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Abstract: The instability of the winding-cushion structure is one of the primary causes of transformer
failures. Insulation cushion compression and offset are the predominant forms leading to structural
instability. Therefore, this paper, using the SFSZ7-31500/110 transformer as an example, first derives
the theoretical formula for mechanical stress calculation. It clarifies the key influencing parameters
of the winding-cushion block structure on the axial bending stress of the winding. Subsequently,
an electromagnetic force finite element calculation model is established to obtain the axial force
distribution in the winding and the distribution of unbalanced displacement during short-circuit
processes. Based on the force and offset distribution, a specific cushion block compression and
offset test platform is constructed. By setting different cushion block variables, the effects of cushion
block unbalanced height and cushion block offset on the winding’s bending elastic modulus are
determined. Finally, a simulation model for stress calculation of the winding-cushion block structure
is established, revealing the influence pattern of cushion block compression and offset instability on
the axial strength of the winding. The results of this study indicate that the greater the uneven cushion
block height, the lower the axial strength of the winding. Under the same cushion block offset angle,
winding structures with non-uniform cushion block offsets exhibit the worst axial stability. When the
offset angles are 30◦, 45◦, and 60◦, the maximum axial bending stress of the winding increases by
1.73%, 3.46%, and 7.82%, respectively. Increasing the offset angle exacerbates the decrease in the axial
strength of the winding up to a certain extent. The findings in this study have significant implications
for enhancing a transformer’s short-circuit resistance.

Keywords: power transformers; short-circuit impacts; winding strength; cushion blocks; axial
bending stress

1. Introduction

Power transformers are essential electrical equipment in the electrical grid that are
responsible for critical functions such as energy transmission, flexible allocation, and
voltage transformation within the entire power system [1,2]. Consequently, the operational
status of transformers directly affects the safety and stability of both local and overall
power systems.

During short-circuit incidents, the short-circuit forces acting on transformers can cause
insulation and structural component damage, resulting in significant winding deformation
and wire breakage [3]. Copper, the most common material used for making transformer
windings, is a typical elastoplastic material, while cushion blocks possess a stiffness that
gradually hardens [4]. The ability of transformers to withstand short circuits is almost
unaffected by minor deformations in windings. However, the cumulative effect of subtle
plastic deformations caused by multiple short-circuit impacts can lead to irreversible
changes in the mechanical characteristics of windings, resulting in a reduced capacity to
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withstand short circuits [5–7]. Under the axial short-circuit electromagnetic force, windings
generate axial vibrations, leading to resonance phenomena, collisions, separation between
cushion blocks and coil disks, and this ultimately causes winding looseness, distortion,
and even collapse [8,9]. Therefore, the study of improving transformer windings, cushion
block performance, or structures to enhance their short-circuit withstand capability is of
significant importance in engineering.

Numerous scholars have conducted research on the short-circuit strength of trans-
formers. References [10–12] established a mass-spring model that includes cushion blocks,
coil disks, pressure plates, and iron cores. Since coil disks experience non-uniform forces
on the radial surface, the model divided a coil disk into two mass units and connected
them with axial bending springs. Reference [13] researched how increasing the radial
width of windings, the number of bracing ribs, and the size of winding subwires can
enhance winding strength based on a specific transformer short-circuit test and calculation
results. Reference [14] developed a coupled three-dimensional model considering electric,
magnetic, and structural fields to investigate the influence of factors such as the insulation
paper wrapped around the wire, the tightness of insulation paper tubes, and the Young’s
modulus on winding strength. Reference [15] studied the distribution of axial forces in
windings during transformer short circuits through simulation. Reference [16] proposed a
transformer winding deformation online detection method based on VFTO and validated
its effectiveness. Reference [17] established a nonlinear vibration model considering axial
vibration of windings that deduced and calculated the winding compression force, cushion
block and pressure plate compression force, and the axial bending stress of the wires.
Reference [18] investigated the impact of cushion blocks on the axial winding strength and
of bracing ribs on the radial winding strength, with specific consideration of factors such
as the number and width of cushion blocks. References [19,20] indicated that, over the
transformer’s lifespan, cushion blocks were immersed in dielectric fluid and exposed to
high temperatures, thermal aging, and chemical reactions, resulting in the degradation
of their dielectric and mechanical properties and weakening the transformer short-circuit
resistance. In references [21,22], a two-dimensional simulation was established and the
leakage flux and stress distribution of high- and low-voltage winding were analyzed;
short-circuit tests were carried out and it was pointed out that the electromagnetic force
generated by the fault current might lead to instability in and the collapse of the winding.
An improved radial buckling analysis method was proposed to study the radial stability of
the inner winding. In reference [23], a winding and supporting spacers structure model is
established under short-circuit conditions, and the influence of the flexibility of the spacers
on the critical stress of the inner winding is analyzed through case studies.

