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Abstract: Recently, researchers have extensively explored variousmethods for electronicmedical record
named entity recognition, including character‑based, word‑based, and hybrid methods. Nonetheless,
thesemethods frequently disregard the semantic context of entitieswithin electronicmedical records,
leading to the creation of subpar‑quality clinical knowledge bases and obstructing the discovery of
clinical knowledge. In response to these challenges, we propose a novel purpose‑driven SoftLexicon‑
RoBERTa‑BiLSTM‑CRF (SLRBC) model for electronic medical records named entity recognition.
SLRBC leverages the fusion of SoftLexicon andRoBERTa to incorporate theword lexicon information
from electronic medical records into the character representations, enhancing the model’s semantic
embedding representations. This purpose‑driven approach helps achieve a more comprehensive
representation and avoid common segmentation errors, consequently boosting the accuracy of entity
recognition. Furthermore, we employ the classical BiLSTM‑CRF framework to capture contextual in‑
formation of entities more effectively. In order to assess the performance of SLRBC, a series of experi‑
ments on the public datasets of CCKS2018 and CCKS2019 were conducted. The experimental results
demonstrate that SLRBC can efficiently extract entities from Chinese electronic medical records. The
model attains F1 scores of 94.97% and 85.40% on CCKS2018 and CCKS2019, respectively, exhibiting
outstanding performance in the extraction and utilization efficiency of clinical information.

Keywords: electronicmedical record; named entity recognition; purpose‑driven; SoftLexicon; RoBERTa

1. Introduction
Due to the rapid proliferation of electronic medical records and the varied data for‑

mats they encompass, individuals are encountering growing difficulties in the pursuit
of clinical knowledge. Typically, electronic medical records encompass a wide range of
data types, including hospitalization records, medical procedure records, and more, col‑
lectively chronicling a patient’s entire treatment history. It holds a crucial position in
medical decision‑making and research. Against this background, creating an intelligent
named entity recognition (NER) system to identify medical entities with crucial informa‑
tion provides a solid foundation for constructing electronic medical record clinical knowl‑
edge bases and promoting knowledge discovery [1].

NER constitutes the initial critical stage in the realmof natural language processing for
information extraction [2]. Compared to general‑domain texts, electronic medical record
texts contain more domain‑specific terminologies. For the electronic medical record NER
task, the entity categories to be identified include anatomical location, disease diagnosis,
symptom description, etc. Our purpose is to recognize these types of entities from clinical
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sentences. The formalization process of NER can be defined as follows: given an annotated
sequence S =< w1, w2, . . . , wn >, we can obtain a list of triples after the recognition, where
each triple contains the information of an entity [3]. For example, in the triple < Is, Ie, t >,
Is ∈ [1, n] and Ie ∈ [1, n] respectively refer to the start index and the end index of an entity,
and t is one of the predefined entity types. Figure 1 shows an example of the NER process.
The input is aChinese electronicmedical record, “患者一月前出现腹部阵发性疼痛不适The
patient experienced paroxysmal abdominal pain and discomfort 1 month ago”, and two
triples have been obtained after the NER system. The resulting triples indicate that “腹部
abdomen” is the entity of anatomical location, and “疼痛不适 pain and discomfort” is the
entity of symptom description. In the NER system, people frequently overlook the fact
that every component of the model is purposefully driven to generate the desired results.
The automatic identification of these entities in electronic medical records plays a pivotal
role in the development of medical informatics.
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Most of the previous NER systems have adhered to the traditional Data–Information–
Knowledge–Wisdom (DIKW) architecture [4,5]. Over the past few years, deep learning‑
based techniques for electronic medical record NER have gained immense popularity as
one of the leading approaches. Researchers have endeavored to integrate the DIKWwith a
knowledge graph [6–9]. Meanwhile, thanks to the abundance of English‑language corpora
and the relatively straightforward processing, research in EnglishNER has seen significant
advancements. In the case of Chinese NER, a straightforward method involves initially
conducting word segmentation and subsequently applying word‑level sequence labeling
models to the segmented sentences [10]. However, the unavoidable occurrence of incor‑
rect word segmentation can result in NER errors, which can then lead to the propagation
of these errors. Numerous studies also proposed that character‑based Chinese NER tech‑
niques tend to outperform their word‑based counterparts [11–13]. Nevertheless, character‑
based methods have their limitations as well, as they do not leverage the semantic infor‑
mation of words. To address this issue, Zhang et al. [14] first proposed the Lattice‑LSTM
model formixed characters and lexiconwords. In contrast to conventional character‑based
and word‑based models, this approach can attain superior performance by harnessing ex‑
plicit word information instead of relying on character sequence tags. Ma et al. [15] im‑
proved the Lattice‑LSTMmodel and proposed a SoftLexicon method by considering more
lexical information, achieving the best performance so far. Nonetheless, these methods
may not prioritize the significance of the intended purpose and might not make the most
of entities within Chinese electronic medical records, potentially leading to the exclusion
of crucial lexical information. To address these gaps, this paper adopts the novel purpose‑
driven DIKW [16], which connects the diverse models of DIKW through purpose and uni‑
fies them as a whole.

