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Abstract: Currently, damage in aging bridges is assessed visually, leading to significant personnel,
time, and cost expenditures. Moreover, the results depend on the subjective judgment of the inspector.
Machine-learning-based approaches, such as deep learning, can solve these problems. In particular,
instance-segmentation models have been used to identify different types of bridge damage. However,
the value of deep-learning-based damage identification may be reduced by insufficient training
data, class imbalance, and model-reliability issues. To overcome these limitations, this study utilized
photographic data from real bridge-management systems for the inspection and assessment of bridges
as the training dataset. Six types of damage were considered. Moreover, the performances of three
representative deep learning models—Mask R-CNN, BlendMask, and SWIN—were compared in
terms of loss–function values. SWIN showed the best performance, achieving a loss value of 0.000005
after 269,939 training iterations. This shows that bridge-damage-identification performance can be
maximized by setting an appropriate learning rate and using a deep learning model with a minimal
loss value.

Keywords: deep learning; aging-bridge management; instance segmentation; damage identification;
loss–functions

1. Introduction
1.1. Research Background

Bridges sustain structural damage and undergo wear and tear over time. Consequently,
their strength and stability deteriorate, increasing the risk of accidents. As bridges are
major road facilities used over a long period, extending their service life through proper
management and maintenance is essential. Restricting traffic on an aging bridge (or
closing the bridge entirely) because of safety concerns may have a significant and adverse
societal and economic impact. Hence, mandatory periodic inspections and maintenance
activities are conducted consistently. However, the current method of doing this, which
relies on on-site inspection by human workers, has several drawbacks. First, there is a
shortage of inspectors. Most bridges are large and complex; hence, field inspection and
diagnosis require significant investments of personnel and time. If the number of qualified
professionals available is limited or insufficient, it can be difficult to inspect all bridges
accurately. Second, the method is fundamentally subjective. Because different inspectors
may assess the condition of a given bridge differently, based on their experience and
knowledge, the results may be inconsistent. Third, as bridges are frequently located in
remote places, conducting personnel-based on-site inspections is time-consuming and
expensive. Lastly, structural defects in aging bridges often occur in very hard-to-access
areas of the bridge. The risky work environment during on-site inspections means that the
safety of the inspectors is a major issue. For all these reasons, there is a growing demand
for methods that utilize new technologies to inspect aging bridges.
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For example, a system that can remotely monitor the condition of bridges using
sensors and Internet-of-Things (IoT) technologies for the analysis of data and the detection
of anomalies in real time can assist in providing accurate information and building early
warning systems [1]. IoT refers to the technology and concept where everyday objects
around us are connected to each other through the Internet and exchange information. Non-
destructive examination technologies, such as ultrasound and X-rays, can quickly check for
internal defects and damage within structures without causing further damage themselves;
moreover, they enable precise analysis of data and prediction of defects [2]. Research is
also underway that proposes a defect recognition model to recognize four typical defects
of phased-array ultrasonic testing (PA-UT) images for electrofusion (EF) joints [3]. If big
data and artificial intelligence (AI) technologies are used, it is possible to identify patterns
and trends from large datasets and establish preventive maintenance plans [4–6]. In a
study that analyzed and verified images acquired with ground-penetrating radar (GPR)
to determine the location of underground utilities (UU) with an end-to-end deep learning
model based on a core-regression model, it was possible to optimize parameters [7]. Drones
and robot-based systems can inspect and evaluate the condition of structures, even in low
or hard-to-access areas. Drones capture photos and image data from the air, which are then
used to assess the overall condition of structures; robots can enter narrow or hazardous
areas to perform detailed defect detection and take appropriate corrective measures [8].