Based on an analysis of the existing literature, it can be observed that the cushion
blocks, as one of the main support structures of the windings, are less studied in terms
of their influencing factors such as different unbalanced heights, offset angles, and off-
set structures. However, in practical operation, when a transformer experiences a short
circuit, the cushions are very prone to compression or loosening, resulting in offset un-
der the impact of short-circuit forces. This ultimately leads to the tilting of the winding,
i.e., axial instability. Therefore, studying the impact of cushion compression and offset on
the axial strength of windings is of significant importance. Therefore, this paper establishes
a calculation model for the mechanical stress of windings, considering two types of cushion
block fault modes that can cause axial instability in the windings. The maximum axial bend-
ing stress calculation formula was revised. A platform for cushion block compression and
offset testing was set up. The experiment analyzed the impact of cushion block unbalanced
height and offset on the elastic modulus of the wire. Modeling and simulation were con-
ducted using the SFSZ7-31500/110 transformer as a prototype, and the simulation results
were combined to validate the effectiveness of the experiments. Following the research
results of this paper, the short-circuit force under the condition of pad shrinkage and offset
can be considered in order to calculate the short-circuit force, to simulate more realistic
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transformer multiple short-circuit impact conditions, and to calculate the short-circuit force
more accurately and in greater detail.

2. Study of the Axial Strength of Windings under Short-Circuit Force

In order to study the axial mechanical stress on windings under short-circuit forces, a
mechanical stress calculation model for windings was established, as shown in Figure 1.
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Figure 1. Winding mechanical stress calculation model.

For transformer windings, the axial electromagnetic forces generated by radial leakage
magnetic fields cause axial bending deformations in the windings between two sets of
cushion blocks. It is considered that the windings and the two sets of cushion blocks
constitute a fixed pivot beam structure at both ends [24]. The axial force load on the
winding is uniformly distributed. In Figure 1, q1 represents the force per unit length acting
downward along the winding, while R1 and R2 are the support reactions at both ends.
M1 and M2 denote the bending moments, w stands for the height of the winding, and L
represents the length of the winding.

To determine the value of the bending stress, we must first derive the force per unit
length qst acting on the wires between the two sets of cushion blocks:

qst =
FY

NsπD
(1)

where Ns denotes the number of strands of the winding, D denotes the average diameter of
the winding, and FY denotes the maximum axial force applied to the wire cake.

There are six unknown quantities in the problem, two vertical forces, two horizontal
forces, and two bending moments, but only three static equilibrium equations are presented,
making it a hyperstatic problem. The two horizontal forces in opposite directions are of
equal magnitude, exerting mutual tensile forces on each other. Due to the small magnitude
of these forces, they can be disregarded [24]. The two vertical forces are of equal magnitude
and act downward in the same direction. Therefore, the support reactions happen at both
ends, R1 = R2 =q1L/2, where q1 is the force per unit length acting downward along the
beam. Given that this structure is subjected to uniformly distributed axial force loads, q1 is
equal to qst.

The moment of inertia about the z-axis can be expressed as follows:

Iz =
tw3

12
(2)

where t denotes the radial width of the winding.



Appl. Sci. 2023, 13, 13289 4 of 19

Cushion block constraints can be regarded as fixed-end constraints. Because the force
of the winding is symmetrical and the constraint form at both ends is the same, the bending
moment constrained by the winding is equal, that is, M1 is equal to M2. The total bending
moment at position x can be expressed as follows:

M(x) =
q1Lx

2
− q1x2

2
−M1 (3)

The deflection curve equation of the beam should be calculated firstly to obtain the
bending moment M1:

d2y
dx2 = −M(x)

EIz
(4)

where E is the elastic modulus of the beam.
Substituting (3) into (4), (4) can then be re-written as follows:

d2y
dx2 = − 1

EIz

(
M1 −

q1Lx
2

+
q1x2

2

)
(5)

Integrating (5) once gives the following:

dy
dx

=
1

EIz

(
M1x− q1Lx2

2
+

q1x3

2

)
+ C (6)

where C is the integration constant. Since we are investigating a beam structure with fixed
supports, it follows that dy/dx = 0 at x = 0 and x = L. Substituting this into (6) yields the
integration constant C = 0, and (7):

M1 =
q1L2

12
(7)

Then, (6) can be simplified as follows:

dy
dx

=
q1

EIz

(
L2x
12
− Lx2

4
+

x3

6

)
(8)

Integrating (8) again, the integration constant is zero since y = 0 at x = 0 and x = 1,
giving the following:

y =
q1

EIz

(
L2x2

24
− Lx3

12
+

x4

24

)
=

q1x2(L− x)
24EIz

(9)

The bending moment at position x is obtained by substituting (7) into (3):

M(x) =
q1

2

[
x(L− x)− L2

6

]
(10)

The axial bending stress of the beam is defined as follows:

σx =
My
Iz

(11)

where y denotes the length measured downward from the centroid of the beam’s cross-
section.

