, we scrutinized
the variations in spherical error values along the directions parallel to the XYZ axes. This
scrutiny was carried out with the center OLS (X, Y, Z) of the least squares sphere as the
central point, independently assessing the variations along each axis.

Meanwhile, Figure 2b–d show the trend of the sphericity error near the center OLS (X,
Y, Z) of the least squares sphere, where the three lines passing through OLS and running
parallel to the X-axis, Y-axis, and Z-axis, respectively, are constructed. It is clearly discernible
from Figure 2b–d that, at positions considerably distant from the ideal solution, there is
a significant gradient in the variation of the spherical error. Conversely, as the position
approaches the ideal solution, the evolution of the spherical error gradually becomes
more intricate.
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Figure 2. Schematic representation of spherical error distribution characteristics. (a) Spherical
error distribution of sampling points in the global space; (b) change in sphericity along the X-axis;
(c) change in sphericity along the Y-axis; (d) change in sphericity along the Z-axis; (e) schematic
distribution of sampling points in Local Space A; (f) schematic distribution of sampling points in
Local Space B; (g) schematic distribution of sampling points in Local Space C.

Subsequently, we arbitrarily elected several localized solution spaces from the global
solution space, analyzing the spherical error variation of the sampling points within these
specific solution spaces. Figure 2e–g illustrate the distribution of sampling points within
these localized solution spaces. It can be observed from Figure 2e–g that within smaller
regions, the variation of the spherical error manifests a relatively uncomplicated nature,
approximating the characteristics of a unimodal function. If the global solution space
is divided into different size subregions, then each subregion can be approximated as a
single-peaked function for processing. In local spatial domains, unimodal functions can be
effectively solved using computational geometry methods, yielding high-precision results.

The algorithm presented in this paper primarily leverages the characteristics of spher-
ical error gradient variations and the approximate unimodal nature of spherical error
changes within local spaces for its design. This is the foundation of the local enhancement
principle in this paper.
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2.3. Principle of the Proposed Method

As demonstrated in Section 2, a comprehensive investigation was carried out to
analyze the spatial distribution characteristics of the sphericity error. Given the non-
uniqueness of the ideal solution p∗0 and the potential existence of local optima, the high-
precision sphericity error evaluation directly from the global solution space presents a
considerable challenge. However, through the adept partitioning of the global solution
space into multiple local solutions, it becomes possible to approach the evaluation of the
sphericity error as a unimodal function optimization problem within each local space.
By employing computational geometry techniques, it is possible to attain high-precision
solutions within the confines of these local solution spaces.

Subsequently, the integration of the computational geometry method employed with
the DE algorithm is performed. We establish the positions of local solution spaces by
utilizing the individuals that are present in the population of differential evolution. During
each iteration, the sizes of the local solution spaces are adaptively adjusted based on the
distances between the individuals in the population and the global optimum. Additionally,
incorporating Lévy flights and simulated annealing techniques allows for the perturbation
of the positions of individuals within the population, thereby augmenting the diversity of
local solution spaces. After attaining high-precision solutions within the designated local
spaces, the DE algorithm individuals are relocated to their respective optimal positions
within these local solution spaces. With each successive iteration of the DE algorithm,
the population progressively approaches convergence towards the global optimum. As a
result, an optimal solution for minimizing the sphericity error is eventually obtained. The
overall algorithmic process is depicted in Figure 3. We denote the computational geometric
method integrated with the DE algorithm as “Adaptive Local Enhancement”. The detailed
steps of this approach are outlined in Section 3.2.
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2.4. Adaptive Local Enhancement Method
2.4.1. Adaptive Partitioning of Local Solution Spaces

Considering the gradually complex variations in the sphericity error when the candi-
date sphere center approaches the ideal sphere center p∗0 , we devised an adaptive method
for partitioning the local solution space. By leveraging the individuals of differential evolu-
tion, this method divides the neighborhood of the population into local solution spaces of
varying sizes.

During each iteration of the DE algorithm, we calculate the distance denoted as
di , i = 1, 2, . . . , n between an individual’s optimal solution and the population. The deter-
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mination of the distance is contingent upon the expression di = di/max(di). Subsequently,
we determine the size of the individual’s neighborhood space according to Li = K · di + eps.
Here, K is a scaling factor, and eps is a constant that prevents L from becoming zero. The
neighborhood search range for each individual, represented as (xi, yi, zi), falls within the
interval of [xi − Li, xi + Li], [yi − Li, yi + Li] and [zi − Li, zi + Li]. Figure 4 shows the sizes
and distributions of these local solution spaces.
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2.4.2. Computational Geometric Method for Local Solution Spaces

Once the local solution spaces are determined based on the positions of population
individuals, a precise solution need to be conducted for each local solution space. Since we
regard the problem of solving the spherical deviation error under the constraint of local
solution space as a unimodal function problem, we employ the computational geometry
approach shown below.

In the three-dimensional space, the local enhancement process of individuals is shown
in Figure 5. According to the predetermined search interval, the initial Z-directional search
interval is determined as

[
Zi

L = zi − Li, Zi
R = zi + Li

]
, and then the search is performed

on two planes Zi
1, Zi

2, where Zi
1 = (Zi

R + 2Zi
L)/3,Zi

2 = (2Zi
R + Zi

L)/3. The initial search
interval in the Y direction is

[
Yi

L = yi − Li, Yi
R = yi + Li

]
on two planes Zi

1, Zi
2, and a search

for the local optimal solution in the one-dimensional direction, Yi
1 = (Yi

R + 2Yi
L)/3 and

Yi
1 = (Yi

R + 2Yi
L)/3, is performed on both planes. Shrinking the search interval according to

strategy 1, four positions, Y1Z1 Xbest, Y2Z1 Xbest, Y2Z1 Xbest, and Y2Z2 Xbest, of the local optimal
solution can be obtained when satisfying the following condition: XR − XL < 1 × 10−n.
The local optimal solutions on the Zi

1, Zi
2 planes are compared, respectively, and the search

interval in the Y-direction on the two planes, Zi
1, Zi

2, is shrunken according to strategy 2.
After satisfying the condition YR − YL < 1 × 10−n, the optimal solutions f

(
X, Y, Zi

1
)

and
f
(
X, Y, Zi

2
)

on the Zi
1, Zi

2 planes are obtained. Afterward, the Z-directional search space is
shrunken according to strategy 3. While satisfying ZR − ZL < 1× 10−n, the local optimal
solution is obtained.

Strategy 1 :
{

Xi
L = Xi−1

1 , i f : f (Xi−1
1 , Y, Z) > f (Xi−1

2 , Y, Z)
Xi

R = Xi−1
2 , else

Strategy 2 :

{
Yi

L = Yi−1
1 , i f : f (Y1ZXbest, Yi−1

1 , Z) > f (Y2ZXbest, Yi−1
2 , Z)

Yi
R = Yi−1

2 , else

Strategy 3 :
{

Zi
L = Zi−1

1 , i f : f (Zbest, Ybest, Zi−1
1 ) > f (Xbest, Ybest, Zi−1

2 )

Zi
R = Zi−1

2 , else
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after which the magnitudes of f (Xi−1
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1 ; otherwise, set Xi
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2 . Through the strategy above, used to shrink

the search interval, the optimal solution is considered as the sphericity error at the Xi
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2.5. Algorithm Flow
2.5.1. Initialization

Firstly, the population and the global temperature of the simulated annealing are
initialized, and the initial least square spherical center (x0, y0, z0) and least square spheric-
ity error S0 are solved based on the least square solution. The following is the approach
for solving the least squares sphericity error S0 and the least squares sphere center OLS

based on the least squares criterion. According to the coordinate dataset of the measure-
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ment points, pi = [xi, yi, zi ]
T , i = (1, 2, . . . , N), establish the equation set Ax = b, where

A = [p1, p2, . . . , pN , I]T ∈ Rm×n, b = [‖p1‖
2
2, ‖p2‖

2
2, . . . , ‖pN‖

2
2]

T , and I = [1, 1, . . . , 1]T . By
solving the equation set based on the least square solution, the coordinates of the sphere
center OLS (x0, y0, z0) and the least square sphericity S0 are obtained. Then, the initial popu-
lation of the algorithm can be generated in the ranges of [x0 − S0, x0 + S0],[y0 − S0, y0 + S0],
and [z0 − S0, z0 + S0], denoted as X.

