Study of Gravelly Soil Core Material Using a Large-Scale Triaxial Wetting Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation and Experimental Program
3. Results
3.1. Experimental Results
3.2. Deformation Characteristics of the Specimen
3.3. Discussion on Wetting Mechanism
4. Constitutive Modeling for Wetting
4.1. Calculation of Wetting Deformation
4.2. Evaluation of the Wetting Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, H.; Chen, J.; Liu, S.; Sivakumar, B. The Role of Large Dams in Promoting Economic Development under the Pressure of Population Growth. Sustainability 2019, 11, 2965. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Galindo, R.; Arévalo, C.; Menéndez-Pidal, I.; Kazanskaya, L.; Smirnova, O. Optimized Design of Earth Dams: Analysis of Zoning and Heterogeneous Material in Its Core. Sustainability 2020, 12, 6667. [Google Scholar] [CrossRef]
- Jia, Y.F.; Yao, S.E.; Chi, S.C. Experimental study on wetting of coarse-grained soil under constant stress ratio path. Chin. J. Geotech. Eng. 2019, 41, 648–654. [Google Scholar] [CrossRef]
- Heitor, A.; Parkinson, J.; Kotzur, T. The Role of Soil Stabilisation in Mitigating the Impact of Climate Change in Transport Infrastructure with Reference to Wetting Processes. Appl. Sci. 2021, 11, 1080. [Google Scholar] [CrossRef]
- Riaz, S.; Kikumoto, M.; Basharat, M.; Putra, A.D. Wetting Induced Deformation of Soils Triggering Landslides in Pakistan. Geotech. Geol. Eng. 2021, 39, 5633–5649. [Google Scholar] [CrossRef]
- Roosta, R.M.; Alizadeh, A. Simulation of collapse settlement in rockfill material due to saturation. Int. J. Civ. Eng. 2012, 10, 93–99. [Google Scholar]
- Fu, Z.Z.; Chen, S.; Liu, S. Hypoplastic constitutive modelling of the wetting induced creep of rockfill materials. Sci. China Technol. Sci. 2012, 55, 2066–2082. [Google Scholar] [CrossRef]
- Li, Z. Study on Collapsibility of Earth Rock Dam during Initial Impoundment. Master’s Thesis, Tsinghua University, Beijing, China, 1986. [Google Scholar]
- Jia, Y.; Xu, B.; Chi, S.; Xiang, B.; Xiao, D.; Zhou, Y. Joint back analysis of the creep deformation and wetting deformation pa-rameters of soil used in the Guanyinyan composite dam. Comput. Geotech. 2018, 96, 167–177. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Yu, Y.; Zhang, J. Some key technical problems of high earth-rock dam. In Proceedings of the 9th China Civil Engineering Society Academic Conference on Soil Mechanics and Geotechnical Engineering, Beijing, China, 25–28 October 2003. [Google Scholar]
- Nobari, E.S.; Duncan, J.M. Movements in dams due to reservoir filling. In Proceedings of the Specialty Conference on Performance of Earth and Earth-Supported Structures, Lafayette, IN, USA, 11–14 June 1972; ASCE: New York, NY, USA, 1972; pp. 797–815. [Google Scholar]
- Liu, Z.d. Some problems about the calculation of deformation of earth-rock dams. Chin. J. Geotech. Eng. 1983, 5, 1–13. [Google Scholar]
- Zuo, Y.Z.; Cheng, Z.L.; Pan, J.J.; Zhou, Y.F.; Zhao, N. Experiment and law analysis of three-axis wetting deformation of gravel soil core wall material. Chin. J. Geotech. Eng. 2020, 42, 37–42. [Google Scholar]
