Temporal Convolutional Network-Based Axle Load Estimation from Pavement Vibration Data
Abstract
:1. Introduction
- A pavement vibration acquisition method based on distributed optical vibration sensors (DOVS) is developed;
- A deep learning-based load reconstruction method tailored for pavement vibration data collected by DOVS is proposed.
2. Methods
2.1. Data Acquisition
2.2. Data Preprocessing
2.3. Axle Load–Time-History Reconstruction
2.4. Training Strategies
2.5. Performance Metrics
3. Field Testing
3.1. Test Set-Up
3.1.1. Construction on Site
3.1.2. Excitation
3.2. Data Collection
4. Results and Discussion
4.1. Reconstruction Results for the Load–Time History
4.2. Network Architectures
4.3. Sensitivity Analysis of Speed
4.4. Comparison with the Different Axle Load Estimation Methods
5. Conclusions and Future Work
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASTM E1318-09; Standard Specification for Highway Weigh-in-Motion (WIM) Systems with User Requirements and Test Methods. ASTM International: West Conshohocken, PA, USA, 2009.
- Meyer, G.; Beiker, S. (Eds.) Road Vehicle Automation; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Stokes, R.W. Weighing road vehicles in motion. Meas. Control 2006, 39, 244–247. [Google Scholar] [CrossRef]
- Al-Qadi, I.; Wang, H.; Ouyang, Y.; Grimmelsman, K.; Purdy, J.E. LTBP Program’s Literature Review on Weigh-in-Motion Systems. 2016. Available online: https://rosap.ntl.bts.gov/view/dot/35735 (accessed on 8 September 2023).
- Tawfek, A.M.; Ge, Z.; Yuan, H.; Zhang, N.; Zhang, H.; Ling, Y.; Guan, Y.; Šavija, B. Influence of fiber orientation on the mechanical responses of engineering cementitious composite (ECC) under various loading conditions. J. Build. Eng. 2023, 63, 105518. [Google Scholar] [CrossRef]
- Alavi, S.H.; Mactutis, J.A.; Gibson, S.D.; Papagiannakis, A.T.; Reynaud, D. Performance evaluation of piezoelectric weigh-in-motion sensors under controlled field-loading conditions. Transp. Res. Rec. 2001, 1769, 95–102. [Google Scholar] [CrossRef]
- Jiang, X.; Vaziri, S.H.; Haas, C.; Rothenburg, L.; Kennepohl, G.; Haas, R. Improvements in piezoelectric sensors and WIM data collection technology. In Proceedings of the 2009 Annual Conference of the Transportation Association of Canada, Vancouver, BC, Canada, 18–21 October 2009. [Google Scholar]
- Prozzi, J.A.; Hong, F. Effect of weigh-in-motion system measurement errors on load-pavement impact estimation. J. Transp. Eng. 2007, 133, 1–10. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, S.; Huang, H.; Wang, L. Estimation of the vehicle speed using cross-correlation algorithms and mems wireless sensors. Sensors 2021, 21, 1721. [Google Scholar] [CrossRef]
- Stocker, M.; Silvonen, P.; Rönkkö, M.; Kolehmainen, M. Detection and classification of vehicles by measurement of road-pavement vibration and by means of supervised machine learning. J. Intell. Transp. Syst. 2016, 20, 125–137. [Google Scholar] [CrossRef]
- Lajnef, N.; Rhimi, M.; Chatti, K.; Mhamdi, L.; Faridazar, F. Toward an integrated smart sensing system and data interpretation techniques for pavement fatigue monitoring. Comput.-Aided Civ. Infrastruct. Eng. 2011, 26, 513–523. [Google Scholar] [CrossRef]
- Fan, W.; Qiao, P. Vibration-based damage identification methods: A review and comparative study. Struct. Health Monit. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- Ye, Z.; Xiong, H.; Wang, L. Collecting comprehensive traffic information using pavement vibration monitoring data. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 134–149. [Google Scholar] [CrossRef]
- Bajwa, R.; Coleri, E.; Rajagopal, R.; Varaiya, P.; Flores, C. Development of a cost-effective wireless vibration weigh-in-motion system to estimate axle weights of trucks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 443–457. [Google Scholar] [CrossRef]