2.5.2. Mutation

The mutation strategy is an important part of the DE algorithm. A suitable mutation
strategy can promote the convergence of the DE algorithm to the global optimal solution.
This algorithm adopts the DE/current-to-best/1/bin strategy, which uses the elite solution
to guide the mutation of the existing solutions to approach the optimal one. This mutation
strategy is shown in Equation (2).

Vt+1
i = Xt

i + F ·
(
Xt

best − Xt
i
)
+ F ·

(
Xt

k1 − Xt
k2
)

(2)

where Vt+1
i is the i-th element of the vectors of mutation in the (t + 1)th generation; F is

the scaling factor and a random number in (0, 0.5); Xt
best is the optimal solution in the

t-th generation; Xt
i is the i-th element among the target vectors of the t-th generation; and

Xt
k1, Xt

k2 is the random point (k1 6= k2).

2.5.3. Lévy Flight Based on Simulated Annealing Strategy

A Lévy flight perturbed population based on simulated annealing is introduced
to enhance the diversity of the local solution space distribution. This strategy enables
individuals to explore the global solution space with occasionally long trajectories and short
random movements. During the exploration process of the population individuals, their
corresponding local solution spaces also move within the solution space. The formula for
the Lévy flight in this paper is given by s = u/|v|1/β, where u ∼ N

(
0, σ2), v ∼ N(0, 1),

and σ =
{

Γ(1+β) sin(πβ/2)
βΓ((1+β)/2)·2β/2

}1/β
.

The steps of the Lévy flight based on the simulated annealing strategy are as follows:
Step 1: Set an initial temperature T to a sufficiently high value.
Step 2: Consider the original solution of the individuals as S1 and the new solution

after Lévy flight perturbation as S2. Calculate the difference df = f (S2) − f (S1) for each
individual in the population, where f represents the object function.

Step 3: If df < 0, accept the new solution S2.
Step 4: If df ≥ 0, generate a random number R uniformly distributed in the interval

(0, 1) and calculate the acceptance probability exp(−df /T) for S2. If exp(−df /T) > R, accept
S2 as the new solution; otherwise, keep the solution unchanged as S1.

Step 5: Reduce the global temperature by setting T = q × T, where q < 1.
As the DE algorithm progresses through iterations, the global temperature gradually

decreases, resulting in a reduced probability of accepting inferior solutions. When the
temperature reaches a certain threshold, the search process terminates.

2.5.4. Adaptive Local Enhancement

For a comprehensive understanding of the adaptive local enhancement process, please
consult Section 2.4. Figure 5 illustrates the process of local enhancement.

Once the local solution space’s search range is determined, a local optimal solution
would be searched within the local solution spaces using the computational geometric
method mentioned earlier. Following a greedy strategy, individuals move to the position
of the local solution space’s optimal solution if it is superior to their current position;
otherwise, they remain at their initial positions. Then, an enhanced population is generated
due to the local enhancement process, denoted as V.
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2.5.5. Crossover and Selection

By mixing the new population V and the initial population X with a certain probability,
a new population U is generated. Compare each individual in the populations U and X,
and retain the ones with smaller sphericity errors for the next iteration.

The loop is ended until the conditions of convergence are satisfied, and the global opti-
mal solution by the minimum zone criterion for evaluating the sphericity error is obtained.

3. Results
3.1. Verification with Datasets in the Literature

Due to the limited availability of publicly accessible datasets in the field of sphericity
error research, current research papers often refer to the same set of publicly available
spherical datasets for comparative analyses. Notably, the four datasets [15,16,31,33] used
in the experiments of this section have been widely cited in numerous high-quality publica-
tions in the field of sphericity error research. As a result, these datasets hold considerable
authority. By conducting experiments using these four datasets, we can effectively compare
our approach with the leading algorithms in the field of sphericity error evaluation under
identical experimental conditions. This reasoning highlights one of the main reasons for
selecting these four datasets for experimentation in our study.

The experiments were conducted under identical conditions. The number of popu-
lations (N) was set to 30, the local enhancement parameter (n) was set to 12, the initial
temperature (T) was set to 100, the annealing rate (q) was set to 0.9, and the temperature
threshold was set to 0.001. Using the aforementioned settings, each dataset was indepen-
dently calculated ten times. The mean and standard deviation of the results were calculated
and compared with the results obtained using state-of-the-art algorithms.

Dataset 1, obtained from reference [34], comprises 100 randomly generated coordinate
points within two concentric spheres with radii of 10.0 and 9.0. The data distribution is
illustrated in Figure 7, where the sphericity error is determined as 1.0 based on five data
points from the inner and outer spheres. The sphericity error of dataset 1 has been validated
in several studies [21,34], and the algorithm’s accuracy in this paper was initially assessed
using dataset 1.

Ten sets of replication experiments were performed for dataset 1. The mean experimen-
tal result is 1.00000000000003 mm, with a standard deviation of 2.0 × 10−14 mm. Figure 8
displays one convergence curve from the ten experiments. Table 1 presents a comparison
with the results reported in the literature.
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Table 1. Comparison with results based on dataset 1 in the literature (rounding is as given in the
respective papers; units: mm).

Algorithm Spherical Center Coordinate (X, Y, Z) Sphericity Error

Least squares (−0.01913, 0.08935, 0.01762) 1.15224
[34] (0.00000, 0.00000, 0.00000) 1.00000
[21] (0.00000000, 0.00000000, 0.00000000) 1.00000000

Ours (−5.3 × 10−14, 0.1 × 10−14, 1.6 × 10−14) 1.00000000000003
The number of zeros after the decimal points represents the precision provided in the original data from the
cited references.

Dataset 2, consisting of 384 coordinate points, is provided in reference [16]. The
384 coordinate points were obtained through real spherical sampling using the birdcage
method and were evenly distributed along 12 lines on the sphere. Figure 9 illustrates the
distribution of dataset 2. The reference provides the optimal solution as 0.015385 mm. Ten
sets of replication experiments were conducted for dataset 2. Table 2 presents the results
of the ten experiments, with a mean experimental result of 0.01538487054930 mm and a
standard deviation of 3.0 × 10−14 mm.

Figure 10 displays one convergence curve from the ten experiments. The least square
solution obtained by our algorithm is 0.01639862 mm, and the final convergence solution
is 0.01538487054931 mm. Table 3 presents a comparison with the results reported in
the literature.
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Table 2. Results of ten experiments based on dataset 2 (units: mm).

Experiment 1 2 3 4

Sphericity Error 0.01538487054931 0.01538487054927 0.01538487054934 0.01538487054926

Experiment 6 7 8 9

Sphericity Error 0.01538487054928 0.01538487054930 0.01538487054935 0.01538487054926

Experiment 5 10 — —

Sphericity Error 0.01538487054929 0.01538487054932 — —

Table 3. Comparison with results based on dataset 2 in the literature (rounding is as given in the
respective papers; units: mm).

Algorithm Spherical Center Coordinate (X, Y, Z) Sphericity Error

Least squares (−0.0001146, −0.0002871, 0.0078932) 0.01639862
[35] (−0.0011426, 0.0000027, 0.0107779) 0.0154077
[16] (0.000179, −0.000332, 0.011747) 0.015385

Ours (0.0002125983629424, −0.0003506987099171, 0.01174819302036) 0.01538487054931

Dataset 3, consisting of 25 coordinate points, is provided in reference [36]. Figure 11
illustrates the distribution of dataset 3, with the coordinate points uniformly distributed on
the sphere. Ten sets of replication experiments were conducted for dataset 3. Table 4 presents
the results of the ten experiments, with a mean experimental result of 3.33251761616355 mm
and a standard deviation of 0.8 × 10−14 mm.

Figure 12 displays a convergence curve from one of the ten experiments. The least
square solution obtained by our algorithm is 3.735706 mm, and the final converged solution
is 3.33251761616355 mm. Table 5 presents a comparison with the results reported in
the literature.
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Table 4. Results of ten experiments based on dataset 3 (units: mm).

Experiment 1 2 3 4

Sphericity Error 3.33251761616355 3.33251761616354 3.33251761616355 3.33251761616355

Experiment 5 6 7 8

Sphericity Error 3.33251761616357 3.33251761616355 3.33251761616356 3.33251761616356

Experiment 9 10 — —

Sphericity Error 3.33251761616355 3.33251761616355 — —

Table 5. Comparison with results based on dataset 3 in the literature (rounding is as given in the
respective papers; units: mm).