From (10), the maximum value Mmax =q1L2/24 is obtained when x = L/2; the minimum
value Mmin = −q1L2/12 is obtained when x = 0 and x = L. As Mmin has the larger absolute
value, M = −q1L2/12 is chosen. For a given x, when y = ±w/2, σx obtains its maximum or
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minimum value. Thus, choosing y = −w/2, and substituting M, y, and (2) into (11) yields
the following:

σx.max =
q1L2

2tw2 (12)

Equation (12) gives the formula for calculating the maximum axial bending stress, and
for the parameter of the distance L between two blocks, it is considered that the failure
modes that lead to axial instability of the winding include the following: wire inclination,
the overlapping of turns, block compression faults under axial forces, and block offset
under the interaction of axial and radial forces [25,26]. Both block-related faults lead to
axial instability in the winding, where block compression faults affect the block unbalanced
height ∆l and block offset faults directly affect the block offset angle θ.

Based on this, the radial-adjacent block unbalanced height ∆l and block offset angle θ
are introduced to modify the distance L between two blocks. The calculation formula for L
is as follows:

L =

√(
πD
Z

+
t tan θ

2

)2
+ ∆l2 −W (13)

where Z denotes the number of block groups in the radial direction, and W denotes the
width of the block. The principle of the revised formula is illustrated in Figure 2.
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Substituting (1) and (13) into (12), the maximum axial bending stress between two
blocks can be re-expressed as follows:

σmax.axial =
FY

2NCsπDtw2 (

√(
πD
Z

+
t tan θ

2

)2
+ ∆l2 −W)

2

(14)

Following the national standard GB1094.5 [27], the axial bending stress is evaluated
and the allowable value standard is less than or equal to 0.9 Rp0.2.

As indicated by the formula for axial bending stress, it is evident that cushion blocks
have a significant impact on the axial strength of transformer windings. Among the
influencing factors, the key ones are cushion block unbalanced height and cushion block
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offset. Therefore, subsequent analysis primarily focuses on the influence of different
cushion block unbalanced heights and different cushion block offsets on the axial strength
of windings.

3. Cushion Compression and Offset Test Based on Short-Circuit Force Simulation

In this section, theoretical derivations for electromagnetic force calculations were
carried out. A finite element simulation model for transformer electromagnetic forces
was constructed. Through simulation, the distribution of axial electromagnetic forces
acting on the windings was obtained. Based on this data, the maximum cushion block
unbalanced height was calculated. Additionally, a cushion block compression and offset
testing platform was set up for localized experiments to analyze the impact of cushion
blocks on wire performance.

3.1. Calculation of Winding Electromagnetic Forces

The magnetic field is the bridge between the primary and secondary windings for
energy transfer. Transformer internal and external windings are usually wound according
to a certain type. Assuming that the number of turns of the primary side winding is N,
it can be approximated as N coaxial conducting loops arranged in sequence [28]. The
resulting spatial magnetic field exhibits axial symmetry. Therefore, a cylindrical coordinate
system is established with the center axis of the conducting loops as the z-axis, assuming
that the direction of the current is in the same direction as the line element dl.

According to Biot–Savart Law, for a conducting ring located at the point (0, z1) with
radius r1, the magnetic field dB generated at any point A(r, z) in the surrounding space due
to the line element dl is given by the following [29]:

dB =
µ0 Idl× r(A1, A)

4π|r(A1, A)|3
(15)

where µ represents the permeability of free space, r(A1, A) denotes the vector from point
A1 on the conducting loop to any point A in space, and I is the current flowing through
the loop.

r(A1, A) can be expressed as follows:

r(A1, A) = r(A)− r(A1) = (r− r1 cos θ,−r1 sin θ, z− z1) (16)

The line element dl can be expressed as follows:

dl = (−r1 sin θdθ, r1 cos θdθ, 0) (17)

Substituting (16) and (17) into (15) for integration calculation gives the following:

B =
µ0 I
4π

∫ 2π

0

 r1 cos θ(z− z1)i + r1 sin θ(z− z1)j

[r2 − 2r1r cos θ + r2
1 + (z− z1)

2]
3
2

+
(r2

1 − r1r cos θ)k

[r2 − 2r1r cos θ + r2
1 + (z− z1)