- Liu, P.; Xing, Q.; Wang, D.; Oeser, M. Application of dynamic analysis in semi-analytical finite element method. Materials 2017, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zeng, M.; Zhao, H.; Wang, Y.; Du, Y. Detection and localization of debonding beneath concrete pavement using transmissibility function analysis. Mech. Syst. Signal Process. 2021, 159, 107802. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Q.; Zhang, C.; Lu, G.; Ye, Z.; Chen, Y.; Wang, L.; Cao, D. The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering 2021, 7, 845–856. [Google Scholar] [CrossRef]
- Abedi, M.; Shayanfar, J.; Al-Jabri, K. Damage assessment via machine learning approaches: A systematic review. Asian J. Civ. Eng. 2023, 24, 3823–3852. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Han, X.; Jiang, C.; Yu, D. Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method. Mech. Syst. Signal Process. 2015, 56, 35–54. [Google Scholar] [CrossRef]
- Huang, C.; Ji, H.; Qiu, J.; Wang, L.; Wang, X. TwIST sparse regularization method using cubic B-spline dual scaling functions for impact force identification. Mech. Syst. Signal Process. 2022, 167, 108451. [Google Scholar] [CrossRef]
- Tang, H.; Jiang, J.; Mohamed, M.S.; Zhang, F.; Wang, X. Dynamic Load Identification for Structures with Unknown Parameters. Symmetry 2022, 14, 2449. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Huang, J.; Chen, J. Force reconstruction for uncertain structure based on interval model and second-order perturbation theory. Int. J. Comput. Methods 2021, 18, 1950040. [Google Scholar] [CrossRef]
- Movahedian, B.; Boroomand, B. Inverse identification of time-harmonic loads acting on thin plates using approximated Green’s functions. Inverse Probl. Sci. Eng. 2016, 24, 1475–1493. [Google Scholar] [CrossRef]
- Jiang, J.; Ding, M.; Li, J. A novel time-domain dynamic load identification numerical algorithm for continuous systems. Mech. Syst. Signal Process. 2021, 160, 107881. [Google Scholar] [CrossRef]
- Chen, T.; Guo, L.; Duan, A.; Gao, H.; Feng, T.; He, Y. A feature learning-based method for impact load reconstruction and localization of the plate-rib assembled structure. Struct. Health Monit. 2022, 21, 1590–1607. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y. AI-based modeling and data-driven identification of moving load on continuous beams. Fundam. Res. 2023, 3, 796–803. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, D.; Zeng, M.; Zhong, S. A vibration-based vehicle classification system using distributed optical sensing technology. Transp. Res. Rec. 2018, 2672, 12–23. [Google Scholar] [CrossRef]
- Zeng, M.; Zhao, H.; Gao, D.; Bian, Z.; Wu, D. Reconstruction of Vehicle-Induced Vibration on Concrete Pavement Using Distributed Fiber Optic. IEEE Trans. Intell. Transp. Syst. 2022, 23, 24305–24317. [Google Scholar] [CrossRef]
- Zeng, M.; Chen, H.; Ling, J.; Zhao, H.; Wu, D. Monitoring of prestressing forces in cross-tensioned concrete pavements during construction and maintenance based on distributed optical fiber sensing. Autom. Constr. 2022, 142, 104526. [Google Scholar] [CrossRef]
- Zeng, M.; Wu, D.; Zhao, H.; Chen, H.; Bian, Z. Novel Assessment Method for Support Conditions of Concrete Pavement under Traffic Loads using Distributed Optical Sensing Technology. Transp. Res. Rec. 2020, 2674, 42–56. [Google Scholar] [CrossRef]
- Zhao, H.; Zeng, M.; Chen, H.; Ling, J.; Wu, D. Investigating the effect of prestress force on cross-tensioned concrete pavement vibration. Transp. Res. Rec. 2020, 2674, 875–886. [Google Scholar] [CrossRef]
- Liu, F.; Ye, Z.; Wang, L. Deep transfer learning-based vehicle classification by asphalt pavement vibration. Constr. Build. Mater. 2022, 342, 127997. [Google Scholar] [CrossRef]