Algorithm Spherical Center Coordinate (X, Y, Z) Sphericity Error

Least squares (−0.2545316, −0.6600826, 0.0380931) 3.735706
[27] (−0.388729, −0.355488, −0.299887) 3.332518
[37] (−0.38873, −0.355488, 0.299888) 3.33252
[26] (−0.412356, −0.335014, −0.326140) 3.351375
[36] (−0.38872967, −0.35548811, −0.29988752) 3.33251813257
[35] (−0.3887296, −0.3554883, −0.2998876) 3.33251762

Ours (−0.38872964944657, −0.35548834466725, −0.29988759232766) 3.33251761616355

Dataset 4, consisting of 50 coordinate points, is provided in reference [15]. Figure 13
illustrates the distribution of dataset 4, with the coordinate points randomly distributed on
the sphere. Ten sets of replication experiments were conducted for dataset 4. Table 6 presents
the results of the ten experiments, with a mean experimental result of 0.00766019493788 mm
and a standard deviation of 0.2 × 10−14 mm.
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Table 6. Results of ten experiments based on dataset 4 (units: mm).

Experiment 1 2 3 4

Sphericity Error 0.00766019493785 0.00766019493791 0.00766019493791 0.00766019493788

Experiment 6 7 8 9

Sphericity Error 0.00766019493789 0.00766019493787 0.00766019493788 0.00766019493784

Experiment 5 10 — —

Sphericity Error 0.00766019493787 0.00766019493786 — —

Figure 14 displays a convergence curve from one of the ten experiments. The least
square solution obtained by our algorithm is 0.008486342 mm, and the final converged
solution is 0.00766019493785 mm. Table 7 presents a comparison with the results reported
in the literature.
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Table 7. Comparison with results based on dataset 4 in the literature (rounding is as given in the
respective papers; units: mm).

Algorithm Spherical Center Coordinate (X, Y, Z) Sphericity Error

Least squares (0.0008555, −0.0003732, 0.0007853) 0.00848634
[26] (0.000993, 0.000024, 0.000058) 0.007928
[28] (0.002495, −0.000097, 0.000479) 0.007660
[10] (0.002504156298, −0.000096126920, 0.000481529278) 0.007660194938

Ours (0.00250415629838, −0.00009612691940, 0.00048152927799) 0.00766019493788

3.2. Simulated Experiments

To further assess the algorithm’s accuracy, we employed the methodology described
in reference [34] to generate simulated data, creating four distinct datasets. Initially, two
concentric spherical surfaces, S1 and S2, were established with radii rs1 and rs2, where
rs1 = rs2 + e, and e represents the simulated spherical error.

The points on these concentric spheres were identified as control points, with ten
control points generated on each inner and outer sphere. Utilizing Formula (3), by randomly
generating values for θ and φ, we generated 100 random sampling points within the
concentric sphere, culminating in a dataset comprising 120 simulated sampling points.
The 20 control points on both the inner and outer spheres effectively constrained the
spherical error of the simulated dataset to the difference in the radii between the inner
and outer spheres. Table 8 provides comprehensive information of the spherical error,
center coordinate, radii, and the number of simulated sampling points for each of the
four datasets. Additionally, Figure 15 visually portrays the data distribution of these four
simulated datasets.

X = R · cos(θ) · sin(φ), Y = R · sin(θ) · cos(φ), Z = R · cos(φ) (3)
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Table 8. Detailed information on the simulated datasets (units: mm).

Simulation Dataset Spherical Center Coordinate (X, Y, Z) Sphericity Error Radius Number of Coordinates

A (0, 0, 0) 0.00001 10 120
B (0.1, 0.1, 0.1) 0.00001 10 120
C (0, 0, 0) 0.00005 10 120
D (0, 0, 0) 0.00001 20 120

We conducted ten experiments for each dataset, showcasing the optimal estimates
and standard deviations in Table 9. Furthermore, detailed simulated data are provided
in Appendix B, Tables A2–A5. Table 9 shows that the algorithm’s solutions for spherical
error exhibit a deviation within the magnitude of 10−14 mm from the ideal spherical error.
Moreover, the standard deviation of the results from ten experiments also lies within the
magnitude of 10−14 mm. The results attest to the algorithm’s successful identification of
the ideal sphere center and spherical error.

Table 9. Experimental results based on simulated datasets (units: mm).

Simulation Dataset Spherical Center Coordinate
(X, Y, Z) Sphericity Error Standard Deviation

of Results
Deviation from the

Ideal Sphericity Error

A (6.3 × 10−16, −1.5 × 10−15, −2.8 × 10−15) 0.00001000000001 0.2 × 10−14 1 × 10−14

B (0.100000000000001, 0.099999999999994,
0.100000000000000) 0.00001000000009 1.0 × 10−14 9 × 10−14

C (−3.5 × 10−15, −3.9 × 10−15, −1.6 × 10−15) 0.00005000000009 1.8 × 10−14 9 × 10−14

D (5.8 × 10−14, −3.7 × 10−14, −6.1 × 10−14) 0.00001000000005 0.9 × 10−14 5 × 10−14
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3.3. Ablation Experiment

From the perspective of the algorithmic framework, this algorithm is based on the
differential evolution algorithm, thus sharing evident similarities with traditional single-
objective search algorithms. The algorithm is specifically designed to address the distribu-
tion characteristics of the sphericity error. It proposes that the resolution of the sphericity
error can be treated as a unimodal function in the local solution space. Subsequently, the
local enhancement method for solving this unimodal function is synergistically integrated
with the differential evolution algorithm, demonstrating higher precision and robustness.

To delve into the pivotal aspects of the algorithm in this paper, we conducted abla-
tion experiments, employing the same parameter configuration outlined in Section 3.1.
We designated the algorithm with the removal of local enhancement steps as algorithm
A and designated the algorithm retaining these steps as algorithm B. Subsequently, ten
experiments were performed for each algorithm, with the standard deviation of the re-
sults computed. The experimental findings are documented in Table 10, from which it
is evident that removing local enhancement methods significantly diminishes the algo-
rithm’s robustness, reducing the standard deviation from a magnitude of 10−14 mm to a
magnitude of 10−2~10−7 mm. This experiment’s results substantiate the favorable out-
come achieved by amalgamating the proposed local enhancement method and differential
evolution algorithm in this paper.

Table 10. Ablation experiment results (units: mm).

Dataset Algorithm Mean Value of Results Standard Deviation of Results

1
A 1.00057719429339 1.7 × 10−3

B 1.00000000000003 2.0 × 10−14

2
A 0.01539504919669 7.6 × 10−6

B 0.01538487054931 3.0 × 10−14

3
A 3.39553011862261 9.5 × 10−2

B 3.33251761616355 0.8 × 10−14

4
A 0.00766080588045 5.5 × 10−7

B 0.00766019493788 0.2 × 10−14

3.4. Experiments with Datasets Obtained from CMM

To assess the proposed method’s practicality, we measured a metal hemispherical shell
resonator, as depicted in Figure 16b. The measurements were carried out in a controlled
environment, as shown in Figure 16a, using a Hexagon CMM.
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For the measurement of the specimen, we selected five cross-sections on the surface.
As detailed in Table A1, one hundred and thirty measurement points were taken. The
iterative process convergence, reconstruction model of the dataset, and evaluation results
are presented in Figures 17 and 18.
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Figure 18. Algorithm optimization process.

Ten replication experiments were conducted for the measurement data. The spheric-
ity error obtained by the CMM is 0.008396638 mm. The results of these ten experiments
are presented in Table 11, indicating a mean result of 0.00747188442066 mm, with a stan-
dard deviation of 2.3 × 10−14 mm. The spherical center obtained by our algorithm is
(0.00218039158405 mm, −0.00226432610011 mm, −23.9943439405 mm). Our algorithm
demonstrated an 11% improvement in accuracy compared to the CMM result.

Table 11. Results of ten experiments based on measurement data (units: mm).

Experiment 1 2 3 4

Sphericity Error 0.00747188442066 0.00747188442072 0.00747188442067 0.00747188442064

Experiment 6 7 8 9

Sphericity Error 0.00747188442067 0.00747188442066 0.00747188442064 0.00747188442065

Experiment 5 10 — —

Sphericity Error 0.00747188442065 0.00747188442064 — —

4. Discussion

Evaluating the sphericity error based on the minimum zone criterion is an indispens-
able and challenging task in metrology. Thus, this study aims to achieve a high-precision
evaluation of spherical contour sampling data. Consequently, we conducted an in-depth
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investigation into the spatial distribution characteristics of the sphericity error. We pro-
pose treating the local space of the sphericity error as a unimodal function and utilizing
computational geometry methods to obtain high-precision solutions for the local space.
Subsequently, combined with the advantages of heuristic algorithms in searching the global
space, we successfully achieved exact solutions for sphericity errors.