Studies are presently underway to identify and quantify bridge damage by analyzing
image data captured by drones or by on-site inspectors [9]. Similar studies are being
conducted in various fields; the goal is to identify the damage automatically and calculate
its extent through the analysis of inspection images. Image-based crack detection and
classification is an especially important research topic. Many studies have focused on
methods to learn and detect crack patterns using convolutional neural networks (CNNs),
which are a type of deep learning algorithm [10,11]. Research is also being conducted
to quantify the size and area of defects using image processing and computer vision
technology; this can not only enable accurate calculation of the extent of damage but also
analyze trends. Further, efforts are being made to utilize images for three-dimensional
modeling of facilities and the detection of deformations in them; changes in the shape
of structures and the extent of deformations can be tracked and assessed in this way.
Comprehensive assessments of damage by combining visible-wavelength image data with
sensor data for other wavelengths (e.g., radar and infrared) can yield more accurate and
comprehensive results. In recent years, identifying and predicting facility damage using AI
technologies, especially algorithms such as deep learning and reinforcement learning, has
become a highly active field of research.

However, the use of deep learning technology is not without problems. Performance
varies depending on the training images, and classification can be challenging when the
features of the target classes are limited or indistinct. For example, when classifying types
of bridge damage such as efflorescence, corrosion, cracks, concrete scaling, and concrete
spalling, deep learning may exhibit good performance in distinguishing efflorescence,
which appears as a white powdery residue on bridges, from other damage types. However,
it may have more difficulty differentiating among cracks, concrete scaling, and spalling,
which are all similar in appearance.

Another problem is that previous studies have predominantly focused on cracks, the
most common type of damage in concrete structures. This has resulted in a scarcity of
training data for other types of bridge damage, such as water leaks, efflorescence, concrete
scaling, concrete spalling, and corrosion of reinforcing steel. The nature of deep learning
technology dictates that classification accuracy improves with an increase in training
data [12].

1.2. Scope and Methods of Research

In this study, we apply three representative deep learning models—Mask R-CNN,
BlendMask, and SWIN—that can automatically identify six typical types of damage found
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in aging bridges: cracks, water leaks, efflorescence, concrete scaling, concrete spalling, and
corrosion of reinforcing steel. We analyze the performance of these models by compar-
ing the loss values when training each model individually. The loss value measures the
difference between the predicted results and the actual ground truth during the training
process. It evaluates how accurately the model segments objects and identifies instances.
Commonly used loss–functions include pixel-wise cross-entropy loss and dice loss, which
are determined by calculating the pixel-level agreement between the predicted and actual
masks. This value typically ranges between 0 and 1, with a lower value indicating better
performance. To minimize the loss value, the model is updated to decrease the difference
between the predicted mask based on the training data and the actual mask. Through this
process, the model learns to accurately segment object boundaries and internal regions,
training on features that allow the distinction of individual object instances. The loss value
mainly distinguishes between the background and foreground (objects), taking into account
classification accuracy and pixel-level agreement for both regions. Moreover, weight ad-
justments for overlapping areas can be incorporated to address overlaps between adjacent
objects. In conclusion, the loss value in an instance-segmentation model is important for
evaluating and optimizing the model’s performance. By minimizing this value, we can
increase the model’s ability to segment and recognize objects with high accuracy and detail.

The paper is organized as follows: Section 2 introduces studies relevant to this pa-
per; Section 3 describes the proposed technology; Section 4 explains the experimental
results and evaluates the performance of the proposed technology; and Section 5 presents
the conclusions.

2. Related Works
2.1. Bridge-Damage Identification Using Deep Learning

One previous study that attempted to develop an automated bridge-inspection system
proposed using an unmanned aerial vehicle for bridge inspections and applying deep
learning algorithms to the results [13]. Another study used deep learning to detect cracks
in concrete structures used CNNs to develop a model for detecting damage in bridge
structures, achieving high performance in identifying damaged areas from images of
entire bridges [14,15]. Bukhsh et al. demonstrated that transfer learning could improve
bridge-damage-detection models, even with a limited dataset [16]. They proposed a real-
time bridge-damage-detection system using deep learning, employing Faster R-CNN to
detect damage in bridge images and evaluate structural integrity instantly. Recent studies
have also explored using generative adversarial networks for image generation and data
augmentation to detect the extent of actual structural damage more accurately [17].