2]
3
2

dθ (18)

For ease of analysis, the magnetic flux density is typically divided into axial and radial
components, which are represented as follows [30]:

Bz =
µ0 I
2π

∫ π

0

(r2
1 − r1r cos θ)

[r2 − 2r1r cos θ + r2
1 + (z− z1)

2]
3
2

dθ (19)

Br =
µ0 I
2π

∫ π

0

(z− z1)

[r2 − 2r1r cos θ + r2
1 + (z− z1)

2]
3
2

dθ (20)
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Using the Lorenz force calculation method, the radial and axial short-circuit electro-
magnetic forces experienced by the winding during transformer short-circuit conditions
can be calculated using the following equations:

Fr =
∫
V

J× Bzdv (21)

Fz =
∫
V

J× Brdv (22)

where J denotes the winding’s short-circuit current density; Bz and Br denote the axial
and radial magnetic flux densities of the winding, respectively; and Fr and Fz denote the
magnitudes of the radial and axial short-circuit electromagnetic forces on the winding.

3.2. Simulation Analysis of Winding Unbalanced Force after Short Circuit

Based on the SFSZ7-31500/110 prototype transformer (Liaoning Hengyi electric power
Equipment Manufacturing Co., LTD., Shenyang, China), an electromagnetic force finite
element simulation model was established for electromagnetic force calculation [31], as
depicted in Figure 3. The main geometric parameters of the transformer are shown in
Table 1. The material parameters of windings and the cushion blocks are detailed in Table 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19 
 

0 1

30
2 2 2 2

1 1 1

( )
d

2
[ 2 cos ( ) ]

r

I z z
B

r r r r z z

 (20) 

Using the Lorenz force calculation method, the radial and axial short-circuit 

electromagnetic forces experienced by the winding during transformer short-circuit 

conditions can be calculated using the following equations: 

r
J B

z

V

F dv  (21) 

J B
z r

V

F dv  (22) 

where J denotes the winding’s short-circuit current density; Bz and Br denote the axial and 

radial magnetic flux densities of the winding, respectively; and Fr and Fz denote the 

magnitudes of the radial and axial short-circuit electromagnetic forces on the winding. 

3.2. Simulation Analysis of Winding Unbalanced Force after Short Circuit 

Based on the SFSZ7-31500/110 prototype transformer (Liaoning Hengyi electric power 

Equipment Manufacturing Co., LTD., Shenyang, China), an electromagnetic force finite 

element simulation model was established for electromagnetic force calculation [31], as 

depicted in Figure 3. The main geometric parameters of the transformer are shown in Table 

1. The material parameters of windings and the cushion blocks are detailed in Table 2. 

 

Figure 3. Schematic diagram of finite element simulation model of transformer electromagnetic 

force. 

Table 1. Main geometric parameters of the transformer. 

Parameter Value 

Low-Voltage Winding Inner Diameter/mm 331 

Low-Voltage Winding Outer Diameter/mm 396 

Medium-Voltage Winding Inner Diameter/mm 435 

Medium-Voltage Winding Outer Diameter/mm 500 

High-Voltage Winding Inner Diameter/mm 547 

High-Voltage Winding Outer Diameter/mm 640.5 

Low-Voltage Winding Turns 107 

Medium-Voltage Winding Turns 226 

High-Voltage Winding Turns 647 

Window Height/mm 1670 

Core Diameter/mm 600 

Figure 3. Schematic diagram of finite element simulation model of transformer electromagnetic force.

Table 1. Main geometric parameters of the transformer.

Parameter Value

Low-Voltage Winding Inner Diameter/mm 331
Low-Voltage Winding Outer Diameter/mm 396

Medium-Voltage Winding Inner Diameter/mm 435
Medium-Voltage Winding Outer Diameter/mm 500

High-Voltage Winding Inner Diameter/mm 547
High-Voltage Winding Outer Diameter/mm 640.5

Low-Voltage Winding Turns 107
Medium-Voltage Winding Turns 226

High-Voltage Winding Turns 647
Window Height/mm 1670
Core Diameter/mm 600
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Table 2. Material parameters for winding and cushion block.