To validate the efficacy of the proposed approach, we conducted experiments using
datasets that are widely cited in the realm of spherical error research, which are featured
in four high-level scholarly papers. The experimental results demonstrate a significant
improvement in precision, surpassing the existing achievements in the field of spherical
error research by several orders of magnitude. Meanwhile, the uncertainty of the algo-
rithm’s solution reaches 10−14 orders of magnitude, which far exceeds that of the traditional
heuristic algorithm. Furthermore, when processing the distribution of data with specific
sphericity or dealing with a large number of data points, the global optimal solution can be
searched out accurately using the proposed algorithm, which shows stronger robustness.

Subsequently, we conducted ablation experiments on the four datasets, as mentioned
earlier. The experimental results show that, after removing the local enhancement method,
the algorithm’s standard deviation decreases from the order of 10−14 mm to the order of
10−2~10−7 mm. The ablation experiments demonstrate the effectiveness of the proposed
local enhancement method in this paper.

Finally, we apply the algorithm to evaluate the sphericity errors of the hemispherical
shell resonator and obtain its sphericity error of 0.00747188442066 mm with a standard
deviation of 2.3 × 10−14 mm for ten experiments. Compared to the results obtained
from the CMM, this algorithm can improve the accuracy of sphericity error evaluation by
approximately 10%.

In this study, each member of the population in the DE algorithm is considered the
center point for partitioning local solution spaces. During each iteration of the algorithm,
computational geometric techniques are employed to solve for these individual local
solution spaces. This approach has yielded outstanding precision in evaluating sphericity
errors. However, it has also resulted in an algorithmic time complexity of O(n4), leading
to elevated time costs for each evaluation. Furthermore, we conducted assessments of
the average time required for each evaluation. Under the specified parameter settings,
completing a single evaluation takes approximately 300 s. Compared to the time costs of
0.1 to 1 s in existing studies, the average time cost of our algorithm has increased several-
fold. It must be acknowledged that this algorithm is not suitable for components with
spherical geometry that require large-scale production and have relatively low precision
requirements, such as ball bearings. In these contexts, the speed of the sphericity error
assessment takes precedence over precision. However, for crucial spherical components in
the entire realm of research that necessitate only one or two ultra-high precision devices,
such as the ball bearings in astronomical telescopes and the electrostatic rotor in Gravity
Probe B, the precision and reliability of the sphericity error assessment outweighs speed.
Nevertheless, pursuing high speed and precision remains a common goal across all research
domains. Therefore, reducing time costs while maintaining the existing precision level is a
critical direction for future research improvements.

In summary, this study proposes an algorithm that is aimed at the high-precision
evaluation of sphericity errors and that is capable of performing a highly accurate eval-
uation of sphericity errors. However, to achieve this high precision in sphericity error
evaluation, the algorithm has made certain sacrifices in terms of the time cost. This method
provides practical tools and techniques for applying ultra-precision spheres in precision
engineering. It introduces new perspectives for sphericity error evaluation based on the
minimum zone criterion.
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Appendix A

Table A1. CMM raw coordinate indication point dataset from a hemispherical shell resonator
measurement (units: mm).

No. X Y Z No. X Y Z

1 8.296414 −3.02143 −11.3267 66 11.61279 5.831947 −15.6435
2 6.763515 −5.67803 −11.3267 67 12.64508 2.993801 −15.6456
3 4.413842 −7.64931 −11.3266 68 12.99436 0.00061 −15.6446
4 1.53153 −8.6978 −11.3264 69 14.36486 0.00079 −18.3304
5 −1.53198 −8.69712 −11.3262 70 14.05059 2.984275 −18.3304
6 −4.41293 −7.6497 −11.3271 71 13.12312 5.840188 −18.3305
7 −6.76176 −5.67733 −11.3264 72 11.62104 8.44174 −18.3301
8 −8.2954 −3.02146 −11.3276 73 9.610385 10.67402 −18.33
9 −8.82762 0.00175 −11.3272 74 7.180646 12.43983 −18.33
10 −8.29549 3.019205 −11.3266 75 4.436134 13.66083 −18.3294
11 −6.76226 5.675262 −11.3273 76 1.499609 14.28478 −18.3294
12 −4.41211 7.645938 −11.3277 77 −1.50034 14.28458 −18.3299
13 −1.53142 8.694617 −11.3278 78 −4.43637 13.66036 −18.3297
14 1.53211 8.694537 −11.3271 79 −7.17943 12.43851 −18.33
15 4.413092 7.645988 −11.3269 80 −9.60919 10.673 −18.3294
16 6.763165 5.674052 −11.3267 81 −11.6198 8.44048 −18.3295
17 8.296184 3.017535 −11.3274 82 −13.1219 5.839438 −18.3305
18 8.828784 0.00144 −11.3275 83 −14.0492 2.983165 −18.3305
19 11.12424 0.0013 −13.2813 84 −14.3622 0.00134 −18.3307
20 10.71211 2.999729 −13.2816 85 −14.0472 −2.98888 −18.3309
21 9.505538 5.779181 −13.2803 86 −13.1193 −5.84373 −18.331
22 7.592488 8.12935 −13.2799 87 −11.6175 −8.44454 −18.3309
23 5.115596 9.876324 −13.2799 88 −9.60736 −10.6763 −18.3306
24 2.260611 10.89058 −13.2814 89 −7.17731 −12.4413 −18.3302
25 −0.75887 11.09661 −13.2814 90 −4.43455 −13.6626 −18.3298
26 −3.72318 10.48024 −13.2821 91 −1.49886 −14.287 −18.33
27 −6.41267 9.08655 −13.2818 92 1.500999 −14.2875 −18.3296
28 −8.62704 7.018315 −13.2813 93 4.437544 −13.6644 −18.3289
29 −10.2019 4.429719 −13.2817 94 7.181086 −12.4437 −18.3295
30 −11.0187 1.511798 −13.2827 95 9.611795 −10.6784 −18.3291
31 −11.0178 −1.51657 −13.2831 96 11.62196 −8.44553 −18.3291
32 −10.2016 −4.43394 −13.2835 97 13.12441 −5.84411 −18.33
33 −8.62646 −7.02263 −13.2815 98 14.05164 −2.98806 −18.33
34 −6.41128 −9.08998 −13.2814 99 14.90208 −2.96403 −21.2295
35 −3.72154 −10.4842 −13.2812 100 14.03837 −5.81562 −21.2292
36 −0.75777 −11.0995 −13.2808 101 12.63434 −8.44279 −21.2289
37 2.261661 −10.8914 −13.2782 102 10.74393 −10.7462 −21.2288
38 5.116226 −9.87919 −13.2798 103 8.43965 −12.6363 −21.2285
39 7.592868 −8.13236 −13.2797 104 5.8119 −14.04 −21.2286
40 9.505198 −5.78223 −13.2807 105 2.961514 −14.9037 −21.2287
41 10.71221 −3.00317 −13.2805 106 −0.00016 −15.1941 −21.2291
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Table A1. Cont.

No. X Y Z No. X Y Z

42 12.64529 −2.99836 −15.6442 107 −2.96109 −14.9016 −21.229
43 11.61302 −5.83438 −15.6435 108 −5.81005 −14.0377 −21.2287
44 9.954915 −8.35568 −15.6437 109 −8.43761 −12.633 −21.2283
45 7.759662 −10.4272 −15.6439 110 −10.7396 −10.7434 −21.229
46 5.14489 −11.9356 −15.6438 111 −12.6302 −8.44041 −21.2291
47 2.254347 −12.8003 −15.6441 112 −14.0335 −5.81371 −21.2291
48 −0.75498 −12.9743 −15.6445 113 −14.8978 −2.96381 −21.2286
49 −3.72379 −12.4499 −15.6451 114 −15.1907 −0.00053 −21.2288
50 −6.49358 −11.2552 −15.6455 115 −14.9 2.961734 −21.2291
51 −8.91403 −9.45329 −15.6456 116 −14.036 5.81165 −21.2281
52 −10.8542 −7.14139 −15.6459 117 −12.6318 8.43835 −21.2283
53 −12.2073 −4.44475 −15.6464 118 −10.741 10.74128 −21.2287
54 −12.9032 −1.50946 −15.647 119 −8.43702 12.63058 −21.2273
55 −12.9038 1.506108 −15.6464 120 −5.81015 14.0345 −21.2297
56 −12.2085 4.442633 −15.6461 121 −2.9605 14.89967 −21.229
57 −10.8544 7.138399 −15.6462 122 0.00035 15.19031 −21.2285
58 −8.91463 9.450499 −15.6466 123 2.962754 14.8987 −21.2293
59 −6.49321 11.25221 −15.6457 124 5.81229 14.03412 −21.2292
60 −3.72336 12.44723 −15.6456 125 8.43856 12.63031 −21.2276
61 −0.75426 12.97149 −15.6459 126 10.74231 10.73945 −21.2293
62 2.254877 12.79544 −15.6441 127 12.63195 8.4362 −21.2295
63 5.14524 11.93096 −15.6447 128 14.03555 5.80935 −21.2291
64 7.760032 10.42313 −15.6465 129 14.89984 2.960004 −21.229
65 9.956695 8.350528 −15.6449 130 15.19234 0.00022 −21.229

Appendix B

Table A2. Simulation dataset A’s coordinate data (units: mm).