In addition, research focused on automatic crack detection in concrete using CNNs
has led to the development of a deep learning-based method for detecting road defects
from ground-penetrating radar images [18]. Avci et al. have discussed a method for
identifying structural bridge damage utilizing deep learning with frequency-response-
function data [19]. Another proposed model, CrackNet, is a deep learning-based approach
for crack detection in structural materials that has produced high-accuracy results for
various crack types and defects [20].

2.2. Loss Values of Deep Learning Models

Attempts to reduce the loss values of deep learning models have been conducted in var-
ious fields. First, one study has been conducted on normalization techniques, which control
the complexity of the model and enhance its generalization performance [21]. Both batch
normalization and layer normalization can improve the stability and learning speed of neu-
ral networks, contributing to a reduction in loss values. In addition, data augmentation—a
technique that artificially transforms training data to increase diversity—is used. By ap-
plying transformations such as rotation, translation, and scaling, the training dataset is
expanded to improve the model’s generalization performance. Regularization alleviates
overfitting by imposing penalties on model complexity [22]. Methods such as L1 and L2
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regularization and dropout are used to constrain the network’s weights or reduce over-
fitting by randomly deactivating some units. It is also crucial to set the initial weights
to facilitate efficient learning and exploration of optimal solutions, aiding in loss value
reduction. Optimizer algorithms, used when updating the model’s parameters, leverage
gradient–descent methods to minimize loss values. Adam and RMSprop are widely used
optimizers because of their efficiency in updating parameters. The architecture of the neural
network itself also affects the reduction of loss values. Innovative designs, such as CNNs,
residual connections, and attention mechanisms, have generated considerable attention.
In the present study, we aim to compare the performance of three models with different
neural network architectures by comparing their loss values.

3. Proposed Framework

This paper proposes a deep learning framework for detecting damaged objects in
bridges [12]. Initially, object-detection performance for each damage type is enhanced
by using super-resolution (SR) techniques to improve and normalize resolution, thereby
augmenting the dataset’s diversity and consistency. By using the SR technique, it is possible
to build a better learning set because it maintains the quality of the images used for learning.
Thereafter, we construct an optimized detection model tailored for each damage type using
the bridge-damage-identification deep learning combination–module, which is based on
separate training for each type. These models are then integrated into a single model
and presented as an optimized solution for detecting damaged objects in bridges. The
framework is specifically designed for six types of bridge damage: efflorescence, concrete
scaling, concrete spalling, cracks, corrosion, and water leaks. The architecture of this
framework is shown in Figure 1. The deep learning models used in combination are Mask
R-CNN, BlendMask, and SWIN.
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Figure 1. Object-detection framework for identifying bridge damage by integrating deep learning
combination–modules [12].

3.1. Mask R-CNN

Mask R-CNN, akin in architecture to Faster R-CNN, can perform object detection and
semantic segmentation simultaneously. It utilizes RoIAlign for more accurate segmentation
of object boundaries within the region of interest (RoI), enhancing accuracy. However,
enhanced accuracy in pixel-level segmentation requires substantial GPU memory and
computational capability [23]. Mask R-CNN consists of three main components:

1. Region Proposal Network (RPN): Like Faster R-CNN, Mask R-CNN begins with an
RPN to suggest object regions in the image, predicting locations where objects are
likely to be present.
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2. RoIAlign: This accurately maps the RoI. It replaces RoIPool to improve pixel alignment
accuracy, enabling accurate mask prediction during instance segmentation.

3. Mask Head: This component predicts the segmentation mask at the pixel level for
the object within each RoI, along with the object’s bounding box. It consists of a
CNN-based fully convolutional network that generates the mask using the feature
map within the given RoI.