Physical Quantity Young’s Modulus
[MPa]

Density
[g/cm3] Poisson’s Ratio

Winding 124,000 8.96 0.325
Cushion Block 7600 1.3 0.34

The radial magnetic induction intensity in the middle of the transformer winding
is nearly zero 0.01 s after a short circuit. The maximum axial electromagnetic force is
generated at the ends, and its direction is opposite. Excessive electromagnetic force can
lead to axial instability in the winding [32]. To study the structural stability at the location
of maximum stress in the winding, the topmost layer of the medium-voltage winding was
selected to observe the axial force distribution, as shown in Figure 4. It is evident that
there is a localized unbalanced stress on the winding. The maximum axial electromagnetic
forces are generated at the upper and lower ends of the winding, and they are in opposite
directions; the maximum value is 1.88 × 109 N/m3 and it is in the negative direction.
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The copper material used in transformer windings is a typical elastic–plastic material,
with the stress–strain relationship described by the yield strength [33]. Cushion blocks are
typically composed of nonlinear materials such as wood fiber or epoxy resin. According to
the previous research results [34], it is generally believed that, when the value of the stress is
less than 103 MPa, the stress–strain relationship of the insulation pad can be approximated
as follows [35]:

σ= aε + bε3 (23)

where the linear constant a = 105.8 MPa and the hardening coefficient b = 1750 MPa.
The defining equation of the elastic modulus is shown in (24), from which the relation-

ship between the elastic modulus E and the strain value is obtained as (25). And the elastic
modulus–strain relationship of the cushion blocks is plotted, as shown in Figure 5.

E =
dσ

dε
(24)

E = 105.8 + 5250ε2 (25)
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From Figure 4, the Lorentz force density and the axial height can be used to calculate
the equivalent surface stress distribution of insulating cushion blocks. Based on the axial
force distribution at different positions, the maximum difference in stress between adjacent
cushion blocks on the circumference can be determined. Using Equation (23) and the stress–
strain relationship for cushion blocks, the corresponding maximum unbalanced strain
range can be calculated. Finally, the maximum cushion block unbalanced height is found
to be 5.3 mm. The specific calculation process is shown in Figure 6. This value can serve
as the basis for setting cushion block unbalanced heights in subsequent experiments and
simulations. It allows for the study of the impact of cushion-block-compression-induced
unbalance in the axial strength of windings.
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3.3. Analysis of Three-Point Bending Test

In this section, an experiment platform for cushion block compression and offset was
set up. Insulating cushion blocks measuring 77 mm in length, 39 mm in width, and 2 mm
in thickness were used. Rectangular copper wires were cut into several small segments of
the required length and flattened using pliers. These segments were then tightly bound
together with adhesive tape in groups of five, and two sets of insulating cushion blocks
were used as endpoints to form the main structure for the three-point bending test. The wire
samples were secured at both ends with fixtures. The wire bending tests were conducted
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using an electronic universal testing machine with the model number ETM504D. During
the testing process, a clamp moving speed of 2 mm/min was maintained, and a continuous
bending force was applied to the rectangular specimens, with the force–deflection curve
being automatically recorded. The test procedure is illustrated in Figure 7.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

were secured at both ends with fixtures. The wire bending tests were conducted using an 

electronic universal testing machine with the model number ETM504D. During the testing 

process, a clamp moving speed of 2 mm/min was maintained, and a continuous bending 

force was applied to the rectangular specimens, with the force–deflection curve being 

automatically recorded. The test procedure is illustrated in Figure 7. 

 

Figure 7. Flow chart of cushion block compression offset test. 

Under the influence of axial forces, the winding can undergo compressive 

deformation, leading to a reduction in axial height, structural relaxation, and a lack of 

axial compressive force within the winding. Because the insulating cushion blocks 

between windings are continuously subjected to axial compression forces, the unbalanced 

heights of some cushion blocks may vary. Additionally, under the action of axial forces, 

the internal fibers of certain cushion blocks will gradually break, resulting in plastic 

deformation [36] and further compression. This leads to an increase in the unbalanced 

heights of adjacent cushion blocks and causes the support structure to become lax. 

When studying the impact of cushion block unbalanced heights on the mechanical 

properties of the wire, different numbers of cushion blocks (ranging from 2 to 5) were 

stacked to achieve varying unbalanced heights between adjacent cushion blocks. 

Specifically, the unbalanced heights of the cushion blocks at both ends were set at 0, 2, 4, 

and 6 mm, respectively. To investigate the effect of cushion block offset, six sets of 

experiments were conducted, involving single-end cushion block offset, two-end cushion 

block offset in the same direction, and two-end cushion block offset in opposite directions 

of 30° and 45°. Taking 30° as an example, three different offset positions for the cushion 

blocks are explained, as shown in Figure 8. The simulation results yield axial bending 

stress cloud maps for the winding. A continuous bending force was applied to the center 

point of the rectangular specimens, and their force–deflection curves were recorded, 

respectively. 

Figure 7. Flow chart of cushion block compression offset test.