No. X Y Z No. X Y Z

1 2.70716589312049 5.50739356847015 7.89557274104917 61 −2.89280574054528 −3.65641016545042 8.84661176098279
2 −1.15214718780568 −9.20081371548616 3.74402430584425 62 −1.51828118667085 −9.13434218820972 −3.77606589087291
3 −1.01772769992569 −1.84485104912249 9.77552546524520 63 2.24430605422733 −4.05526495095270 −8.86103883157432
4 1.09745748886757 8.99030141206831 4.23912436513771 64 1.00655478403967 2.74990194311456 9.56164599503323
5 −1.28865793782677 −2.14712961492406 9.68138493151514 65 −5.91008390550214 6.65426786156021 4.55980563803232
6 2.23712088095506 −5.64280260263515 7.94695444739222 66 1.05649986536444 3.12247361232877 −9.44108128748343
7 0.96389378689230 9.38875252004527 −3.30491072270252 67 7.85501071612662 2.19242740865312 −5.78724691162584
8 0.09516036830667 0.57085048124596 −9.98324191519372 68 −7.39966754477964 −4.84965141456539 4.66109444057282
9 3.85822591335003 4.61648956587795 −7.98762771847785 69 1.09631832016297 −7.49379191536427 −6.53003590114144
10 −1.06721159538523 1.93885104125363 −9.75203135750703 70 3.53745810772145 −1.78161148450475 −9.18217909565151
11 6.26235696234287 −7.59196187568609 1.77341482860745 71 6.76213768840946 −0.59511144741485 7.34298594770830
12 −2.62499745458919 9.43001171406783 2.04554819936948 72 −7.89611121553721 −3.79056887081821 −4.82525144178618
13 0.29152155597613 8.30981199131132 5.55536918545053 73 −3.45995327527011 −1.48232328353041 −9.26452594664461
14 0.20630522606167 2.26036506127748 9.73900572541429 74 −0.44629221645521 −7.21658669463085 −6.90809564438316
15 2.99706563681856 −2.10102303257860 −9.30609523486725 75 0.28520194202245 0.22255761270425 −9.99346401882636
16 9.43834225665788 −2.59374462609833 2.04704082943856 76 −7.97689476851546 2.82284926180381 5.32924080069324
17 −1.60616749126634 1.85271355326272 −9.69472740038624 77 7.27215932101236 −5.15558676418842 4.53163160673812
18 −7.53700381107871 −6.54949836084845 −0.54573054674074 78 7.56765130979587 −1.13414408241597 6.43773397992703
19 9.99010525044084 0.16115167185843 0.41461656648064 79 9.10595015430749 −1.99275838613616 3.62086572061669
20 3.07794368595563 8.16192817794968 4.88971779299321 80 −1.65318551090508 −8.64678692963512 4.74342379395656
21 −8.88138219754910 3.81449533619221 2.56334286460520 81 −2.16028979995984 2.19462186324215 9.51403989099589
22 −1.50528492091493 6.14981163076181 7.74041825385070 82 3.71214714273865 1.38035475101959 9.18230164358843
23 −2.63300837329504 2.66539640573202 −9.27162121150142 83 −2.81583122618287 1.25258183256518 −9.51326201418868
24 8.56581407890788 −4.96012947251450 −1.42269021052671 84 0.25318226559820 −3.54288213674587 −9.34794068182515
25 1.82718891044369 −7.94962037867871 −5.78490312181898 85 9.50959469247850 0.37431656375598 3.07042275507506
26 8.24289514570036 −0.72547048296934 −5.61502108758284 86 −0.30358937469407 −0.37790575801959 −9.98825311874762
27 −7.70092292049896 5.21634534357503 3.67226461861028 87 6.57243761907439 −4.87188526868866 5.75047796586977
28 7.12707805126894 3.01062110905472 6.33569700257251 88 −6.01482923502479 5.09978824190112 6.14931759713210
29 −0.58999065777537 0.82156378009547 9.94872075767712 89 −5.38098973200806 −0.36572287988244 8.42088488112053
30 −2.56716043333088 1.39056147508962 9.56431299758929 90 9.64669012283484 −2.63319562276727 0.08860297026600
31 8.22189230883354 −2.82653115285224 −4.94078328448101 91 8.33083101659233 0.34658097412821 −5.52061770906743
32 5.61203365939748 −4.28243254741348 −7.08278544660527 92 1.16667377294868 −5.98585551084573 7.92518310069517
33 −8.30864658564425 −2.91133711744228 4.74241852182297 93 5.09725538078174 −8.20583203528779 2.58502319927636
34 0.66411528936322 −9.27973866238164 −3.66680749056059 94 −7.94577182052644 −0.15895145001070 −6.06955829228184
35 5.59555808812651 4.52368413040483 −6.94450142639838 95 −2.81033726124221 −0.34145895649012 −9.59090915571642
36 4.31821867358096 2.98193413994706 −8.51241352713467 96 −8.84178799766724 −1.30105332857164 −4.48666162729917
37 −7.27229290635095 −0.94799136393752 −6.79817079521441 97 −5.13240086305896 −2.53115221949677 −8.20072497861750
38 1.76614778493561 −2.67317591762393 9.47285569085848 98 −3.26949290444136 −7.24375242567628 −6.06947007104547
39 8.90488220398493 3.82356465101649 −2.46648591450760 99 −4.21044225736679 −0.91801641519192 9.02383533011225
40 −1.34216364461793 0.19580721969637 9.90759556340661 100 0.97207348091252 1.35811285724233 −9.85954941070868
41 −2.14413833249205 6.54013975411457 −7.25461521613138 101 9.97467105975975 −0.62134089971315 0.34633679834256
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Table A2. Cont.

No. X Y Z No. X Y Z

42 −0.14641530136290 0.00329534577709 −9.99893401071181 102 3.07164278927927 −7.79824967120529 −5.45458638585138
43 9.33663475800817 −2.26252230212020 2.77638143223137 103 4.21424090461527 4.13157893765339 −8.07281448962633
44 8.60615347616399 3.25778487780142 3.91419979493624 104 −8.20954862620217 2.49260305036918 5.13715697784912
45 0.92038470926800 −8.23220713076379 5.60211794144169 105 −6.05646784946783 3.33339673520736 7.22549856527915
46 0.19039170935725 −0.09559877282060 9.99773260503988 106 9.29084809507047 1.34542356946677 3.44530959845342
47 4.63041699171134 8.84538152765776 −0.56450038527465 107 3.10106100490886 9.50614519379827 0.12969193913494
48 4.90940621164029 6.17221598580318 6.14829582098568 108 8.25810929801433 −2.84241087768132 4.87077201262455
49 −1.35601812982457 2.67900851431207 −9.53856388088540 109 4.82089142825648 −1.24432507720403 8.67241820026406
50 0.10697680515944 0.16104416983599 9.99813641836490 110 8.08804152765836 −4.99592166582711 −3.10234592604136
51 0.54543741944347 −2.74352703380253 9.60081306146551 111 0.29229983657336 0.54727416058684 9.98074000592601
52 −5.88145323430974 −3.42609324921417 7.32601584952949 112 2.35365295075906 1.64164975916963 −9.57942345351573
53 1.98373588866636 2.69419177896352 −9.42371065887968 113 0.04198489879216 0.07803540541192 −9.99961698811101
54 −5.11469144416484 0.77570060507926 8.55793924257076 114 6.31161433326479 0.52599244332027 −7.73867005704883
55 −1.61607689980290 5.50777647454611 8.18857444960706 115 5.53492638583934 −8.32813270602568 −0.08363931052334
56 −6.05720577992347 −7.77957883368181 1.66986302157556 116 −1.94264324774318 −1.18582495429703 9.73756059512558
57 1.04302816178437 −3.27035836333418 9.39239093167803 117 −2.81371560108729 1.33773054919186 9.50229259300673
58 2.81296261497125 −0.15442235185868 −9.59497317966677 118 6.37164802179989 0.02784080933777 −7.70723405788024
59 0.75873469126528 −0.27199953420838 −9.96747399905116 119 −9.21326646969875 −0.10005215523293 3.88660655643943
60 −0.28319142384936 −4.90514063534900 −8.70974146028489 120 6.25059255805694 −7.80083536598516 0.27782060448905

Table A3. Simulation dataset B’s coordinate data (units: mm).

