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Abstract: The modulation transfer function (MTF) serves as a crucial technical index for assessing
the imaging quality of remote sensing cameras, which is integral throughout their entire operational
cycle. Currently, the MTF evaluation of remote sensing cameras primarily relies on the slanted-edge
method. The factors influencing the slanted-edge method’s effectiveness are broadly classified into
two categories: algorithmic factors and image factors. This paper innovatively comprehensively
analyzes the influencing factors of the slanted-edge method and proposes an improved slanted-edge
method to calculate the MTF testing method of remote sensing cameras, which is applied to the MTF
testing of remote sensing cameras. Since the traditional algorithm can only be applied in the small
angle situation, this paper proposes a new method of slanted-edge method test calculation based
on the optimal oversampling rate (OSR) adaptive model of the slanted edge and uses simulation
experiments to verify the reliability of the algorithm model through the deviation of the slanted-edge
angle calculation and MTF measurement, and the results show that the algorithm improves the
accuracy of the MTF measurement compared with the ISO-cos and OMINI-sine methods. Then,
the effects of the slanted-edge angle, image region of interest (ROI), as well as image contrast and
signal-to-noise ratio (SNR) on the accuracy of the MTF calculation by the slanted-edge method were
quantitatively analyzed as the constraints of the slanted-edge method test. Based on the laboratory
target experiment, the algorithm flow and various influencing factors obtained in the simulation stage
are verified, and the experimental results are more consistent with the various test results obtained in
the simulation stage. Consequently, the slanted-edge method introduced in this paper is applicable
for future remote sensing camera MTF testing. This approach offers a valuable reference for on-orbit
focusing, satellite operational condition monitoring, lifespan estimation, and image restoration.

Keywords: remote sensing camera; MTF; slanted-edge method; accuracy analysis; influencing factors

1. Introduction

In the lifecycle of remote sensing cameras, from system installation and long-distance
transportation to launch impact and in-orbit operation, various factors such as the space envi-
ronment and component aging lead to a gradual decline in imaging system performance [1].
This deterioration results in diminished image quality and information content. High-
quality space images are crucial for delivering accurate and comprehensive data, necessi-
tating regular in-orbit quality assessments of remote sensing cameras to monitor perfor-
mance shifts. The MTF is a critical parameter for evaluating the imaging quality of optical
systems [2]. It quantifies the extent of information attenuation during object imaging, offer-
ing higher accuracy and a more objective and comprehensive assessment than traditional
methods. As an ideal performance index for orbiting remote sensing cameras, MTF mea-
surements are also vital for predicting the lifespan of satellite imaging systems [3], assisting
in satellite in-orbit adjustments, and facilitating image recovery and reconstruction.
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MTF detection methods vary depending on the target used, including the three-bar
method [4], slanted-edge method [5], slit method [6], and Siemens Star method [7,8]. Cur-
rently, laboratory testing of camera MTF predominantly employs the three-bar and slanted-
edge methods, as other methods face limitations due to challenges in target processing,
extended testing durations, and poor repeatability, leading to less frequent application. The
slanted-edge method, a primary technique for remote sensing camera MTF detection [9],
involves rotating a slanted-edge target at a specific angle relative to the detector’s rows or
columns. This rotation projects and rearranges the pixels of the slanted-edge image based
on a predefined rule [10], thereby enhancing the image’s sampling rate and mitigating
under-sampling issues. Recognized as an indirect approach for measuring the MTF, the
slanted-edge method has been successfully implemented in the in-orbit MTF measurement
of satellites such as IKONOS [11,12], Orbview [13], GF-4 [14], and Quickbird [15]. The
International Organization of Standards endorses this method as well (ISO12233:2023) [16],
which involves analyzing a camera-captured slanted-edge target image to determine the
edge spread function (ESF) [17], differentiating the ESF to acquire the line spread function
(LSF), and then applying Fourier transform on the LSF and taking the modes to compute
the MTF [18,19]. Offering a comprehensive evaluation at various spatial frequencies in a
single instance and characterized by rapid detection, the slanted-edge method has garnered
significant scholarly interest [20].

The accuracy of the slanted-edge method hinges on precise estimation of the image
edge angle, as this directly impacts the MTF calculation results. Masaoka et al.’s [21]
approach utilizes the Sobel operator and the Hough transform for edge angle estimation,
examining how estimation errors affect the method’s accuracy. Roland [22] focused on
the impact of inclination estimation errors on the stability and repeatability of MTFs
obtained via this method. A critical step in the slanted-edge method’s algorithm involves
differentiating the ESF to derive the LSF, a process that can amplify noise. Consequently,
noise impact analysis and suppression techniques have become a focal area of research.
To mitigate noise’s impact on accuracy, scholars have suggested fitting the ESF with a
function model. Tzannes and Mooney [23] and J. M. Mooney, for instance, identified the
midpoint of each data row as half the mean gray value between the dark and light regions
of the slanted-edge image, constructing an oversampled ESF fitted with a Fermi function
to counter noise effects. Hwang et al. [24] enhanced MTF detection accuracy by refining
the ISO 12233 slanted-edge method with a similar Fermi function fitting of the ESF, while
Masaoka [25] achieved higher accuracy through an oversampling ESF, employing image
rotation, cumulative distribution function fitting, and projection.

The analysis above reveals that the MTF testing of remote sensing cameras using
the slanted-edge method is significantly influenced by the chosen calculation method,
with varying algorithmic models leading to considerable deviations in results [26]. In
this paper, according to the working state of the space camera on orbit and the imaging
characteristics, combined with the relevant theories of optoelectronic imaging systems, the
optimal algorithm based on the slanted-edge optimal OSR adaptive model’s slanted-edge
method calculation is proposed through the study of the sub-pixel edge detection fitting
algorithm and edge diffusion function extraction. The GLCM method is used to detect
the sub-pixel edges and accurately locate the edge position, and then the edge points are
projected, and the sub-pixel arrays are sampled, fitted, and smoothed with a variable OSR
for different angles to obtain the ESF, and the differentiation of the ESF curves is used
to obtain the LSF, and the smoothing of the LSF curves is performed by using the Tukey
window function. Finally, the Fourier transform mode normalization is applied to the LSF
curve to obtain the MTF curve. In order to verify the reasonableness of the algorithm,
simulation experiments are used to verify the response of the imaging system to the spatial
frequency through the mathematical function to simulate the response of the imaging
system to the spatial frequency and obtain the slanted-edge image and the theoretical
MTF curve, respectively, using the ISO-cos, OMNI-sine, and the algorithm proposed in
this paper to calculate the MTF curve of the slanted-edge image and compare it with the
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theoretical MTF curve, which shows that the MTF curve of the proposed algorithm at each
frequency has a higher similarity to the theoretical MTF curve, verifying the reasonableness
of the algorithm in this paper. This study shows that the MTF curves at each frequency
of the proposed algorithm have high similarity with the theoretical MTF curves, which
verifies the reasonableness of the algorithm in this paper.