The architecture of Mask R-CNN is shown in Figure 2. Mask R-CNN’s capacity to
detect objects and predict accurate segmentation masks for each instance makes it useful
for various computer vision tasks, ranging from pedestrian detection and segmentation
by autonomous vehicles to tumor analysis in medical imaging. Models pre-trained on
large datasets such as Common Objects in COntext (COCO) are provided for Mask R-CNN,
along with code in deep learning frameworks such as TensorFlow and PyTorch.
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3.2. BlendMask

BlendMask is a model capable of performing semantic-segmentation and instance-
segmentation tasks simultaneously. It features two branches: an instance-mask branch
(IMB) and a semantic branch (SMB) [24]. It delivers high accuracy and speed, owing
particularly to the IMB’s use of a RoI transformer and soft proposal generator to extract
precise object boundaries. It achieves state-of-the-art performance on the COCO dataset,
outperforming other models in terms of accuracy and speed. BlendMask’s pipeline is
shown in Figure 3.
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Although Mask R-CNN demonstrates high performance, its high computational
demands and GPU memory requirements pose challenges for real-time tasks. YOLO
offers fast processing but is inferior in segmentation accuracy to BlendMask or Mask R-



Appl. Sci. 2023, 13, 13204 6 of 13

CNN. BlendMask is utilized in various fields because it ensures high accuracy and speed.
Compared to other instance-segmentation models, BlendMask has several advantages:

• High Accuracy: BlendMask’s superior performance on the COCO dataset is be-
cause of its two-branch structure (IMB and SMB) and the integration of a RoI trans-
former and soft proposal generator, which together enhance the accuracy of segment-
ation boundaries.

• High Speed: The use of a RoI transformer, instead of traditional RoI pooling, con-
tributes to BlendMask’s fast processing capabilities. Additionally, its ability to main-
tain accuracy with fewer parameters enables high performance in memory-constra-
ined environments.

• Scale Invariance: BlendMask’s scale invariance ensures consistent performance across
multiple image sizes, a feature influenced by the pre-trained models; this allows
BlendMask to maintain high accuracy at various image sizes.

• Multi-Object Segmentation: BlendMask’s capability to segment multiple objects within
a single image is a huge advantage in both commercial processes and computer vision.

• Small Training-Data Requirement: Typically, instance-segmentation models necessitate
extensive labeling of training data, particularly in specific domains. BlendMask can
achieve high performance with a limited dataset by using techniques that reduce the
demand for a large amount of labeled data.

For these reasons, BlendMask is an outstanding instance-segmentation model.

3.3. SWIN

Swin Transformer (SWIN) is a model introduced in the paper “Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows”, developed by researchers at
Microsoft Research Asia [25]. As shown in Figure 4, SWIN extends the existing vision
transducer architecture to effectively capture the spatial structure of the image, resulting in
excellent performance in tasks such as object detection and instance segmentation. The key
elements of the SWIN include:

• Window-Based Self-Attention: SWIN segments the input image into grids and per-
forms self-attention within each, facilitating the integration of local context and global
image structure.

• Shifted Window: It employs a hierarchical strategy to enlarge each window incre-
mentally through shifting operations, capturing a variety of resolutions and contex-
tual information.

• Tokenization and Patch Embedding: The model converts the image into a series of
patches, which undergo tokenization and embedding processes.

• Hierarchical Feature Fusion: SWIN utilizes a technique for merging features across
different scales hierarchically, attaining various resolutions and spatial diversities.

Experimental results reveal that SWIN markedly outperforms Faster R-CNN and
Mask R-CNN in instance-segmentation tasks on the COCO dataset. For example, SWIN
has achieved a mean average precision (mAP) ~4% higher than the ResNet-50-based Faster
R-CNN while maintaining a relatively lightweight model size. By segmenting images into
grid-shaped windows, performing hierarchical self-attention, and combining features at
multiple scales, SWIN delivers good performance with a streamlined architecture. SWIN
and the two preceding models may be compared as follows:

• Mask R-CNN focuses on object detection and pixel-level segmentation for accurate
and reliable results.

• BlendMask builds on Cascade Mask R-CNN, utilizing an ensemble technique to
combine multi-stage network outputs and mask predictions.

• SWIN leverages a vision transformer architecture, combining window-based self-
attention with hierarchical feature mapping.
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Each model has its unique concepts and architecture; selection among them should
be based on specific experimental results and use requirements. In this study, these
three models were applied to bridge-damage identification. To compare their perfor-
mances, the same parameter values were set, and the resulting loss values were compara-
tively analyzed.