- Cheng, Z.L.; Zuo, Y.Z.; Ding, H.S.; Jiang, J.S.; Kong, X.Y. Experimental study on Wetting Characteristics of rockfill. Chin. J. Geotech. Eng. 2010, 32, 243–247. [Google Scholar]
- Nan, J.J.; Peng, J.B.; Zhu, F.J.; Zhao, J.Y.; Leng, Y.Q. Multiscale characteristics of the wetting deformation of Malan loess in the Yan’an area, China. J. Mt. Sci. 2021, 18, 1112–1130. [Google Scholar] [CrossRef]
- Ovalle, C.; Dano, C.; Hicher, P.Y.; Cisternas, M. An experimental framework for evaluating the mechanical behaviour of dry and wet crushable granular materials based on the particle breakage ratio. Can. Geotech. J. 2015, 52, 1–12. [Google Scholar] [CrossRef]
- Shao, X.Q.; Chi, S.C.; Tao, Y.; Zhou, X.X. DEM simulation of the size effect on the wetting deformation of rockfill materials based on single-particle crushing tests. Comput. Geotech. 2020, 123, 103429. [Google Scholar] [CrossRef]
- Kast, K.; Brause, J. Influence of the extent of Geological Disintegration in the Behavior of Rockfill. In Proceedings of the 11th International Conference on Soil Mechanics and Foundation, San Francisco, CA, USA, 12–16 August 1985; pp. 131–134. [Google Scholar]
- Jie, Y.X.; Zhang, Y.Y.; Yang, G.H. Calculation method of wet deformation of earth-rock materials. Rock Soil Mech. 2020, 40, 11–12. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, B.; Chi, S.; Xiang, B.; Xiao, D.; Zhou, Y. Particle Breakage of Rockfill Material during Triaxial Tests under Complex Stress Paths. Int. J. Geomech. 2019, 19, 04019124. [Google Scholar] [CrossRef]
- Zuo, Y.Z.; Cheng, Z.L.; Pan, J.J.; Zhou, Y.F.; Zhao, N. Difficulties and solutions of wetting deformation test of gravelly soil core wall material. Rock Soil Mech. 2023, 44, 2170–2176. [Google Scholar] [CrossRef]
- Ding, Y.H.; Zhang, B.Y.; Qian, X.X.; Yin, Y.; Sun, S. Experimental study on wetting deformation characteristics of rockfill. Rock Soil Mech. 2019, 40, 2975–2988. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, Y.K.; Ding, Y.H.; Zhang, B.Y.; Sun, S. Study on unsaturated wetting deformation characteristics of rockfill. Chin. J. Rock Mech. Eng. 2021, 40, 3455–3463. [Google Scholar]
- Shen, Z.J.; Xie, X. Stress-Strain Analysis on Tieshan Earth Dam; Nanjing Hydraulic Research Institute: Nanjing, China, 1989. [Google Scholar]
- Yin, Y.; Wu, Y.; Zhang, B.; Ding, Y.; Sun, X. Two-stage wetting deformation behaviour of rock-fill material. Environ. Geotech. 2019, 9, 94–107. [Google Scholar] [CrossRef]
- Bauer, E. Constitutive modelling of wetting deformation of rockfill materials. Int. J. Civ. Eng. 2018, 17, 481–486. [Google Scholar] [CrossRef]
- Chi, S.C.; Zhou, X.X. Wetting deformation model of rockfill. Chin. J. Geotech. Eng. 2017, 39, 48–55. [Google Scholar]
- Wu, Y.K.; Yin, Y.; Zhang, B.Y.; Sun, X.; Yu, Y.Z. Unsaturated Wetting Deformation Characteristics of a Granite Rockfill under Rainfall Conditions. Can. Geotech. J. 2022, 59, 1774–1792. [Google Scholar] [CrossRef]