Subsequently, the image factors affecting the calculation of the slanted-edge method
are analyzed. It establishes the relationship between the slanted-edge angle and ROI in the
MTF calculation results through simulation. The simulation results are then compared in
terms of accuracy and stability to ascertain the optimal slanted-edge angle range and the
ideal ROI range for the slanted-edge method. Under optimal conditions for the slanted-edge
angle and image ROI, simulations are conducted to obtain images with varying contrasts
and SNRs. These simulations aim to investigate the impact of these varying contrasts and
SNRs on the calculation results. In the laboratory, the MTF test validation system was
constructed. This system utilized a customized slanted-edge target to capture test images
via the optical system imaging process. Subsequently, the MTF test was conducted to
validate the efficacy of the slanted-edge test method proposed in this paper.

The rest of this paper is structured as follows: In Section 2, the foundational concept of
the MTF and the procedural aspects of MTF calculation through the slanted-edge method
are introduced. This section also delves into the analysis of algorithmic factors affecting
the results of the slanted-edge method, presenting processing steps of the algorithm based
on a slanted-edge optimal OSR adaptive model. Section 3 scrutinizes the impact of image
factors on the results of the slanted-edge method calculation and proposes constraints for
this calculation method. Section 4 presents and analyzes the results of the experiments
conducted. Finally, Section 5 offers a comprehensive summary of the entire paper and
outlines directions for future research.

2. Measurement Principles and Methods

Per the principles of Fourier optical imaging, in a specific imaging system, when
an ideal point light source serves as the input function, the resulting output is not a
concentrated point but rather a distinct spot [27]. This phenomenon is known as the point
spread function (PSF) [28], exemplified in Figure 1.
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Figure 1. Formation of point spread function.

The PSF characterizes the response of an imaging system to an ideal point source,
illustrating the diffusion of this source on the imaging plane and thereby unveiling the
system’s spatial resolution. The optical transfer function (OTF) [29,30], as delineated in
Equation (1), emerges from the two-dimensional Fourier transform of the PSF [10]. It
embodies the imaging system’s response to various spatial frequencies and is composed of
two components: the amplitude and the phase parts.

OTF(u, v) = F{PSF(x, y)} (1)

Here, F is the Fourier transform, x, y are the spatial coordinates, and u, v are the
frequency coordinates.

The OTF provides a comprehensive description of an imaging system’s capacity to
transfer spatial details, encompassing both contrast and phase information [31]. The
MTF, constituting the magnitude component of the OTF, specifically reflects the system’s
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proficiency in transferring contrast across various spatial frequencies. Accordingly, the
MTF is formulized as shown in Equation (2):

MTF(u, v) =|OTF(u, v)| (2)

Similarly, the LSF is the light intensity distribution captured on the image plane after
imaging of a line source, either δ(x) or δ(y). The LSF is essentially the integral of the
PSF along a specified direction, and its one-dimensional Fourier transform provides the
cross-section profile of the MTF in that direction, as demonstrated in Equation (3):

LSFx(x) =
∫

PSF(x, y)dy
LSFy(y) =

∫
PSF(x, y)dx

(3)

When the input function is a step function, typically exemplified by the slanted-edge
image region of a remote sensing image, its resultant output function is the ESF. This
output represents the two-dimensional light intensity distribution post-optical system
processing. The ESF can be viewed as the integral of the LSF, establishing a relationship
between differentiation and integration, as illustrated in Equation (4). Furthermore, the
one-dimensional Fourier transform of the LSF corresponds to the MTF for that specific
direction [32], forming the theoretical foundation of the slanted-edge method used in
MTF calculation.

ESF(x) =
x∫
−∞

LSF(x′)dx′

LSF(x) = d
dx ESF(x)

(4)

As delineated by the aforementioned theory, the interrelationship among PSF, LSF,
ESF, and MTF is depicted in Figure 2. Consequently, by acquiring any one of LSF, PSF, or
ESF, the MTF can be derived based on this established relationship [33,34].
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The principal procedures for computing the MTF using the slanted-edge method [14],
as applied in remote sensing imagery, are illustrated in Figure 3:

(1) Identify and capture an image of the slanted-edge calculation region in the remote
sensing image, ensuring it conforms to specific criteria; the edge should be straight
and form a slight angle with the detector’s image element direction.

(2) Conduct image preprocessing on the slanted-edge region to minimize random noise,
followed by sub-pixel slanted-edge detection to ascertain the sub-pixel location of the
slanted edge.

(3) Gather data points adjacent to the slanted edge and perform multi-line alignment
using the precise sub-pixel slanted-edge positions from step 2, resulting in the ESF of
densely sampled points.
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(4) Compute the derivative of the ESF to generate the LSF curve.
(5) Apply the Fourier transform to the LSF, yielding the MTF curve.
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2.1. Sub-Pixel Edge Detection and Fitting

The sub-pixel edge detection step is pivotal in the slanted-edge method, as accurate
determination of the sub-pixel edge position is essential for proper alignment and fitting in
subsequent stages. Presently, sub-pixel edge detection techniques can be broadly classified
into three categories: moment-based, interpolation-based, and edge model function fitting-
based approaches. In this paper, we employ one method from each category for sub-
pixel edge detection using the slanted-edge method: gray-level co-occurrence matrix
(GLCM) [35], bilinear interpolation (BLI) [36], and hyperbolic tangent fitting (HTF) [37].
Since sub-pixel edge detection is executed for each row of data points, the methods used
are inherently one-dimensional. We simulate, compare, and analyze the accuracy and
influencing factors of these methods to identify the most effective sub-pixel edge detection
technique for the slanted-edge method.