Under the influence of axial forces, the winding can undergo compressive deformation,
leading to a reduction in axial height, structural relaxation, and a lack of axial compressive
force within the winding. Because the insulating cushion blocks between windings are
continuously subjected to axial compression forces, the unbalanced heights of some cushion
blocks may vary. Additionally, under the action of axial forces, the internal fibers of certain
cushion blocks will gradually break, resulting in plastic deformation [36] and further
compression. This leads to an increase in the unbalanced heights of adjacent cushion blocks
and causes the support structure to become lax.

When studying the impact of cushion block unbalanced heights on the mechanical
properties of the wire, different numbers of cushion blocks (ranging from 2 to 5) were
stacked to achieve varying unbalanced heights between adjacent cushion blocks. Specif-
ically, the unbalanced heights of the cushion blocks at both ends were set at 0, 2, 4, and
6 mm, respectively. To investigate the effect of cushion block offset, six sets of experiments
were conducted, involving single-end cushion block offset, two-end cushion block offset
in the same direction, and two-end cushion block offset in opposite directions of 30◦ and
45◦. Taking 30◦ as an example, three different offset positions for the cushion blocks are
explained, as shown in Figure 8. The simulation results yield axial bending stress cloud
maps for the winding. A continuous bending force was applied to the center point of the
rectangular specimens, and their force–deflection curves were recorded, respectively.
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Figure 8. Example of cushion block offset structures.

For the purpose of comparative analysis, the bending elastic modulus of the wire
under the three-point bending test was calculated in accordance with YB/T 5349-2006 [37].
Figure 9 illustrates the three-point bending test, where the wire is part of a beam-like
structure composed of cushion blocks. The wire is placed transversely between the supports
of the two end cushion blocks with a span length L. In the middle of the wire, a concentrated
force F acts downward, causing bending, and f represents the deflection in millimeters.
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Figure 9. Schematic diagram of three-point bending test.

With reference to YB/T 5349 2006, the force–deflection curve, as shown in Figure 10,
was measured by the universal testing machine. On the force–deflection curve, starting
from the intersection point O of the elastic straight-line segment with the deflection axis, a
segment OC corresponding to non-proportional bending strain is extracted and calculated
according to Equation (26):

OC =
nL2

6h
(26)

where n denotes the deflection magnification, L denotes the span of the wire, h denotes the
height of the wire, and εpd denotes the specified non-proportional bending strain.
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Through point C, make CA parallel to the elastic straight line segment to intersect
the curve at point A. The force corresponding to point A is the measured prescribed
non-proportional bending force Fpd. b is the width of the wire, and the prescribed non-
proportional bending stress σpd of the wire can be calculated from Equation (27).

σpd =
3FpdL
2bh2 (27)

Apply a pre-bending force of less than 10% σpd0.01 to the wire and record the force
and deflection at the midpoint of the span. Then, continue loading the applied force until
it reaches 50% σpd0.01. Record the incremental bending force and deflection at this point.
Finally, calculate the bending modulus of elasticity using Equation (28).

Eb =
L3∆F

4bh3∆ f
(28)

where ∆F denotes the bending force increment and ∆ f denotes the deflection increment.
Firstly, the effect of unbalanced height of cushion blocks is studied and unbalanced

support structures are set up at both ends of the wire. Set up the wire with two, three,
four, and five pieces of cushion blocks support at one end and five pieces of cushion blocks
support at the other end with a span of 17 cm. A total of five tests were carried out in each
case and the average of the measurements was taken.

As can be seen from the Figure 11, there is a clear correlation between the cushion block
unbalanced height and the force–deflection curve. With the increase in the unbalanced
height of the neighboring cushion blocks, the bending force of the wire samples all show a
decreasing trend, but the magnitude is not large. When the deflection reaches 5.8 mm, the
bending force is 1.14 kN, 1.19 kN, 1.25 kN, and 1.25 kN in order when the cushion block
unbalanced heights at both ends of the samples are 6, 4, 2, and 0 mm.
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Figure 11. Force–deflection curves under different unbalanced heights of cushion blocks.

Similarly, the force–deflection curves of wires under different cushion block offsets are
recorded, as shown in Figure 12, and, finally, the bending modulus of elasticity of multiple
parallel-wound wires under different cushion block unbalanced heights and different
cushion block offsets are obtained by the bending modulus of elasticity calculation method
of Equation (26); the results are shown in Tables 3 and 4.
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Figure 12. Force–deflection curves under different offsets of cushion block. (a) Single-end offset.
(b) Two-end same-direction offset. (c) Two-end opposite-direction offset.

Table 3. Flexural modulus of elasticity with different cushion block unbalanced heights.

Cushion Block Unbalanced Height
[mm]

Flexural Modulus of Elasticity
[MPa]

6 52.22
4 59.86
2 84.86
0 89.97

Table 4. Flexural elastic modulus for different cushion block offsets.