No. X Y Z No. X Y Z

1 1.34866310044556 −3.42964434197735 9.37267364430173 61 −6.03813011492763 −7.76545546035172 −0.57679931500770
2 6.28762586455096 −5.81093158895213 5.27438015487295 62 −8.37817918397411 −3.42734922369600 4.05958662316408
3 0.58398271936605 1.85955926550385 9.93207905167647 63 0.52233695646431 3.25269396882814 9.58062372503846
4 −6.79335005575682 −6.71332209489238 2.56179219875112 64 −2.09026691610244 3.65529455010974 9.18639845896016
5 4.55446618682185 0.04056169255594 −8.85288769493223 65 −9.81740328667709 −0.73694309391516 1.07199737940335
6 3.79620842970985 −7.53588616139182 5.39445802461468 66 0.15445504692498 0.12627148991291 10.09982417701270
7 −9.83674200746524 1.06675729653396 0.67151129024692 67 0.50101334310798 0.22752854129214 10.09115232442710
8 −6.61532798308528 −3.65557088498325 −6.28750106664630 68 9.74076804798352 0.73231251158527 2.67987835617744
9 −7.17985071352343 1.34974236352629 6.84106883141816 69 0.10312758013623 −9.70002495549256 2.08989240315612
10 7.85510652795512 −5.94733723625945 1.91329825334280 70 −8.82575264163078 3.18405414406231 3.38931694468529
11 −5.08174827571728 8.28746885629698 2.57282723147979 71 6.95710495543139 −1.95896587491257 −6.88146426353406
12 −4.17476966096297 −1.38927722347042 9.01674947155353 72 8.14147891565005 −0.62754515133087 −5.79960757253585
13 7.39523184514386 −1.64735595814567 −6.51258975851859 73 4.73021563852859 −8.34043159678178 −2.60562618722498
14 1.75791425129314 9.35998423612448 −3.29177150326352 74 0.14885226061423 −2.55233387947583 9.74172384433377
15 9.53037413100502 2.96783323871382 −1.58629448613162 75 0.24123084998983 3.35834622385500 −9.35321815255340
16 1.06836312520230 −9.74081253052169 1.59019545332327 76 −9.17601252417074 1.72155553651928 −3.26545594466951
17 −1.35961492444953 8.85325919098271 −4.50977755465138 77 1.24207417896070 −9.83319802271571 0.26564340074693
18 −2.54886701298226 −1.16362897579127 −9.45964508557108 78 3.95019276558823 −0.43913982247625 −9.11333454632599
19 8.34553977725865 −3.82986427025728 −3.97030760282703 79 1.01943786643079 −8.65011678471033 4.85290752422392
20 −9.06726678345875 2.76301281032927 −2.87819871193943 80 −1.37244324949174 −0.44407560653978 −9.77602856563217
21 −2.70120696204215 7.93041862738558 5.65318756342506 81 −3.01546757149110 −8.62853994942254 3.85585826136877
22 0.40484779625019 −2.40089029216986 9.77743521432033 82 0.89864570124804 2.04062555358302 −9.67733289275361
23 8.34419183403123 0.27817441678260 −5.55699346407081 83 1.04201185554798 9.23553399933964 −3.85660415833079
24 −9.00214396824030 2.94261718779047 3.11174899152034 84 7.94146024657417 −1.16315196293439 −5.97586605514242
25 4.33215924680972 8.94616766180038 −1.85811718467211 85 −0.10384830725595 −2.04850736620220 9.86434844241350
26 −8.59344894888064 4.59342781058663 2.15743818479502 86 −2.22329768993876 −1.15500866351492 9.74507341073813
27 −4.96057364591641 8.47029337115301 2.18057426683214 87 2.45491666352924 5.78849624684043 −7.78007284896142
28 −3.22871530473500 −0.06432575276105 −9.32829802706838 88 −5.68774904080877 1.63805685551568 −7.90852031663867
29 −0.41110361489163 −2.67992872798330 9.69222845496206 89 5.59040668462846 5.33875629313861 6.61236943075913
30 −4.68903899887497 7.25889644785651 5.18088675419929 90 0.43818779380963 8.97196368206258 −4.50152918880770
31 9.41291069990909 0.66348567366363 −3.49891347368823 91 2.03348649684924 −0.05004258783391 9.91015953014887
32 0.94818881511365 −6.65575236452663 −7.22396030057950 92 0.42240670799693 1.11071074115523 −9.84357670621854
33 −1.67590490013474 −9.35455804128937 2.83086859870856 93 8.59284720462050 −4.75746898722982 −1.96799907697002
34 −4.16989182916701 7.86070284138004 4.74107785938835 94 −7.75645964799996 2.11408393073890 5.94974621604521
35 3.25227913344670 −6.58739533739249 6.83364607621087 95 −6.57387031107005 7.25023913010277 2.18173076947982
36 2.79496959426060 8.19466092407649 5.31668384613840 96 0.26916652060042 0.25589604520815 10.09736113827280
37 8.93129544156749 −0.38889049269008 −4.56575556136091 97 −3.46440861622413 −5.00614749907289 7.92447755025208
38 3.18101226342569 −1.52942164932200 −9.27296903448642 98 7.75906351118220 −1.28779877499083 6.37796001575860
39 7.04242471712940 2.41100805551266 −6.71631389000110 99 −9.50971105265897 −2.34766336070543 −1.18936949313789
40 −4.84619856008049 8.30681576997033 −2.76067603756258 100 −7.84248425564078 4.56684661186731 4.21877363426257
41 −4.85601964526380 −5.43098753280862 6.79672419090749 101 0.54593631811652 0.03153202952144 −9.88981746265683
42 −8.12420949331687 4.47991361320555 −3.53027084236835 102 0.11657353763262 0.57993270390538 10.08847086418930
43 8.47199163087032 −5.08576199441910 −1.63716468889158 103 4.28376953167379 7.70072695757926 5.07243383167886
44 −1.49064300895679 9.97071885482340 −0.09724232947774 104 −1.84255095146451 0.60951826428967 −9.69627313630365
45 2.60842772256343 3.60002146556946 −8.92539971975359 105 1.71428502293959 5.13723178893266 8.58649396213649
46 −3.83790555020136 −9.07413849353980 0.67279290583042 106 7.51446382502934 −6.59902638575811 −0.28577127558744
47 −0.02360421418595 −8.77097210922236 −4.51418638304886 107 −7.04181353646521 5.45351438097204 4.60937233528599
48 −9.33039977030179 −1.14575492021222 3.18475178506461 108 6.12487358526707 3.77291668319337 −6.98594726658885
49 6.95165799200241 −6.22900417099728 3.70536794271800 109 4.53745658457334 0.85209846515610 9.02991192334709
50 3.21824046995196 7.57046071390343 5.97101496322205 110 −1.12776216963448 −1.82149594347224 9.83655759421291
51 −4.22634034562955 4.97567752136581 7.68357899479138 111 −3.63485132545628 −2.96062615963476 −8.65691411102701
52 3.13366413705399 4.08476978070495 −8.55555571092744 112 0.15207573590189 −9.50293289978279 −2.68947447382110
53 −8.92065921311551 −4.00273826814577 −1.23991189847763 113 −5.67454541558127 −5.35441490987012 6.17486513203551
54 −1.27826343621782 5.65258577982205 8.30177913980271 114 2.46258257926635 9.58063747653475 2.22976234541775
55 3.42467444593053 −5.91207099422011 −7.16648072928937 115 4.15121428825438 0.20895663027339 9.24198564645230
56 4.42158568224405 1.50997493058889 −8.80707402406929 116 5.01626077364017 4.64750359467024 7.52635676060415
57 −2.52027470099493 5.12888276079702 −8.13677720164170 117 7.14553350213879 7.11330722569521 1.18355483513316
58 −7.66578663482778 −4.23480394172058 −4.47188682700721 118 −3.65814281845417 6.93857742396894 −6.15382574716082
59 2.10766041854642 7.07201098260663 −6.78189486210131 119 6.91217239125644 0.22870336010611 7.41968187538919
60 3.62675332328140 4.24915024848378 8.48729188985141 120 −4.21831012911677 −0.73580262084969 −8.88074058906206
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Table A4. Simulation dataset C’s coordinate data (units: mm).