2.1.1. Gray-Level Co-Occurrence Matrix (GLCM) Method

The GLCM sub-pixel edge detection method operates on the principle of invariant
GLCM, comparing the actual edge with an ideal edge model to accurately localize the image
edge. This method presupposes that the one-dimensional ideal edge model resembles a
step function, u(x), with gray values g1 and g2 on either side of the edge and a step height
of h. The ideal edge configuration is therefore represented as follows:

E(x) = (g1 − g2)× u(x− h) + g1 (5)

where ω1, ω2 are the proportions of pixel points with gray values g1, g2, respectively,
relative to the total number of pixel points in the entire edge region, adhering to the
equation: ω1 + ω2 = 1. Assuming xj represents the GLCM value at an edge point, we
consider the first three moments of this value.

m =
2

∑
j=1

ωjgi
j =

1
n

n

∑
j=1

xi
j (6)

Here, n is the total number of pixel points, with the actual edge density denoted as
ω = k/n. This value of ω can be deduced through calculation as follows:

ω1 = 0.5
[

1 + s
√

1/
(
4 + s2

]
g1 = m1 − σ

√
ω2
ω1

, g2 = m2 −m1

s = 1
n

n
∑

i=1

(xi−m1)
3

σ3 = m1+2m1
3−3m1m2

σ3

(7)

Consequently, the edge position in the actual image is determined as follows:

k = np1 −
1
2
=

n
2

√
s

4 + s2 + (n− 1)/2 (8)
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2.1.2. Bilinear Interpolation (BLI) Method

Bilinear interpolation, an advancement of linear interpolation in two dimensions,
facilitates the estimation of pixel values at undefined points within an image. This method
approximates the value of a new pixel point by utilizing the values of its four neighboring
pixels. It is particularly effective for tasks like image scaling, rotation, and sub-pixel
edge detection [38].

Consider a pixel point with a sub-pixel location designated as (x, y). To employ bilinear
interpolation, it is necessary to identify the four nearest integer pixel locations surrounding
this point. Typically, these locations are represented as (x1, y1), (x1, y2), (x2, y1), (x2, y2),
where x1, x2 are the nearest integers to x, obtained by rounding down and up, respectively,
and similarly for y1, y2 with respect to y.

Initially, linear interpolation is conducted in the x-direction, which entails calculating
the values at points (x, y1) and (x, y2).

f (x, y1) = f (x1, y1) + (x− x1) · ( f (x2, y1)− f (x1, y1))
f (x, y2) = f (x1, y2) + (x− x1) · ( f (x2, y2)− f (x1, y2))

(9)

A linear interpolation is then conducted in the direction where the values of (x, y1)
and (x, y2) have already been calculated.

f (x, y) = f (x, y1) + (y− y1) · ( f (x, y2)− f (x, y1)) (10)

The interpolation results from the two aforementioned directions are combined to
derive the final interpolation expression, incorporating the respective weights of these
two directions:

f (x, y) = (1− t)(1− u) f (x1, y1) + t(1− u) f (x2, y1)
+(1− t)u f (x1, y2) + tu f (x2, y2)

(11)

where t, u represent the differences in distances along the x-axis and y-axis, respectively,
defined as t = x − x1 and u = y− y1, where x1, y1 correspond to the coordinates of the
lower left pixel point.

2.1.3. Hyperbolic Tangent Fitting (HTF) Method

Angela Cantatore et al. proposed the hyperbolic tangent fitting method as an edge
model. This approach aligns the actual edge gray-level distribution with the model to
enhance sub-pixel edge detection accuracy. The hyperbolic tangent function, an S-type
function, is generally expressed as follows:

f (x) = A · tanh(B(x− C)) + D (12)

where A is the curve’s magnitude, B is the slope, C is the curve’s center position (i.e., the
edge position), and D is the offset.

In sub-pixel edge detection, a set of grayscale values I(x) from edge pixels is analyzed,
where x indicates the pixel position. The objective is to determine the optimal values of
A, B, C, and D that best fit these data. Initially, a rough edge location is identified using
initial edge detection, and the surrounding gray values are extracted. Subsequently, a
fitting window encompassing a series of pixel points near the edge is chosen in the vicinity
of this initial edge location. The method employs least squares to determine the optimal
parameters A, B, C, and D, thereby minimizing the discrepancy between the fitted function
f (x) and the actual gray value I(x). This is accomplished by addressing the following
optimization problem:

min
A,B,C,D

∑
x
[I(x)− (A · tanh(B(x− C)) + D)]2 (13)
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The optimization problem can be solved using a nonlinear least-squares algorithm,
and in this paper the Levenberg–Marquardt algorithm is used to solve it.

2.1.4. Simulation Experiment

This comparative analysis evaluates the three methods discussed above through
simulation. Firstly, a slanted-edge image, measuring 30 pixels in both length and width,
is selected. The results of applying these three sub-pixel edge detection methods are
illustrated in Figure 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 22 
 

2.1.3. Hyperbolic Tangent Fitting (HTF) Method 
Angela Cantatore et al. proposed the hyperbolic tangent fitting method as an edge 

model. This approach aligns the actual edge gray-level distribution with the model to en-
hance sub-pixel edge detection accuracy. The hyperbolic tangent function, an S-type func-
tion, is generally expressed as follows: 

= ⋅ − +( ) tanh( ( ))f x A B x C D  (12) 

where A  is the curve’s magnitude, B  is the slope, C  is the curve’s center position (i.e., 
the edge position), and D  is the offset. 

In sub-pixel edge detection, a set of grayscale values ( )I x  from edge pixels is ana-
lyzed, where x  indicates the pixel position. The objective is to determine the optimal 
values of A , B , C , and D  that best fit these data. Initially, a rough edge location is 
identified using initial edge detection, and the surrounding gray values are extracted. Sub-
sequently, a fitting window encompassing a series of pixel points near the edge is chosen 
in the vicinity of this initial edge location. The method employs least squares to determine 
the optimal parameters A , B , C , and D , thereby minimizing the discrepancy between 
the fitted function ( )f x  and the actual gray value ( )I x . This is accomplished by address-
ing the following optimization problem: 

 − ⋅ − + 2
, , ,
min [ ( ) ( tanh( ( )) )]

A B C D x
I x A B x C D  (13) 

The optimization problem can be solved using a nonlinear least-squares algorithm, 
and in this paper the Levenberg–Marquardt algorithm is used to solve it. 

2.1.4. Simulation Experiment 
This comparative analysis evaluates the three methods discussed above through sim-

ulation. Firstly, a slanted-edge image, measuring 30 pixels in both length and width, is 
selected. The results of applying these three sub-pixel edge detection methods are illus-
trated in Figure 4. 

  
(a) (b) 

Figure 4. The calculated results for three sub-pixel edge detection methods are as follows: (a) the 
slanted-edge image; (b) the deviation between the calculated and theoretical edge positions. 

Without considering random noise, Table 1 shows that all three sub-pixel edge detec-
tion accuracies are high, with the interpolation method having an error of less than 0.06 
pixels, while the GLCM and fitted methods have significantly higher accuracies than the 
interpolation method, with an error of less than 0.03 pixels. 