Specifically, this paper proposes a novel purpose‑driven SoftLexicon‑RoBERTa‑
BiLSTM‑CRF (SLRBC)NERmodel for electronicmedical records. SLRBC initially acquires
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a word‑level representation with the fusion of SoftLexicon and RoBERTa, subsequently
improving the recognition of long‑distance entities using Bidirectional Long Short‑Term
Memory (BiLSTM). Finally, a Conditional Random Field (CRF) is employed for decoding.
The main contributions of this paper can be summarized as follows:
• We designed an SLRBC NER model for Chinese electronic medical records, fusing

SoftLexicon and RoBERTa at the representation layer and adopting the classical
BiLSTM‑CRF framework to improve the model’s performance;

• SLRBC employs a novel purpose‑driven DIKW architecture. Within the SoftLexcion
representation, we established four sets for each character to incorporate word lexi‑
con information from electronic medical records into character representations and
assigned weights to achieve a more comprehensive purpose representation;

• We conducted extensive experiments on the CCKS2018 andCCKS2019 public datasets
to verify the effectiveness of SLRBC, and the results demonstrate its superiority in
Chinese electronic medical record NER. The code can be accessed at https://github.
com/QuXiaolong0812/SLRBC (accessed on 8 December 2023).
The rest of this paper is organized as follows. In Section 2, we present an overview of

the literature covering character‑based, word‑based, and hybridmethods. Section 3 details
our proposed approach, encompassing the representation layer, the encoding layer, and
the label decoding layer. Section 4 includes our experimental procedures and a discussion
of the results. Section 5 discusses strengths and weaknesses of the proposed approach. Fi‑
nally, in Section 6, we summarize our findings and provide insights into potential avenues
for future research.

2. Related Work
Early electronic medical record NER tasks adopted a combination of rule‑based and

dictionary‑based methods, such as the MedEx system [17]. Yang et al. [18] discussed the
linguistic and structural features of Chinesemedical records and analyzed both rule‑based
and machine‑learning approaches. With the development of deep learning, various deep
neural networks such as Convolutional Neural Network (CNN), Recurrent Neural Net‑
work (RNN), and Transformer have been applied to NER tasks. These deep‑learning tech‑
niques can be categorized into character‑based, word‑based, and hybrid methods accord‑
ing to the various levels of granularity in the extraction of the representation layer.

2.1. Character‑Based Methods
Character sequence labeling has always been the primary method for NER. In the

early stages, Collobert et al. [19] proposed the CNN‑CRF model and obtained competitive
performance for various best NERmodels. Huang et al. [20] built the BiLSTM‑CRF model,
which achieved state‑of‑the‑art results in NER tasks at that time. With the development
of pre‑trained language models (PLM), such as BERT [21], many researchers used PLMs
to obtain character‑level representations. Wang et al. [22] used BERT to address the miss‑
ing contextual information problem and added an extra mechanism to capture relations
betweenwords. Wu et al. [23] proposed amodel based on RoBERTa and character root fea‑
tures. They utilized RoBERTa to acquire medical features and applied BiLSTM to extract
partial radical features. With the emergence of a lighter PLM, ALBERT, Yao et al. [24] pro‑
posed a model based on ALBERT‑AttBiLSTM‑CRF and transfer learning for fine‑grained
entity recognition of manufactured text. Aiming at the problem of word ambiguity in Chi‑
nese clinical NER tasks, Li et al. [25] proposed an ALBERT‑based method and introduced
a multi‑head attention mechanism to capture inter‑character dependencies. Due to their
simplicity and effectiveness, character‑based methods serve as the foundation for most
existing NER approaches.

2.2. Word‑Based Methods
In the context of ChineseNER, the effective integration ofword lexicon informationhas

consistently been a focal point of research. A conventional approach involves initial word seg‑
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mentation followed by the application of a word‑level sequence labeling model [26].
He et al. [27] proposed a unified NER model for Chinese social media and explored the
advantages and disadvantages of three methods: character embedding; word embedding;
and character position embedding. In addition, Rei [28] used word‑level language model‑
ing to enhance NER training and performed multi‑task learning on large raw texts. Since
boundary detection and type prediction for the NER task can cooperate with each other,
Li et al. [29] proposed a modularized interaction network model, which can utilize both
segment‑level andword‑level dependency information. With the application of the prompt
learning paradigm in natural language processing, He et al. [30] proposed a prompt‑based
word‑level information injection BERT to integrate prompt‑guided lexicon information
into a PLM. However, due to the inherent ambiguity of the Chinese language and the
less well‑defined granularity of Chinese words compared to languages like English, the
majority of current Chinese NER methods typically do not separately address word‑level
features [13].