No. X Y Z No. X Y Z

1 5.95996262889717 −2.53087159418200 −7.62062810900662 61 −3.51246706823379 −9.34182505861613 0.62737974656962
2 −9.85107314551679 −1.30444876074718 −1.12023703431943 62 4.50473221625104 −6.05203499045717 6.56362954642608
3 −0.42562009583607 1.60551591345338 −9.86110403170941 63 3.94183536430941 7.27924518817052 5.61030276751094
4 7.15248741603897 −5.79696049895956 −3.90354930806442 64 1.10547040857635 7.49865115145544 −6.52295453806957
5 −8.79810084568203 4.72470932722656 0.52086306669802 65 0.28826524595727 5.08233406156181 −8.60741492035918
6 2.28942095507661 −3.32448286731950 −9.14911828294701 66 −9.33209675238265 −1.88494780973294 −3.05933742850091
7 −0.23648593817369 0.53665373133653 −9.98283913404341 67 1.24171798290095 −4.99923896512844 −8.57125197473802
8 1.20968561171675 2.77318121266279 9.53133145254380 68 −1.22194940877846 −1.79255182349007 −9.76189481363779
9 5.93420067374265 −3.08518708773780 −7.43423399317568 69 −2.33658986292916 0.40834911563586 9.71465342116742

10 −1.83054232077633 −0.60978790824329 −9.81211687345779 70 −2.50791452160276 9.32268233296792 2.60746212216540
11 −6.42127372632781 −5.52810041703587 −5.31108701348930 71 7.43197381777530 −4.30470977913549 −5.12213226028162
12 1.19848917351491 6.75231597828767 −7.27810776457924 72 4.23679718803602 6.88574958202849 5.88530467085766
13 −0.42583197337906 6.13395610992908 7.88628269665551 73 −3.35333670814301 9.24977931999824 −1.78798670354391
14 6.57382699453694 −4.69870339578870 5.89130064077983 74 9.71840199364162 −1.82443538824880 −1.49161565565493
15 −0.67205602261595 3.15416628864922 9.46571213695177 75 −8.19193551995640 1.67782531605284 −5.48429567206496
16 0.27155434387497 0.27118450797139 −9.99266903431794 76 0.40140787070271 −1.33286253492707 −9.90266817867122
17 0.25308083307023 −0.04010002834001 −9.99676658135817 77 4.53726053260564 0.94151974265130 −8.86154770747293
18 −1.17785831771628 −0.24510239526266 −9.92740700432568 78 1.61516813350064 6.96306357529998 −6.99336339363929
19 7.06536392207105 2.21510220623939 6.72121934542273 79 9.25819273048234 −1.16503736461130 −3.59564896620229
20 −5.31128165470666 1.05688392418140 −8.40678477561395 80 −6.28584646497884 −2.28309780959583 −7.43482055476037
21 −2.11065116617518 −4.16503976045407 −8.84295772138813 81 −0.19178974586890 0.09521260975715 −9.99775058306743
22 2.15886526922128 −8.54779992582657 4.71964413912382 82 8.50066661341672 −2.40179219786582 4.68722320418105
23 5.88541066182448 −1.27357658674910 −7.98376490192677 83 −6.41886291974595 −6.69020924991784 3.74696167129575
24 −1.85389822982494 1.07643711617595 −9.76753200017694 84 −2.17639276771440 −9.70204539665501 −1.06518995694937
25 7.27117064778413 6.83385042030464 −0.65533759053807 85 −1.24902071442348 9.91581613986789 0.34144617943944
26 −5.71954621436550 4.10020977591656 7.10462799391528 86 4.00910113808578 9.08862361957577 1.15069225193287
27 5.08401851378667 −0.02960672336142 8.61117654902158 87 −3.79323507426728 −8.78984680257001 −2.88972600375784
28 −0.26443730535060 −0.03053847330009 9.99647246809361 88 7.37207044548441 6.54996548881943 1.65869014847620
29 9.07084930001875 −3.86540812389358 −1.66690047914021 89 4.37274176835174 −0.22139490848028 −8.99057566771884
30 2.86805392843574 −5.57345457408119 −7.79174779263483 90 −9.20458184798071 −2.74927686394480 −2.77804077503713
31 −3.95616029511580 −1.76938209469346 −9.01216304362207 91 3.84083333935019 −1.51569516697420 −9.10772569965450
32 2.36818512714166 6.74525808213302 6.99239242962638 92 −2.59334387393980 −0.26239126724716 9.65431239809196
33 6.08354542163128 −5.08223798323700 −6.09601467195711 93 0.78419338417084 −3.04987739990699 −9.49124240726619
34 8.51756401769817 −2.59707326287336 −4.55050613105236 94 9.00676579747105 3.26512839518545 2.86659322301019
35 −0.00150849137714 0.00176617463060 10.00001997397680 95 −2.92902631777872 3.69839622648143 −8.81720186526334
36 −8.87466688583470 −4.10078607200066 2.10329295561852 96 0.98664286932946 −8.90409024626217 −4.44345701534720
37 −2.03549057294796 6.11701773694590 7.64453217229997 97 7.86678077709667 −6.13458879926826 −0.69374280606344
38 8.53705944581464 4.35922961278074 −2.84898800509080 98 −1.15725800979753 2.63128895976783 9.57794718658249
39 −9.11528166103595 4.06506417766708 −0.62279561377970 99 −0.14579857774420 −0.21121056560729 −9.99673047090975
40 −0.58102184165576 9.61081481618440 −2.70102749001126 100 −1.25580657367142 −0.10475745442277 −9.92030984831879
41 0.35321082377430 8.17644980500951 −5.74645650108488 101 7.01763907424743 −0.69202363480080 −7.09047566210989
42 5.67461369627328 −4.99499972058684 −6.54595569871264 102 −0.65388617986357 2.57232761613757 −9.64137918690304
43 2.79553200396705 9.41125152721134 1.90102278229729 103 6.04398530035203 7.30171439964982 −3.18676666787718
44 −5.76116966867094 8.16829019858550 0.29803366260499 104 −5.39008334649265 −2.99099011441192 7.87410240772113
45 0.81231109499248 −1.76130591724466 9.81010561518831 105 6.00375943305308 4.59441140239776 −6.54573283811845
46 6.78433265308395 −2.49420282986743 −6.91032129106041 106 9.04407550772326 1.53304034917810 3.98189176899673
47 1.86420286158789 9.16431100680814 3.54120762753932 107 −4.97523299033828 −2.57612725498324 −8.28317226619606
48 0.46310293039069 9.73696812866290 2.23106868102305 108 2.27648031534053 2.92945614989988 −9.28636253779010
49 1.88555388454493 −2.55997340072303 −9.48113694822441 109 1.72083737286512 6.52616757239851 −7.37887901737959
50 −6.56595707040798 −4.98992000387135 −5.65595158951884 110 −2.78810706129170 −1.41914467735619 −9.49804109497103
51 0.60930958004152 0.31233873762694 −9.97656149526066 111 6.13684273879640 −3.07613391500037 −7.27163312280270
52 4.81820410624501 −5.81186464235642 −6.55805905523815 112 −2.65206520094611 8.05998897351177 5.29183351617852
53 −6.92416985159192 −6.38950809436772 −3.35122442675302 113 7.65293149411519 −6.40840365705949 0.60418841047588
54 −4.01794200780133 −5.59775753776835 7.24715479138558 114 0.56486545100115 3.08894380518371 −9.49422379061154
55 −9.79487189140082 −1.04454957796157 −1.72335488751927 115 −1.04130724007516 −1.53503208605850 −9.82651289771900
56 2.52865790796924 −5.60942584080151 −7.88293580244636 116 −4.23561751907541 0.83262679515559 9.02037958499682
57 −7.46647640711460 5.76777831438991 −3.31443258802386 117 −1.36156873609851 3.96780352924388 9.07759140577493
58 1.60575217539826 −4.85236205171849 8.59514801857770 118 3.01460153226631 −2.37159102989348 9.23514540246705
59 0.45562100548285 −1.85585394689852 −9.81574065321849 119 −9.08538775384136 3.96172735036234 1.32686651808811
60 0.60898677943533 4.94763038814187 −8.66894807615183 120 −1.13534715705872 −5.15041230845435 −8.49618460850138

Table A5. Simulation dataset D’s coordinate data (units: mm).