  

Figure 4. The calculated results for three sub-pixel edge detection methods are as follows: (a) the
slanted-edge image; (b) the deviation between the calculated and theoretical edge positions.

Without considering random noise, Table 1 shows that all three sub-pixel edge de-
tection accuracies are high, with the interpolation method having an error of less than
0.06 pixels, while the GLCM and fitted methods have significantly higher accuracies than
the interpolation method, with an error of less than 0.03 pixels.

Table 1. Mean and standard deviation of sub-pixel edge deviations calculated by the three methods.

Indicator

Method
GLCM BLI HTF

Angle deviation MEAN 0.063718 0.044824 0.038874
Angle deviation SD 0.043189 0.02798 0.028086

Gaussian noise, with a noise standard deviation ranging from 0.001 to 0.010 in incre-
ments of 0.001, was added to the simulated image for blurring purposes. Subsequently,
the root-mean-square error (RMSE) between the measured and theoretical values of the
GLCM, BLI, and HTF detection methods was calculated under varying noise conditions.
The results of these calculations are depicted in Figure 5.

The introduction of varying levels of Gaussian noise reduces the accuracy of the
three methods under consideration. Specifically, the accuracy of the BLI method is sig-
nificantly compromised by random noise, with edge detection errors escalating rapidly
from 0.06 pixels to 0.7 pixels post-noise addition. Conversely, the GLCM and HTF methods
exhibit more resilience to random noise, with errors incrementally rising to only 0.1 pixels.
Notably, the GLCM method demonstrates commendable accuracy, comparable to the fitting
method. However, its shorter processing time makes it particularly suited to real-time
detection requirements. Consequently, this paper opts for the GLCM method, balancing
accuracy with operational efficiency.
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2.2. ESF Processing Methods

Extracting the ESF curve is a crucial step in ensuring the computational accuracy of
the slanted-edge method. The optical imaging system’s conversion of optical signals into
electrical signals on the detector results in a down-sampling phenomenon [39]. This varies
based on pixel size and leads to the edge image data manifesting as a discrete sequence of
points rather than a continuous curve. Consequently, part of the ESF curve information is
missing, which directly impacts the accuracy of the MTF. To address this issue, a multi-line
edge alignment method is employed to create a more densely sampled ESF curve.

Firstly, the pixels within the edge image’s ROI are projected. This projection can be
executed in two ways: horizontally or perpendicular to the slanted edge, as illustrated in
Figure 6. While these projection methods yield similar results when the edge angle is small,
they diverge significantly as the edge angle increases.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 22 
 

Figure 6. While these projection methods yield similar results when the edge angle is 
small, they diverge significantly as the edge angle increases. 

 
(a) (b) 

Figure 6. Comparison of different projection methods: (a) horizontal direction; (b) vertical slanted-
edge direction. 

In this paper, the ROI image is projected orthogonally to its edge. The subsequent 
one-dimensional (1D) pixel array requires sub-pixel oversampling, where the bin width 
is a critical parameter. In the methods outlined in ISO 12233, ISO-cos, and OMNI, a 4x 
OSR is utilized. The primary distinction among these methods lies in the variation in bin 
width relative to the edge’s inclination angle. Specifically, ISO 12233 and OMNI employ a 
constant bin width of 1/4 pixel, independent of the angle, whereas ISO-cos adjusts the 
width based on the neighboring pixel dimensions at the projection level, resulting in a bin 
width of (cos θ)/4 pixel. At any edge angle, when tan θ = 1/4, the ISO-cos method aligns 
the edge image’s pixel projection intervals with the oversampling bin width. However, for 
angles exceeding 14.04°, where the projection interval of each pixel column fails to align 
with the bin width, resulting in a gap larger than the bin width, the assumptions about 
the random phases of the imaging system’s sampling points are violated. This misalign-
ment leads to inaccuracies in the MTF estimation. Since cos θ ≤ 1, the bin width in the 
OMNI method is always greater than or equal to that in ISO-cos at a fixed OSR. This re-
duces the likelihood of empty bins in edge image projections at larger edge angles. None-
theless, in scenarios involving smaller angles, the OMNI method’s accuracy for sub-pixel 
oversampling binning does not match that of the ISO-cos method. 

Masaoka [25] proposed the OMNI-sine method, an enhancement of the OMNI ap-
proach, which adapts the bin width in response to the edge angle. In this method, the 
sampling interval for each row of the ROI aligns with the bin width at intervals of cos θ 
pixel, and for each column, it aligns at tan θ pixel intervals. However, challenges arise 
when the slanted-edge angle θ approaches 0°, causing the bin width to diminish towards 
zero and potentially leading to an infinitely large OSR. When the angle is less than 4°, the 
OSR can exceed 14°. While, theoretically, a higher OSR correlates with greater computa-
tional accuracy, practically, an excessively high rate increases computational cost with 
marginal gains in accuracy. Conversely, a very low rate leads to data underutilization and 
compromised accuracy, particularly in accurately determining the system MTF at the 
Nyquist frequency. To mitigate these issues, the bin width is confined within 1/n bin to 
minimize the occurrence of empty bins. The OSR, denoted as ν bin , is defined in Equation 
(14) and ensures computational efficiency comparable to the ISO method across all angles. 

θθ =sym
arccos(cos 4 )

4
 (14) 
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In this paper, the ROI image is projected orthogonally to its edge. The subsequent
one-dimensional (1D) pixel array requires sub-pixel oversampling, where the bin width is
a critical parameter. In the methods outlined in ISO 12233, ISO-cos, and OMNI, a 4x OSR is
utilized. The primary distinction among these methods lies in the variation in bin width
relative to the edge’s inclination angle. Specifically, ISO 12233 and OMNI employ a constant
bin width of 1/4 pixel, independent of the angle, whereas ISO-cos adjusts the width based
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on the neighboring pixel dimensions at the projection level, resulting in a bin width of
(cos θ)/4 pixel. At any edge angle, when tan θ = 1/4, the ISO-cos method aligns the edge
image’s pixel projection intervals with the oversampling bin width. However, for angles
exceeding 14.04◦, where the projection interval of each pixel column fails to align with the
bin width, resulting in a gap larger than the bin width, the assumptions about the random
phases of the imaging system’s sampling points are violated. This misalignment leads to
inaccuracies in the MTF estimation. Since cos θ ≤ 1, the bin width in the OMNI method is
always greater than or equal to that in ISO-cos at a fixed OSR. This reduces the likelihood
of empty bins in edge image projections at larger edge angles. Nonetheless, in scenarios
involving smaller angles, the OMNI method’s accuracy for sub-pixel oversampling binning
does not match that of the ISO-cos method.