Offset Angle

Offset Structure
Single-End Offset

Bending Elastic Modulus
[MPa]

Two-End Same-Direction
Offset Bending Elastic

Modulus
[MPa]

Two-End
Opposite-Direction

Offset Bending Elastic
Modulus

[MPa]

30◦ 53.76 46.29 33.64
45◦ 52.85 40.80 18.64

Based on the data in the table, it can be observed that, as the height of adjacent cushion
block unbalances increases, the bending elastic modulus of the wire decreases. When the
cushion block unbalanced height increases from 0 mm to 2 mm or from 4 mm to 6 mm, the
average decrease in the bending elastic modulus of the samples is approximately 6.37 MPa.
When the cushion block unbalanced height increases from 2 mm to 4 mm, the change in
the bending elastic modulus of the samples is 25.00 MPa, representing a decrease of 29.46%.
Under the same offset angle, the wire’s bending elastic modulus is lowest for the cushion
block’s crosswise offset structure, indicating the poorest mechanical performance. The
cushion block’s same-direction offset structure follows. For both 30◦ and 45◦ offset angles,
the bending elastic modulus of the wire under these three offset structures decreases as the
offset angle increases, indicating deteriorating mechanical performance. When the cushion
block offset angle is 45◦, the bending elastic modulus of the wire decreases by 54.7% and
79.3% for same-direction and crosswise offsets, respectively. This may be attributed to the
reduced contact area between the cushion blocks and the winding due to cushion block
offset, leading to weakened bending resistance.

4. Impact Analysis of Cushion Blocks on Winding Axial Strength

In order to study the reliability of the test, a three-cake toroidal model of the trans-
former in finite element simulation software is built in this section, calculates and analyzes
the maximum axial bending stresses of the windings with different cushion block unbal-
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anced heights and different cushion block offsets, and verifies the consistency of the change
trend.

4.1. Transformer Three-Cake Toroidal Model Construction

To investigate the specific impact of cushion blocks on the axial strength of transformer
windings, this section uses finite element simulation software to create a three-layer toroidal
model of the transformer [38]. The model includes medium-voltage windings and cushion
blocks, as shown in Figure 13. In the model, each coil has a thickness of 12 mm, and
each set of insulating cushion blocks is 77 mm in length, 39 mm in width, and 10 mm in
thickness. Sixteen sets are uniformly installed between the transformer coils. The inner
diameter of the medium-voltage winding is 435 mm, and the outer diameter is 500 mm.
The material parameters of the windings and cushion blocks are consistent with those
selected in Section 3.2.
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Figure 13. Model of the winding and cushion block support structure.

4.2. Impact of Cushion Block Unbalanced Height on Winding Axial Strength

To investigate the impact of the cushion block unbalanced height on the axial strength
of the transformer winding, a control group with one layer of 16 sets of cushion blocks,
each with a total thickness of 10 mm, is set as the baseline. A maximum compression of
6 mm is set for the simulation analysis of cushion block height unbalances. One set of
cushion blocks in the bottom layer was selected, and the total thickness of the cushion
blocks is separately set to 8 mm, 6 mm, and 4 mm, corresponding to unbalanced heights
with adjacent cushion blocks of 2 mm, 4 mm, and 6 mm. The resulting axial bending stress
distribution maps are shown in Figure 14.
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Figure 14. Winding axial bending stress cloud for different cushion block unbalanced heights.

It can be seen that, in the control group, when the cushion block unbalanced height
is 0 mm, the maximum axial bending stress in the winding is 20.21 MPa. With a cushion
block unbalanced height of 2 mm, 4 mm, and 6 mm, the maximum axial bending stress in
the winding increases to 22.64 MPa, 24.57 MPa, and 26.51 MPa, respectively. The results
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are plotted in the line chart shown in Figure 15. The test results under different unbalance
heights are shown in Table 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19 
 

4.2. Impact of Cushion Block Unbalanced Height on Winding Axial Strength 

To investigate the impact of the cushion block unbalanced height on the axial 

strength of the transformer winding, a control group with one layer of 16 sets of cushion 

blocks, each with a total thickness of 10 mm, is set as the baseline. A maximum 

compression of 6 mm is set for the simulation analysis of cushion block height unbalances. 

One set of cushion blocks in the bottom layer was selected, and the total thickness of the 

cushion blocks is separately set to 8 mm, 6 mm, and 4 mm, corresponding to unbalanced 

heights with adjacent cushion blocks of 2 mm, 4 mm, and 6 mm. The resulting axial 

bending stress distribution maps are shown in Figure 14. 