- Ye, Z.; Wei, Y.; Zhang, W.; Wang, L. An Efficient Real-Time Vehicle Monitoring Method. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22073–22083. [Google Scholar] [CrossRef]
- Zhou, J.M.; Dong, L.; Guan, W.; Yan, J. Impact load identification of nonlinear structures using deep Recurrent Neural Network. Mech. Syst. Signal Process. 2019, 133, 106292. [Google Scholar] [CrossRef]
- Zargar, S.A.; Yuan, F.G. Impact diagnosis in stiffened structural panels using a deep learning approach. Struct. Health Monit. 2021, 20, 681–691. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, M.; Li, X.; Qu, X.; Tong, F. Unknown impact force localisation and reconstruction in experimental plate structure using time-series analysis and pattern recognition. Int. J. Mech. Sci. 2020, 166, 105231. [Google Scholar] [CrossRef]
- Liu, R.; Dobriban, E.; Hou, Z.; Qian, K. Dynamic load identification for mechanical systems: A review. Arch. Comput. Methods Eng. 2022, 29, 831–863. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar]
- Yuan, S.; Lellouch, A.; Clapp, R.G.; Biondi, B. Near-surface characterization using a roadside distributed acoustic sensing array. Lead. Edge 2020, 39, 646–653. [Google Scholar] [CrossRef]
- Wang, J.; Han, Y.; Cao, Z.; Xu, X.; Zhang, J.; Xiao, F. Applications of optical fiber sensor in pavement Engineering: A review. Constr. Build. Mater. 2023, 400, 132713. [Google Scholar] [CrossRef]
- Jacob, B.; O’Brien, E.J. European specification on weigh-in-motion of road vehicles (COST323). In Proceedings of the Second European Conference on Weigh-in-Motion of Road Vehicles, Lisbon, Portugal, 14–16 September 1998; pp. 14–16. [Google Scholar]
Load Level | No. 1 Axis | No. 2 Axis | No. 3 Axis | No. 4 Axis | No. 5 Axis | No. 6 Axis | Average Axle Load |
---|---|---|---|---|---|---|---|
(kg) | (kg) | (kg) | (kg) | (kg) | (kg) | (kg) | |
1 | 2200 | 1690 | 1880 | 2020 | 2240 | 1750 | 1963.33 |
2 | 5150 | 4770 | 4910 | 5080 | 5250 | 4730 | 4981.67 |
3 | 6180 | 5120 | 5990 | 5830 | 6130 | 5630 | 5813.33 |
4 | 6700 | 6720 | 6900 | 6450 | 6990 | 5820 | 6596.67 |
5 | 7800 | 7080 | 7230 | 7470 | 7000 | 6900 | 7246.67 |
No | Load Level | Loading Speed (m/s) | Percentage of Sample to the Total (%) | Number of Samples |
---|---|---|---|---|
1 | 1, 2, 3, 4, 5 | 2 | 15% | 1004 |
2 | 1, 2, 3, 4, 5 | 4 | 40% | 2676 |
3 | 1, 2, 3, 4, 5 | 6 | 45% | 3010 |
No. | Vehicle Type | Axle Type | Percentage of Sample to the Total (%) | Number of Samples |
---|---|---|---|---|
1 | Passenger car | 1-1 * | 46% | 154 |
2 | Lorry | 1-1 * | 12% | 40 |
3 | Truck-I | 1-1 * | 16% | 53 |
4 | Truck-II | 1-2-2 * | 26% | 87 |
Methods for Axle Load Estimation | Annual Life Cycle Cost ($) | Error | Expected Life (Years) |
---|---|---|---|
DOVS-based (presented) | 1000 | ±11.5% | 15 |
Bending plate | 5000 | ±15% | 4 |
Strip WIM (piezoelectric) | 6000 | ±10% | 6 |
Single load cell | 8000 | ±6% | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Z.; Zeng, M.; Zhao, H.; Guo, M.; Cai, J. Temporal Convolutional Network-Based Axle Load Estimation from Pavement Vibration Data. Appl. Sci. 2023, 13, 13264. https://doi.org/10.3390/app132413264
Bian Z, Zeng M, Zhao H, Guo M, Cai J. Temporal Convolutional Network-Based Axle Load Estimation from Pavement Vibration Data. Applied Sciences. 2023; 13(24):13264. https://doi.org/10.3390/app132413264
Chicago/Turabian StyleBian, Zeying, Mengyuan Zeng, Hongduo Zhao, Mu Guo, and Juewei Cai. 2023. "Temporal Convolutional Network-Based Axle Load Estimation from Pavement Vibration Data" Applied Sciences 13, no. 24: 13264. https://doi.org/10.3390/app132413264
APA StyleBian, Z., Zeng, M., Zhao, H., Guo, M., & Cai, J. (2023). Temporal Convolutional Network-Based Axle Load Estimation from Pavement Vibration Data. Applied Sciences, 13(24), 13264. https://doi.org/10.3390/app132413264