Masaoka [25] proposed the OMNI-sine method, an enhancement of the OMNI ap-
proach, which adapts the bin width in response to the edge angle. In this method, the
sampling interval for each row of the ROI aligns with the bin width at intervals of cos θ
pixel, and for each column, it aligns at tan θ pixel intervals. However, challenges arise when
the slanted-edge angle θ approaches 0◦, causing the bin width to diminish towards zero
and potentially leading to an infinitely large OSR. When the angle is less than 4◦, the OSR
can exceed 14◦. While, theoretically, a higher OSR correlates with greater computational
accuracy, practically, an excessively high rate increases computational cost with marginal
gains in accuracy. Conversely, a very low rate leads to data underutilization and compro-
mised accuracy, particularly in accurately determining the system MTF at the Nyquist
frequency. To mitigate these issues, the bin width is confined within 1/n bin to minimize
the occurrence of empty bins. The OSR, denoted as νbin, is defined in Equation (14) and
ensures computational efficiency comparable to the ISO method across all angles.

θsym = arccos(cos 4θ)
4

νbin = nbin · 2[log2(sin θsym)]−log2(sin θsym)
(14)

This paper introduces an optimal OSR adaptive model, which is developed by ana-
lyzing various ESF processing methods. The model segments the edge angle interval to
determine the optimal OSR for each specific angle. The segmentation is as follows: for an
edge angle θ in the range [0◦, 5.711◦), the optimal OSR is set to 5; for θ in [5.711◦, 18.435◦), it
is determined by the cotangent of θ; and for θ in [18.435◦, 45◦), the optimal OSR is fixed at 3.

In practical applications, optical systems often exhibit aberrations that lead to distor-
tion in edge images, thereby impeding accurate characterization of the ESF distribution
in actual images. To maximize the utility of image data while minimizing the influence of
random noise, it is essential to reprocess the ESF. This paper describes the application of a
fifth-order filter for initial fitting of the ESF, followed by the use of a Savitzky–Golay filter
for subsequent smoothing.

2.3. LSF Processing Methods

The ESF can be transformed into the LSF by differentiating it from the discrete ESF.
This process occurs post-noise reduction [40], as outlined in Equation (15), where the actual
edge distribution overlays the noise interference.

f ′ESF(x) = fESF(x) + fnoise(x)
F
{

d
dx f ′ESF(x)

}
= FLSF(j2π) + j2πFnoise(j2π)

(15)

Due to the spatial domain differentiation of the ESF, noise increasingly impacts the
MTF values of the system. The noise coefficient escalates with rising frequencies, indicating
a more pronounced noise effect. Therefore, it is necessary to smooth the LSF to mitigate
this noise impact. For smoothing, Hamming windows are typically employed. This paper
compares the efficacy of the Tukey and Hamming window functions in both time and
frequency domains, as depicted in Figure 7.
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Figure 7. Hamming window and Tukey window frequency and time−domain response curves:
(a) the time-domain response curve; (b) the frequency-domain response curve.

Figure 7 illustrates that in the time domain, the Tukey window (represented by a black
line) features smooth transitions at the window’s extremities. This characteristic diminishes
signal abruptness, thereby aiding in the reduction in spectral leakage. In contrast, the
Hamming window (represented by a red line) is generally smoother but exhibits more
pronounced jumps at the window’s onset and conclusion, potentially leading to increased
spectral leakage [41]. In the frequency domain, the Tukey window typically exhibits
lower sidelobe magnitudes (peaks outside the main peak) compared to the Hamming
window, suggesting enhanced efficacy in minimizing spectral leakage. Moreover, the main
sidelobes (central highest peaks) of the Hamming window [42] are marginally wider than
those of the Tukey window, indicating a slight inferiority in frequency resolution. These
distinctions imply that the Tukey window might be preferable for applications requiring a
balance between time–frequency characteristics, reduced spectral leakage, and controlled
sidelobe magnitude. Particularly in scenarios demanding precise frequency characteristic
measurement or analysis, the Tukey window’s attributes may offer superior performance.
Therefore, this paper employs the Tukey window for smoothing purposes.

2.4. Processing Steps of the Algorithm Based on the Slanted-Edge Optimal OSR Adaptive Model

According to the comparative analysis of each key link processing method of the
slanted-edge method above, the process of the optimal OSR adaptive model based on the
slanted edge is shown in Figure 8.
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2.5. Simulation Experiment Analysis

To precisely assess the accuracy of the algorithm, the RMSE between the test and
theoretical MTF curves across various frequencies is utilized as the evaluation metric. This
method of accuracy calculation, in contrast to the commonly employed absolute error
measurement of MTF values at the Nyquist frequency, encompasses a broader range of
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spatial frequencies. It more effectively captures the congruence between the computed and
theoretical MTF curves, thereby providing a more comprehensive representation of the
algorithm’s accuracy.

In line with imaging system theory, the response of an imaging system to spatial
frequency can be simulated using a mathematical function, provided the system’s param-
eters are known. These parameters include the aperture diameter D, focal length f , and
wavelength λ. Furthermore, Equation (16) defines the cutoff frequency fcut in the context
of the diffraction limit.

fcut =
1
λ

D
f

(16)

The OTF in the diffraction limit can be expressed in Equation (17) as:

OTFdiff( f ) =
2
π

arccos
(

f
fcut

)
− f

fcut

√
1−

(
f

fcut

)2
 (17)

The imaging system’s image sensor size is designated as 8 µm, with an aperture
diameter of 30 mm, a focal length of 25 mm, and a diffraction wavelength of 10 µm.
Utilizing these parameters, the system’s OTF is derived in accordance with Equation (17).
Subsequently, the PSF is computed through an inverse Fourier transform of the OTF,
simulating the system’s response to a point light source. The cumulative sum of these PSFs
yields the ESF, which represents the system’s response to an idealized edge. This ESF is
then projected onto a two-dimensional grid, determined by setting the edge angle and the
image dimensions (H and V). The ESF effectively models the imaging system’s response to
the slanted edge, culminating in the generation of slanted-edge images at angles of 5◦, 10◦,
14◦, and 26◦, as shown in Figure 9.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 22 
 

ESF, which represents the system’s response to an idealized edge. This ESF is then pro-
jected onto a two-dimensional grid, determined by setting the edge angle and the image 
dimensions (H and V). The ESF effectively models the imaging system’s response to the 
slanted edge, culminating in the generation of slanted-edge images at angles of 5°, 10°, 
14°, and 26°, as shown in Figure 9. 