4. Experiment and Results
4.1. Experimental Environment

To test the performance of the detection model, experiments were conducted using a
system equipped with a GPU. For fast learning speed and detection performance analysis,
the CPU and GPU were selected to have the highest specifications at the time of the
experiment. The programming language employed was Python. The equipment used in
the experimental evaluations was as follows:

• CPU: Intel(R) Core(TM) i7-10900k CPU 2.90 GHz
• RAM: 96 GB
• GPU: NVIDIA GeForce RTX3090

4.2. Hyperparameters

Table 1 shows the parameters adopted for all of the models. Fundamentally, the
experiments were based on a ResNet model with a backbone depth of 50 layers.

4.3. Measurement Method

Loss values in deep learning models are primarily determined through a loss–function,
an indicator that evaluates model performance by calculating the difference between the
model’s predicted outputs and the actual values. Commonly used loss–functions include:

• Mean Squared Error: Employed in regression problems, it is calculated by squaring
the differences between predicted and actual values; these squares are then averaged.

• Cross-Entropy Loss: This function is mainly used in classification problems to measure
the differences between the predicted-probability distribution and the actual class
labels. Binary cross-entropy is typically used for binary classification, while categorical
cross-entropy is suited for multi-class scenarios.

• Log-Likelihood Loss: Often used in generative models, this function seeks to maximize
the logarithm of the likelihood of the predicted probabilities matching the actual data.

• Custom loss–function for specific tasks: Such functions are tailored to specific prob-
lems. The composite loss–function in Mask R-CNN is an example; it is designed for
concurrent object classification, bounding box regression, and mask segmentation.
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To calculate the loss value, both the input data and the model’s output for that data are
required. Optimization algorithms, such as gradient–descent, are used to minimize the loss
value during the training process. Deep learning frameworks and libraries are equipped
with a range of loss–functions and internally calculate and track loss values. In this paper,
we compared the loss values generated across six types of bridge damage detection, over
the course of 300,000 learning iterations.

Table 1. Main parameters of Mask R-CNN, BlendMask, and SWIN.

Common Parameters

MODEL:
BACKBONE:
NAME: “build_resnet_fpn_backbone”
RESNETS:
DEPTH: 50
OUT_FEATURES: [“res2”, “res3”, “res4”, “res5”]
FPN:
IN_FEATURES: [“res2”, “res3”, “res4”, “res5”]
ANCHOR_GENERATOR:
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
ROI_HEADS:
NAME: “StandardROIHeads”
IN_FEATURES: [“p2”, “p3”, “p4”, “p5”]
SOLVER:
IMS_PER_BATCH: 2
STEPS: (210000, 250000)
MAX_ITER: 270000
WEIGHT_DECAY: 0.05
BASE_LR: 0.001
INPUT:
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)

4.4. Comparison of Mask R-CNN and BlendMask

For a learning rate (LR) of 0.01, the distribution of loss values for Mask R-CNN is
shown in Figure 5.
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The experimental results show that the loss values are highly unstable, ranging from
0 to 0.0002. In the context of deep learning models, training processes utilize loss values



Appl. Sci. 2023, 13, 13204 9 of 13

as an indicator of performance, with lower values being better. High loss values could
indicate inaccurate model predictions or discordance between the input data and the
neural network’s architecture. Conversely, low loss values correspond to good predictive
performance, indicating a model that performs with greater accuracy on given tasks.

For LR: 0.01, Figure 6 presents the loss value distribution for BlendMask.
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These experimental results show that after 350,000 iterations, the loss values gradually
converged to 0.0001 or lower. Moreover, these results not only exhibit more consistency but
are also generally smaller than the prior findings from Mask R-CNN. The rapid change in
loss value depending on the number of repetitions in the graph occurs due to the learning
rate. The learning rate determines how much the model adjusts the weights at each iteration.
If the learning rate is too large, the model may miss the optimal point, and if the learning
rate is too small, it may take a long time to reach the optimal point. In these cases, the
learning rate can be adjusted to stabilize the change in loss values.