No. X Y Z No. X Y Z

1 1.01827397046852 −16.58223949132140 −10.89363718109050 61 6.06383239458524 18.62029549152800 4.72943319369740
2 −13.34805033351610 −7.65151186352272 −12.51207364609940 62 −17.4926872840853 −9.37509388839011 −0.74855543825462
3 −10.85895498342310 −7.82787277400729 −14.63262159123280 63 −2.95050821623490 13.32859826311390 −14.5866933276464
4 −7.82688204692040 18.45532417824060 −0.39679573595063 64 −1.46204046352872 −0.81330288421109 20.01798450174830
5 10.30900200779320 −10.09332954684140 −13.75181254401260 65 0.61694120175509 14.37587094279790 −13.8975848364538
6 −14.43968045809420 −2.42937674159383 −13.39815874219520 66 7.22220058167960 −1.51110527690331 18.71931724681080
7 −8.70626533118663 15.72064958615080 8.95694047270114 67 −6.38849699666628 0.99329051206819 −18.7971296197525
8 −9.46047435993298 −4.33118464803028 17.09888036481630 68 −11.1092678813575 2.70467302295429 −16.2575098727216
9 −8.55574557041805 −3.61813827146386 17.74238975917280 69 19.17624788295150 3.18008400778801 5.25848048259532

10 −4.47575358740484 12.02394048345430 15.49097535747460 70 0.57400332298236 3.18735409862370 −19.6545834053648
11 1.18157843626710 −19.84688771532510 −0.87583530092755 71 −8.84843005167697 −10.9152758645158 −13.9921756195152
12 12.72462790755350 −1.79655645813156 −15.29552638807290 72 −3.00177343917124 0.17099678521819 −19.6578936374463
13 −7.35643350554795 6.18067041315640 −17.43359765432940 73 −12.7896452828776 10.09334240088980 −11.4754176273606
14 1.16280745257179 −0.72078948835909 20.05487057595220 74 17.90839450288090 −3.54156658135182 8.44268197993650
15 −0.20813104833264 14.58208632995030 13.89037089100960 75 2.96106596202016 16.5298129237656 11.13973450479910
16 18.25367735889010 7.11608071063607 4.70636837294161 76 −13.1465617890625 7.62914121276286 −12.8553476744905
17 11.49696314639260 −15.44165803526220 5.44473018996573 77 −8.74646065591191 11.6322946576240 13.83850132902650
18 −2.16392469089001 0.83039496171992 −19.75803535584460 78 2.79968153573403 19.3874358147267 −4.45045599529497
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Table A5. Cont.

No. X Y Z No. X Y Z

19 1.68355633012895 1.88620054874559 19.95703920979820 79 −1.48496404285976 0.59388529302004 20.0309817973941
20 19.64394830582460 1.21531889197613 4.19761492813433 80 1.86825643905109 −4.75766614049884 −19.2203666266285
21 3.91144426005375 3.79462348595604 19.38270338799840 81 −0.83656074379294 −0.96746618861219 −19.8495205433453
22 18.55485035335030 6.58707162584348 −4.06370550974975 82 −5.49492644661469 10.73418866681580 −15.8878462959520
23 −14.97456160827260 −1.11066147552205 −12.98786432268080 83 −3.80093220200770 3.13541687496168 −19.2796042424803
24 3.44585801675839 9.94215773899642 −16.98618053201200 84 −15.5880823519049 9.40106327444076 −8.10819659849956
25 −6.09016836774572 −2.68963529620687 −18.71222460492920 85 −18.2576547031961 1.12895640488274 7.97006084712438
26 −13.04807418539690 −12.54947668265840 8.29261704609541 86 10.49536571786190 13.79659705098480 −10.1146838692175
27 2.09518671398468 −1.27224569517222 19.95286733485780 87 8.80543241338193 −17.6458457320953 −2.94971131041900
28 4.75455189488812 16.99344821169060 −9.54088810370740 88 9.25865041278559 −1.10120558793086 −17.6391233771429
29 19.47523087979740 0.94602374245893 −4.78723537598508 89 −17.8505562022870 4.57435019426862 −7.49985287327967
30 −9.71939483968772 1.80999356221063 17.43942205559590 90 −10.2523954188985 3.66547938695731 −16.6366468132108
31 4.23624746745487 −16.37834724788520 −10.45251291712490 91 11.56502410835130 −11.1667931585712 −11.8001152889516
32 1.94122091567610 13.98457288292260 14.37685396574550 92 −11.4073320118934 −13.9933247567537 −8.20420717407658
33 −5.03249637040109 −6.51268030718956 18.26397713914980 93 10.68001801215560 −15.4856240086703 −6.61951623427540
34 −1.15179970349694 6.29548586292803 −18.87496615486860 94 5.90864697584834 −17.3422835277526 7.97570731093767
35 1.64898027593959 9.77027856807626 −17.33808038472760 95 0.46667722969903 20.02206521434100 −1.62541336683918
36 −2.05629356124958 9.48209963488476 17.63073541917730 96 −10.9615942160357 4.47191929407413 16.17879762919220
37 3.85411379778398 1.69588783533586 −19.47958316498940 97 2.28810905920513 −3.44111150716674 −19.4620277927884
38 14.15697204354040 −13.90269899135140 −2.41522522348013 98 16.8840174126687 10.08724836843570 −4.20718583643146
39 −0.20426992002611 0.59263673296207 20.09161674097680 99 −11.2759557549732 −5.18433912532622 15.6776614308102
40 −2.52544544260464 4.92288722155417 −19.13141167663400 100 −5.82328105745985 13.7707838301110 13.4425890803288
41 −4.81520178654368 −2.58331884937223 19.30002516048620 101 1.81833972088083 −11.2270398427722 16.4934610087666
42 −0.89198658551585 −10.55279166077970 −16.79776256611030 102 −11.3169550065854 15.5247657046385 −5.53294932892596
43 −11.52970092308250 −12.92085836386540 −9.65743574420629 103 18.49717636238000 5.51582670251050 −5.57565972709238
44 −4.30687911070277 19.03743999244430 −4.58540004091944 104 −17.5915674679496 −9.22534652387289 −0.11610300895466
45 −1.79046902193470 −14.74656897912440 −13.16672147081700 105 15.51425837266370 −4.53322523123523 11.97156707998060
46 −0.82428299505741 −1.48334775795102 −19.81580019684510 106 1.80602316138195 16.57927332615510 11.30372090674270
47 17.97958117110970 6.26641754870141 6.60353642503426 107 18.88028253243810 6.77916276141418 1.74012279350019
48 −11.55695697104530 −16.10452986112690 1.33648772641715 108 2.44185338612605 −11.5128302064991 −16.0139102367006
49 −6.51472496606937 −9.82199878493186 −15.95614003247500 109 10.96228303494210 −14.4365979646038 −8.30823285377158
50 −10.62843762891630 5.65690585856826 16.03805256053560 110 14.93418188835610 7.49990446899727 11.28877720486080
51 1.49454173751660 −2.95598487258305 −19.61588724356240 111 −2.00751746160698 −4.96094780607129 −19.1339669360993
52 6.23560828673115 4.92507746739824 −18.31393326764820 112 −19.8774126579963 −0.34144282531075 −0.74157929219974
53 18.50688544822750 7.85024987758855 −0.95855926192827 113 0.59781614332414 17.79372679846470 −9.21044241612647
54 17.03503404541520 −1.29200862828843 10.64832253787790 114 −6.72848396486137 14.21862165584770 −12.3111457743369
55 −4.99871766746520 −16.35724069453180 −10.05689590652830 115 18.40346933418050 6.73345294480625 −4.48043076896942
56 17.46517828652930 −9.81754829167634 −0.20486078186585 116 9.68390950942623 13.13011708211820 11.86285452827500
57 −12.38615898015310 5.42369983733961 14.78857190219600 117 −9.07980486558268 −2.47679609248717 −17.4809966968707
58 14.01561202466960 12.06231488177630 −7.85355051623286 118 15.53268989669770 5.56740835811171 11.58649332044970
59 −1.08752796169960 0.04350469111739 −19.86463520577670 119 −6.31395438498343 0.32145413074370 −18.8423392515690
60 17.26857507163890 9.80599181861071 3.42176555650988 120 −1.10382109828030 15.73986163459290 −12.3074793094377
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