    
(a) (b) (c) (d) 

Figure 9. Images of slanted edge with different angles: (a) slanted-edge angle of 5°; (b) slanted-edge 
angle of 10°; (c) slanted-edge angle of 14°; (d) slanted-edge angle of 26°. 

In this section, edge images are generated using software, after which Gaussian noise 
with a variance of 0.005 is introduced to the images. Subsequently, the ISO-cos, OMNI-
sine, and the adaptive OSR method proposed in this paper are employed to calculate the 
MTF of the edge images at various angles. Simulations are conducted to validate the ac-
curacy of the algorithm presented in this paper, as illustrated in Figure 10. 

 
(a) 

 

 
(b) 

 
(c) (d) 

Figure 10. MTF calculation curves at various slanted-edge angles for the three algorithms: (a) 
slanted-edge angle of 5°; (b) slanted-edge angle of 10°; (c) slanted-edge angle of 14°; (d) slanted-
edge angle of 26°. 

Figure 10 clearly demonstrates that the MTF curves calculated using the algorithm 
proposed in this paper align more closely with the theoretical values compared to the 
other two methods. Specifically, Figure 10a indicates that the OMNI-sine method is prone 
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In this section, edge images are generated using software, after which Gaussian noise
with a variance of 0.005 is introduced to the images. Subsequently, the ISO-cos, OMNI-sine,
and the adaptive OSR method proposed in this paper are employed to calculate the MTF of
the edge images at various angles. Simulations are conducted to validate the accuracy of
the algorithm presented in this paper, as illustrated in Figure 10.

Figure 10 clearly demonstrates that the MTF curves calculated using the algorithm
proposed in this paper align more closely with the theoretical values compared to the
other two methods. Specifically, Figure 10a indicates that the OMNI-sine method is prone
to MTF aliasing at high frequencies with slanted-edge angles. Similarly, the ISO-cos
method exhibits aliasing in MTF curves at high frequencies when the slanted-edge angle is
substantial. The system MTF value at the Nyquist frequency, as depicted in Figure 10d, is
0.1586. Additionally, a comparison of the RMSE between the MTFs and the system values
for each method across different frequencies is presented in Table 2.
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Table 2. RMSE of MTF calculation by different methods.

Angle

Method
ISO-cos OMNI-sine Algorithm in This Paper

5◦ 0.0495 0.0808 0.0527
10◦ 0.0301 0.0303 0.0276
14◦ 0.0337 0.0405 0.0319
26◦ 0.0905 0.0446 0.0478

It can be seen that the MTF value measured by the algorithm in this paper has the
smallest mean square error with the theoretical value, which is closer to the real result.

3. Analysis of Factors Influencing the Results

The slanted edge of the imaging system represents a continuous input signal. When
this signal is incident on the image detector element, it remains continuous. However,
the sampling process discretizes this continuous signal, transforming it into a step-like
distribution on the detector, as illustrated in Figure 11a. This distribution, highlighted by a
red circle in the figure, defines the structure known as a “sampling step”. The embodiment
of the sampling step varies with different tilt angles, requiring different numbers of image
lines, as demonstrated in Figure 11b,c.

According to the mathematical relationship, the number of image elements, denoted
as y, required to represent a slanted edge with a width of x pixels is given by Equation (18):

y ≥ x
[
cot θ

]
(18)
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Figure 12 depicts the minimum number of pixels along the height of the slanted edge
necessary to represent the slanted-edge angle, varying from 1◦ to 45◦, when the width of
the slanted edge is fixed at 1 pixel.
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3.1. Effect of Slanted-Edge Angle on Slanted-Edge Method

From Figure 11, it is evident that a smaller slanted-edge angle necessitates a greater
number of pixels to represent the angle, leading to an increase in the image size in the
height direction of the slanted edge. To explore the impact of the slanted-edge method,
particularly how the slanted-edge angle, constrained by the height of the edge, affects
the method’s results, the imaging process of the imaging system was simulated as per
Section 2.4. This simulation involved using a computer to generate 100 × 100-pixel images
of a slanted edge with angles increasing from 1◦ to 45◦. The grayscale values for the light
and dark areas were set at 255 and 0, respectively. The slanted-edge method was then
applied to calculate the MTF of the system at the Nyquist frequency. This paper’s analysis
includes comparing the results of the proposed algorithm with the theoretical values to
evaluate the effectiveness of the slanted-edge method. The comparison of the theoretical
and actual calculated values is presented in Figure 12.

Figure 13b demonstrates that the relative error escalates notably when the slanted-
edge angle is less than 6◦, suggesting that the solution results become highly volatile at
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smaller angles. This is attributed to the inadequacy of the actual image’s slanted-edge
height in fully capturing the nuances of smaller angles. Conversely, when the angle exceeds
12◦, the relative error also increases as the angle widens. This rise in error is due to the
increased width of the edge under a constant height, which introduces additional noise
into the solution results. Therefore, the optimal range for the slanted-edge angle is between
6◦ and 12◦.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 22 
 

 
(a) (b) 

Figure 13. Nyquist MTF for different angles: (a) numerical curve at Nyquist frequency; (b) relative 
error curve. 

3.2. Effect of ROI in Slanted-Edge Images on the Slanted-Edge Method 
This section analyzes the impact of slanted-edge height on the slanted-edge method 

under a specific slanted-edge angle of 7°. Examination of Figure 10 reveals that the con-
tinuous signal becomes discretized following the sampling process. Subsequently, the sig-
nal’s representation on the detector resembles a stair-step distribution. The height of the 
slanted edge, corresponding to a varying number of steps for a constant angle, introduces 
result uncertainty. With a slanted-edge angle fixed at 7°, the height fluctuates within a 9-
pixel range. Table 3 presents the varied slanted-edge heights for each step. Consequently, 
simulation experiments were conducted to assess the relationship between slanted-edge 
height and step distribution. 

Table 3. Height of slanted edge for different steps. 

Steps 1 2 3 4 5 6 7 8 
Rows 2~18 11~27 20~36 29~45 38~54 47~63 56~72 65~81 

Figure 14 vividly illustrates the convergence of data, highlighting the correlation be-
tween the number of steps in the slanted edge and the precision of experimental results. 
As the number of steps increases, there is a notable improvement in convergence, with the 
root-mean-square error remaining below 0.1 when the step count exceeds three. There-
fore, an image of the slanted edge should include a minimum of three step structures. 
Additionally, considering the relationship between the number of slanted-edge steps and 
their height, as detailed in Table 3, the slanted edge’s height within the ROI should be at 
least 30 pixels for an ideal slanted angle range of θ  ∈  °  °2,6 1 . 