4.5. Comparison of Mask R-CNN and SWIN

For LR: 0.005, the distribution of loss values for Mask R-CNN is shown in Figure 7.
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While the loss values were under 0.0001—lower than those at an LR of 0.01—they
exhibited sharp fluctuations.
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For LR: 0.005, the distribution of loss values for the SWIN is shown in Figure 8. They
gradually converged to a point at or below 0.0001, requiring considerably fewer iterations
than Mask R-CNN. This indicates that SWIN is capable of identifying objects more rapidly
and with greater precision than Mask R-CNN.
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4.6. Comparison of Mask R-CNN, BlendMask, and SWIN

For LR: 0.0001, the distribution of loss values for Mask R-CNN is shown in Figure 9.
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For Mask R-CNN, the results show that loss values started at 0.00002 or lower, even
at early iteration stages. With additional iterations, the loss values continued with little
variation, indicating only marginal improvement.

Figure 10 presents the loss value results for BlendMask. While high loss values were
occasionally observed until about 200,000 iterations, generally the loss values followed
a descending curve. This indicates that with continued training, loss values decrease,
enhancing the model’s accuracy. However, with extremely small weight-update values,
a vibration effect in model parameters was observed. This vibration phenomenon can
undermine training stability and consistency, making it difficult to enhance performance.
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Upon reviewing the loss value graph for the SWIN across training iterations (Figure 11),
a consistently descending curve is apparent, distinguishing it from other models. The loss
values for SWIN approached 0.00001 after 200,000 iterations; BlendMask attained similar
values but only after exceeding 350,000 iterations. This result indicates that SWIN can
produce accurate results faster. However, this observation applies when the learning rate is
set to a very low level, specifically at 0.0001. In deep learning models, an excessively low
LR can slow down the overall learning speed, with model-parameter updates becoming
very small; this increases the likelihood of getting stuck in the local minimum, complicating
convergence to the global minimum and degrading the model’s performance. Further-
more, it may lead to issues such as overfitting and parameter vibrations. Therefore, it is
necessary to determine the optimal learning rate by experiment and verification within an
appropriate range.
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5. Conclusions

To enhance the predictive performance of a deep learning model, it is essential to
reduce the loss value. Besides ensuring a highly accurate model with good generalization
capabilities, achieving low loss values can also reduce the number of iterations needed,
enhance stability, and prevent overfitting. In this study, we compared and analyzed the
loss values of three deep learning models for identifying damage in aging bridges. The
experimental results showed that BlendMask outperformed Mask R-CNN at a learning
rate of 0.01. For the SWIN, learning occurred so quickly at this rate that the loss value trend
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was not clearly observed. At a learning rate of 0.005, the SWIN exhibited both lower loss
values and a faster learning speed. When the learning rate was set to 0.0001, it was possible
to compare all three models, with both BlendMask and SWIN demonstrating decent loss
values; however, SWIN excelled in learning speed. Overall, the SWIN demonstrated the
best performance; its performance can be maximized by adjusting the learning rate. Using
these experimental results, it is possible to find out which instance-segmentation model is
optimal for identifying damage to old bridges and how parameter values such as learning
rate affect the use of various models. Using these results, it is possible to apply the most
optimal deep learning model for each type of bridge damage.

However, in this study, it was impossible to compare loss values for various parameter
values, and the amount of learning data was very small (about 4000), making a more
objective comparative analysis difficult. Also, the number of images used for experiment
and verification was about 200, so the results were slightly different for each experiment.
Lastly, there are many more deep learning models besides the three representative ones
studied here, and these should also be considered.

In future research, we plan to investigate hyperparameter tuning to reduce loss val-
ues more effectively and to conduct rigorous experiments and verification of the results.
Model combination algorithms should be investigated to further improve the accuracy
of the proposed automated bridge-damage-identification model. Finally, we plan to de-
velop an optimized mobile application capable of obtaining real-time images from bridges
and identifying damage, thereby advancing the automation of bridge inspection and
assessment tasks.
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