- Zhu, J.G.; Mohamed, A.A.; Gong, X.; Xuan, X.Y.; Ji, E.Y. Triaxial experimental study on wetting characteristics of a SLATE coarse material. Chin. J. Geotech. Eng. 2013, 35, 170–174. [Google Scholar]
- Zhou, X.X.; Chi, S.C.; Jia, Y.F. Research on wetting deformation characteristics of coarse grained materials. Chin. J. Geotech. Eng. 2019, 41, 1943–1948. [Google Scholar]
- Zhang, H.Y.; Li, X.; Liu, J.L.; Han, P.J.; Yang, Y.G.; Ding, Z.L.; Han, L.W.; Zhang, X.Q.; Wang, S.S. Study on wetting deformation model of coarse-grained materials based on P-Z model and BP neural network. Front. Earth Sci. 2023, 11, 1187032. [Google Scholar] [CrossRef]
- Qiu, X.; Li, J.H.; Zeng, B.; Fu, H.Y.; Luo, Z.Y.; Chen, J.C.; Liu, Z.W. Wetting deformation characteristics of high liquid limit red clay under low stress condition. Rock Soil Mech. 2023, 44, 2028–2040. [Google Scholar] [CrossRef]
- Li, G.; Liu, Y. Three-dimensional finite element analysis of the wetting deformation of gravel sand material. In Proceedings of the 3rd Young People’s Conference of Geotechnical Mechanics and Engineering, Nanjing, China, 9–12 April 1998; pp. 195–200. [Google Scholar]
- Li, Q.; Yu, Y.; Zhang, B.; Shen, Z. Three-dimensional analysis for the wetting deformation of Gongboxia concrete faced rock-fill dam on the Yellow River. J. Hydroelectr. Eng. 2005, 24, 24–29. [Google Scholar] [CrossRef]
- Guo, W.L.; Chen, G.; Wu, Y.L.; Wang, J.J. Modeling the wetting deformation behavior of rockfill dams. Geomech. Eng. 2020, 22, 519–528. [Google Scholar] [CrossRef]
Confining Pressure/kPa | Shear Stress Level Sl |
---|---|
400 | 0.206, 0.386, 0.763 |
800 | 0.203, 0.306, 0.806 |
1200 | 0.217, 0.415, 0.786 |
2000 | 0.217, 0.406, 0.787 |
σ3: kPa | Sl | Δε1: % (Test Data) | Δευ: % (Test Data) | Δευ: % (Fitted Data) |
---|---|---|---|---|
400 | 0.206 | 0.229 | 0.301 | 0.290 |
0.356 | 0.454 | 0.363 | 0.393 | |
0.763 | 1.570 | 0.431 | 0.483 | |
0.203 | 0.308 | 0.357 | 0.393 | |
800 | 0.203 | 0.308 | 0.357 | 0.393 |
0.395 | 0.598 | 0.434 | 0.469 | |
0.805 | 2.079 | 0.583 | 0.576 | |
1200 | 0.217 | 0.353 | 0.481 | 0.435 |
0.415 | 0.683 | 0.497 | 0.509 | |
0.786 | 2.213 | 0.663 | 0.643 | |
2000 | 0.217 | 0.392 | 0.516 | 0.483 |
0.406 | 0.762 | 0.605 | 0.581 | |
0.787 | 2.312 | 0.742 | 0.670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Li, G.; Mi, Z.; Fan, K. Study of Gravelly Soil Core Material Using a Large-Scale Triaxial Wetting Test. Appl. Sci. 2023, 13, 13295. https://doi.org/10.3390/app132413295
Qin Y, Li G, Mi Z, Fan K. Study of Gravelly Soil Core Material Using a Large-Scale Triaxial Wetting Test. Applied Sciences. 2023; 13(24):13295. https://doi.org/10.3390/app132413295
Chicago/Turabian StyleQin, Yuyang, Guoying Li, Zhankuan Mi, and Kaifang Fan. 2023. "Study of Gravelly Soil Core Material Using a Large-Scale Triaxial Wetting Test" Applied Sciences 13, no. 24: 13295. https://doi.org/10.3390/app132413295
APA StyleQin, Y., Li, G., Mi, Z., & Fan, K. (2023). Study of Gravelly Soil Core Material Using a Large-Scale Triaxial Wetting Test. Applied Sciences, 13(24), 13295. https://doi.org/10.3390/app132413295