Figure 13. Nyquist MTF for different angles: (a) numerical curve at Nyquist frequency; (b) relative
error curve.

When the slanted-edge angle ranges from 6◦ to 12◦, the relative error between the
calculated and theoretical values remains below 0.01. This suggests that within this angle
range, the slanted-edge method demonstrates optimal stability, making it the most ideal
range for the slanted-edge angle.

3.2. Effect of ROI in Slanted-Edge Images on the Slanted-Edge Method

This section analyzes the impact of slanted-edge height on the slanted-edge method
under a specific slanted-edge angle of 7◦. Examination of Figure 10 reveals that the
continuous signal becomes discretized following the sampling process. Subsequently, the
signal’s representation on the detector resembles a stair-step distribution. The height of the
slanted edge, corresponding to a varying number of steps for a constant angle, introduces
result uncertainty. With a slanted-edge angle fixed at 7◦, the height fluctuates within a
9-pixel range. Table 3 presents the varied slanted-edge heights for each step. Consequently,
simulation experiments were conducted to assess the relationship between slanted-edge
height and step distribution.

Table 3. Height of slanted edge for different steps.

Steps 1 2 3 4 5 6 7 8

Rows 2~18 11~27 20~36 29~45 38~54 47~63 56~72 65~81

Figure 14 vividly illustrates the convergence of data, highlighting the correlation
between the number of steps in the slanted edge and the precision of experimental results.
As the number of steps increases, there is a notable improvement in convergence, with the
root-mean-square error remaining below 0.1 when the step count exceeds three. Therefore,
an image of the slanted edge should include a minimum of three step structures. Addi-
tionally, considering the relationship between the number of slanted-edge steps and their
height, as detailed in Table 3, the slanted edge’s height within the ROI should be at least 30
pixels for an ideal slanted angle range of θ ∈ [6◦, 12◦].
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3.3. Effect of Contrast and SNR of Slanted-Edge Images on the Slanted-Edge Method

In this section, we examine the impact of image contrast and SNR on MTF measure-
ments using a slanted-edge angle of 7◦. Low edge contrast can hinder the visual distinction
of edges, thereby affecting the stability of MTF results. We analyze images with contrasts of
0.95, 0.85, 0.75, 0.66, 0.55, 0.45, 0.35, 0.25, 0.15, and 0.05. Additionally, various noise levels
are introduced to these images to achieve slanted-edge images with SNRs of 100, 90, 80,
70, 60, 50, 40, 30, 20, and 10. Using the algorithms proposed in this paper, we explore how
image contrast and SNR influence the slanted-edge method. The simulation results are
presented in Figure 15.
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The presence of noise in the edge image inevitably leads to fluctuations in the MTF
curve. As illustrated in Figure 15, random noise significantly impacts MTF calculations. A
decrease in the image’s SNR results in an increase in the RMSE, leading to a rapid decline
in calculation accuracy. Specifically, when the SNR falls below 30 dB, the calculated RMSE
of the MTF exceeds 0.2, markedly increasing the likelihood of MTF aliasing. Consequently,
the reliability of the measured MTF under these conditions is considerably diminished.
In the absence of noise interference, the contrast of the images on either side of the edge
marginally affects the accuracy of the MTF calculations. This is evident from Figure 15,
which demonstrates that even when the contrast of the gray values on both sides of the
edge is reduced to 0.3, the MTF calculation still retains high accuracy. However, as random
noise increases, images with higher contrast demonstrate a superior ability to resist noise
interference, thereby maintaining higher calculation accuracy.

Consequently, for optimal measurement results, it is essential to maintain an image
contrast of at least 0.3 and ensure that the image’s SNR exceeds 30.

4. Laboratory Test Results and Analysis

To validate the accuracy and reliability of the testing methodology proposed in this
paper, the MTF test experiment was designed for a laboratory CMOS camera, and an
experimental verification platform was constructed. This platform comprises an inte-
grating sphere light source, a slanted-edge target, an optical lens, a CMOS camera, a
three-dimensional rotary platform, and an image acquisition device. The integrating sphere
provides uniform illumination for the slanted-edge target. The light signal, after travers-
ing the optical lens, is captured by the CMOS camera and subsequently converted into
a grayscale image through signal acquisition and processing. This image represents the
target as captured by the camera’s imaging system and is depicted in Figure 16, showcasing
the test equipment. The MTF of the optical system under test is computed from the slanted-
edge target image using the proposed method. The resulting transfer function values are
then employed to evaluate the accuracy and stability of the focal plane position and the
MTF values obtained through this test method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 22 
 

The presence of noise in the edge image inevitably leads to fluctuations in the MTF 
curve. As illustrated in Figure 15, random noise significantly impacts MTF calculations. A 
decrease in the image’s SNR results in an increase in the RMSE, leading to a rapid decline 
in calculation accuracy. Specifically, when the SNR falls below 30 dB, the calculated RMSE 
of the MTF exceeds 0.2, markedly increasing the likelihood of MTF aliasing. Conse-
quently, the reliability of the measured MTF under these conditions is considerably di-
minished. In the absence of noise interference, the contrast of the images on either side of 
the edge marginally affects the accuracy of the MTF calculations. This is evident from Fig-
ure 15, which demonstrates that even when the contrast of the gray values on both sides 
of the edge is reduced to 0.3, the MTF calculation still retains high accuracy. However, as 
random noise increases, images with higher contrast demonstrate a superior ability to re-
sist noise interference, thereby maintaining higher calculation accuracy. 

Consequently, for optimal measurement results, it is essential to maintain an image 
contrast of at least 0.3 and ensure that the image’s SNR exceeds 30. 

4. Laboratory Test Results and Analysis 
To validate the accuracy and reliability of the testing methodology proposed in this 

paper, the MTF test experiment was designed for a laboratory CMOS camera, and an ex-
perimental verification platform was constructed. This platform comprises an integrating 
sphere light source, a slanted-edge target, an optical lens, a CMOS camera, a three-dimen-
sional rotary platform, and an image acquisition device. The integrating sphere provides 
uniform illumination for the slanted-edge target. The light signal, after traversing the op-
tical lens, is captured by the CMOS camera and subsequently converted into a grayscale 
image through signal acquisition and processing. This image represents the target as cap-
tured by the camera’s imaging system and is depicted in Figure 16, showcasing the test 
equipment. The MTF of the optical system under test is computed from the slanted-edge 
target image using the proposed method. The resulting transfer function values are then 
employed to evaluate the accuracy and stability of the focal plane position and the MTF 
values obtained through this test method. 