 

Figure 14. Winding axial bending stress cloud for different cushion block unbalanced heights. 

It can be seen that, in the control group, when the cushion block unbalanced height 

is 0 mm, the maximum axial bending stress in the winding is 20.21 MPa. With a cushion 

block unbalanced height of 2 mm, 4 mm, and 6 mm, the maximum axial bending stress in 

the winding increases to 22.64 MPa, 24.57 MPa, and 26.51 MPa, respectively. The results 

are plotted in the line chart shown in Figure 15. The test results under different unbalance 

heights are shown in Table 5. 

 

Figure 15. Maximum axial bending stress in the winding with different cushion block unbalanced 

heights. 

  

Figure 15. Maximum axial bending stress in the winding with different cushion block unbalanced heights.

Table 5. Comparison of test results under different unbalanced heights.

Cushion Block
Unbalanced Height

[mm]

Flexural Modulus
of Elasticity

[MPa]

Maximum Axial
Bending Stress

[MPa]

0 89.97 20.21
2 84.86 22.64
4 59.89 24.57
6 52.22 26.51

It can be seen from the table that, with the increase in the unbalanced height of the
cushion blocks, the flexural elastic modulus of the winding decreases, which means that
the winding is more prone to deformation when subjected to the same stress, and the
short-circuit resistance decreases. The increase in the maximum axial bending stress on the
winding, that is, the stress on the winding, will increase, and the deformation risk of the
winding will also increase. The results obtained from the test and simulation are consistent,
which verifies the feasibility of the structural part test.

4.3. Impact of Cushion Block Offset on Winding Axial Strength

To investigate the influence of cushion block offset on the axial strength of the winding,
three cushion block offset structures are set up, including a single-end offset, two-end
same-direction offset, and two-end anisotropic offset. Four offset angles are considered,
including 15◦, 30◦, 45◦, and 60◦. Three cases with offset angles of 30◦, 45◦, and 60◦ are
presented in Figure 16. The line chart depicting the maximum axial bending stress under
conditions is shown in Figure 17.
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It can be observed that, for windings with different cushion block offset structures,
as the cushion block offset angle increases, the trend in the change of the maximum axial
bending stress in the windings is the same, showing an increasing pattern. Moreover,
as the offset angle increases to a certain degree, the magnitude of the increase in the
maximum axial bending stress gradually rises, exacerbating the impact of the offset angle on
winding strength.

Different offset structures have varying effects on winding strength. Under the same
cushion block offset angle, windings with cushion blocks deviating in opposite directions
consistently exhibit the highest maximum axial bending stress, while windings with single-
end offset structures consistently have the lowest maximum axial bending stress. In the
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range of offset angles from 0◦ to 15◦, the impact of different cushion block offset structures
on winding axial strength is relatively small. However, as the offset angle increases,
the magnitude of the increase in maximum axial bending stress for each structure also
increases. Among these structures, those with opposite-direction offset show the most
significant increase, leading to the greatest reduction in winding axial strength. The overall
simulation trends align well with the experimental results, validating the effectiveness of
the experiments.

5. Conclusions

During the short-circuit process of transformers, the axial unbalanced force leads to
cushion block compression and offset, causing axial instability in the winding. This paper
establishes a test platform for cushion block compression and offset, investigates the effects
of cushion block unbalanced height and cushion block offset on the axial strength of the
windings, and validates the results in combination with finite element simulation outcomes.
The following conclusions are drawn:

1. The axial strength of the winding-cushion block composite structure is affected by the
cushion block height unbalanced ∆l and the cushion block offset angle θ. Cushion
block compression faults can affect the unbalanced height ∆l, while cushion block
offset faults directly affect the offset angle θ. Cushion block compression and offset
faults lead to an increase in the axial bending stress of the winding-cushion block
structure, posing a more severe challenge to the axial strength of the winding.

2. A greater cushion block unbalanced height results in higher bending elastic modulus
and lower axial strength in the windings. When the unbalanced height is 2 mm, 4 mm,
and 6 mm, the maximum axial bending stress in the windings increases by 12.02%,
21.57%, and 31.17%, respectively. The impact of increasing cushion block unbalanced
height on winding strength reduction is almost linear.

3. Under the same offset angle, the winding’s bending elastic modulus is lowest for the
cushion block opposite-direction offset structure, indicating the poorest mechanical
performance. The cushion block’s same-direction offset structure follows. For the
axial bending stress in an opposite-direction offset structure, when the offset angle
is 30◦, 45◦, and 60◦, the maximum axial bending stress increases by 1.73%, 3.46%,
and 7.82%, respectively, and the degree of reduction in the axial winding strength
progressively intensifies.
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