 
Figure 16. MTF laboratory test system. 

The experimental setup included an integrating sphere source, a slanted-edge target, 
an optical lens, a CMOS camera, a 3D rotation platform, and an image acquisition device, 
all mounted on an optical vibration isolation platform. The 3D rotation platform was me-
ticulously aligned to ensure the optical path was coaxial, enabling the CMOS camera to 
fully capture the slanted-edge target image. We maintained a precise 7° angle between the 
slanted-edge target and the detector. Additionally, the 3D rotation platform facilitated im-
age acquisition at 0.1 mm intervals within a 1 mm depth range beyond the camera’s focal 
length, capturing 20 frames at each position (see Figure 17a). Using the slanted-edge 
method outlined in this paper, we calculated the MTF values at various positions. These 
values were then used to construct through-focus MTF curves, as depicted in Figure 17b. 
The accuracy of our proposed algorithms was validated against reference MTFs derived 
from three-bar target images in a controlled laboratory environment. 
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The experimental setup included an integrating sphere source, a slanted-edge target,
an optical lens, a CMOS camera, a 3D rotation platform, and an image acquisition device,
all mounted on an optical vibration isolation platform. The 3D rotation platform was
meticulously aligned to ensure the optical path was coaxial, enabling the CMOS camera
to fully capture the slanted-edge target image. We maintained a precise 7◦ angle between
the slanted-edge target and the detector. Additionally, the 3D rotation platform facilitated
image acquisition at 0.1 mm intervals within a 1 mm depth range beyond the camera’s
focal length, capturing 20 frames at each position (see Figure 17a). Using the slanted-edge
method outlined in this paper, we calculated the MTF values at various positions. These
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values were then used to construct through-focus MTF curves, as depicted in Figure 17b.
The accuracy of our proposed algorithms was validated against reference MTFs derived
from three-bar target images in a controlled laboratory environment.
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Figure 17. Target image and test results: (a) target, red rectangular areas are the ROI; (b) MTF
through−focus curve.

The curve displayed in the figure closely aligns with the through-focus curve derived
using the three-bar method. This congruence provides experimental evidence that the
slanted-edge method introduced in this paper is a viable approach for calculating the MTF.

Subsequently, we altered the angle between the CMOS camera and the slanted-edge
target. The 3D rotary stage was adjusted incrementally, starting from 1◦. Slanted-edge
target images were captured at every 0.5◦ increment, collecting 20 frames at each angle, up
to a maximum of 45◦, as illustrated in Figure 18. This procedure resulted in the acquisition
of a total of 1760 slanted-edge target images. To mitigate the effects of air disturbance, the
20 frames obtained at each angle were aggregated and averaged, producing a representative
slanted-edge image for each angle. We then computed the MTF values at the Nyquist
frequency for the 88 distinct sets of slanted-edge images, facilitating the assessment and
analysis of the impact of the slanted-edge angle on the accuracy of the slanted-edge method.

Figure 19 presents the results, illustrating that the trend of MTF values at the Nyquist
frequency for various slanted-edge images, as measured in the laboratory, aligns with
the simulated results. This alignment corroborates the efficacy of the optimal OSR-based
adaptive modeling algorithm introduced in our study. Notably, the MTF relative error
remains within 1.5% for slanted-edge angles ranging from 6◦ to 12◦. The stability is
particularly pronounced at a 7◦ slanted-edge angle, suggesting that the slanted-edge
algorithm demonstrates optimal stability within this angle range. Additionally, this finding
affirms the reliability and precision of the constraints specified in the slanted-edge method
proposed in this paper.
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Figure 18. Images of slanted-edge targets at different angles: (a) slanted-edge angle of 3◦; (b) slanted-
edge angle of 7◦; (c) slanted-edge angle of 8◦; (d) slanted-edge angle of 10◦; (e) slanted-edge angle of
14◦; (f) slanted-edge angle of 20◦.
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5. Conclusions

In this paper, we address the limitations of existing sub-pixel edge detection and ESF
curve extraction algorithms, specifically their low accuracy and high error rates. Through
simulation experiments, we generate ideal computer-generated slanted-edge images and
introduce varying levels of noise to assess the algorithms’ performance. We focus on
comparing the accuracy and stability of different methods for calculating the angle in the
slanted-edge technique. Furthermore, we examine the impact of the OSR on the method’s
measurement accuracy and propose an adaptive model based on the optimal OSR. This
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model adjusts the sampling rate according to the edge angle, enhancing its applicability
across a broader range of angles. Additionally, we employ higher-order polynomial edge
fitting to mitigate the effects of spatial aberrations and image noise more effectively.

This paper subsequently analyzes the image factors influencing the slanted-edge
method’s calculations. Specifically, it analyzes how the slanted-edge angle, ROI, contrast,
and SNR impact the method’s accuracy. These factors are quantitatively assessed as
constraints of the slanted-edge method through simulation experiments. The simulation
results show that when the slanted-edge angle is between 6◦ and 12◦, the relative error
between the calculated value and the theoretical value is within 0.01, which indicates that
when the slanted-edge angle is between 6◦ and 12◦, the slanted-edge method has the best
stability in the solving results, and it is a more ideal range of the slanted-edge angle. The
ROI of slanted-edge height is at least 30 pixels, and the slanted-edge width is selected
based on the principle of including as large a bright and dark area as possible. The SNR
of the slanted-edge image significantly influences the results of MTF calculations. As the
SNR decreases, there is a rapid decline in calculation accuracy. Conversely, contrast has
a minimal impact on MTF calculation accuracy, with results maintaining a high level of
precision even when the contrast ratio decreases to 0.3. To ensure optimal calculation
results, it is imperative to maintain an SNR greater than 30dB for the slanted-edge image,
along with a contrast ratio exceeding 0.3.

At present, the selection of the ROI for slanted-edge images remains a manual process
in this paper. Future advancements may involve the integration of neural networks or
feature recognition techniques to intelligently automate the selection of the effective ROI.
Factors such as atmosphere and motion blur that cause MTF attenuation in photoelectric
imaging systems can be added to the subsequent analysis to make it more universally
applicable, further improve the algorithm, and increase the computational accuracy. In
this paper, we use both simulation and laboratory experiments for algorithm validation
and accuracy analysis, which can be followed by on-orbit experiments using real on-orbit
image data for further evaluation.
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