2.3. Hybrid Methods
Character‑based approaches may not harness word information to its fullest extent,

whereas word‑based methods are vulnerable to errors stemming from segmentation prob‑
lems. In order to overcome the drawbacks of both approaches, Dong et al. [31] employed
the skip‑gram model and bi‑directional LSTM RNN model to extract word embeddings
and character embeddings, respectively. These embeddings were subsequently merged
to create the ultimate representations. Nonetheless, employing such a basic concatenation
method can result in an excessive amount of redundant information. To address this is‑
sue, Zhang et al. [14] proposed the Lattice‑LSTM model based on mixed characters and
lexicon words for the first time. In contrast to character‑based models, this model effec‑
tively exploits the semantic connections among neighboring characters within words. Fur‑
thermore, when compared to word‑based models, it mitigates the adverse consequences
stemming from word segmentation errors. Adversarial training avoids model overfitting
by adding noise, which has been combined with the Lattice‑LSTMmodel by successive re‑
search [32,33]. Ma et al. [15] also extended work on the Lattice‑LSTMmodel and proposed
a SoftLexicon method by integrating more lexical information without modifying the in‑
ternal structure of LSTM. This approach incorporates all the words corresponding to each
character within the representation layer and can be employed in different sequence label‑
ing frameworks. In the field of agriculture, to alleviate the problems of agricultural text
professionalism and uneven distribution of entity types, Zhang et al. [34] combined Soft‑
Lexicon with an attention mechanism and proposed the AttSoftlexicon to help the model
effectively utilize lexical information. Building upon prior research, we integrate the Soft‑
Lexicon approach with RoBERTa and utilize the traditional BiLSTM‑CRF architecture to
achieve the intelligent extraction of entities from Chinese electronic medical records.

3. Proposed Method
The framework of the proposed SLRBC is shown in Figure 2, which consists of three

mainmodules: (1) The representation layer incorporates the basic character representation,
Softexicon representation, and RoBERTa representation to obtain a more comprehensive
representation; (2) The encoding layer adopts the classical BiLSTM to capture contextual in‑
formation and long‑distance dependencies within sequences; (3) The label decoding layer
uses the CRF mechanism to recognize entities. Taking the input sentence “腹部疼痛不适
abdominal pain and discomfort” as an example, character “腹 location” will be assigned
the label “B‑T1”, indicating that it is the beginning position (B) of the anatomical location
(T1) entity. At the same time, the character “部”will be assigned the label “I‑T1”, indicating
that it is the inside position (I) of the anatomical location (T1) entity. As a result, the whole
entity “腹部 abdomen” can be recognized. The details of eachmodule are described below.
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3.1. Representation Layer
In addition to the basic character representation, both SoftLexicon and RoBERTa to

obtain a more comprehensive representation are introduced in the representation layer.
SoftLexicon effectively leverages a built word frequency dictionary to integrate word lex‑
icon information into character representations, while RoBERTa excels at capturing more
comprehensive semantic information.

In this paper, each sentence is treated as s = {c1, c2, . . . , cn} ∈ Vc, where Vc represents
the set of all characters, and n represents the length of the sentence.

3.1.1. Basic Character Representation
The Lattice‑LSTM model proposed by Zhang et al. [14] has proved the effectiveness

of character embedding using both character embedding (char) and double character em‑
bedding (bichar). Therefore, we adopt both char and bichar in this step, which can be
calculated as Equation (1):

xc
i = [ec(ci); eb(ci, ci+1)] (1)

where ec denotes the character embedding lookup table, and eb denotes the double‑character
embedding lookup table.

3.1.2. SoftLexicon Representation
Relying solely on the basic character representation described earlier is inadequate

for fully integrating entity information into themodel. Because traditional character‑based
methods face challenges in integrating medical word lexicon information into the model
without the aid of word segmentation. On the other hand, word‑based models heavily
rely on the precision of word segmentation outcomes and have encountered difficulties in
achieving desirable performance levels. Inspired by Ma et al. [15], we adopt the SoftLexi‑
con approach to embed known medical entities into the model.

Individuals may perceive the same thing differently, and varying purposes can yield
distinct outcomes. Similarly, as for the character ci, we use the word frequency dictionary
constructed in the data pre‑processing stage to obtain the relevant words, and thus, con‑
struct four sets, B(ci), M(ci), E(ci), and S(ci), where B(ci) is the set including all words
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starting with ci; M(ci) is the set including all words with ci as the middle part; E(ci) is the
set including all words ending with ci, and S(ci) is the set of a single character ci. These
four sets signify four distinct purposes and encompass semantic details pertaining to var‑
ious facets of entities. As shown in Figure 3, in the sequence of “患者诊断为直肠癌病 The
patient was diagnosed with rectal cancer disease”, these four sets corresponding to the
character “肠 intestine” are as follows: B(肠intestine) = {“肠癌 intestinal cancer”, “肠癌病
intestinal cancer disease”}; M(肠intestine) = {“直肠癌 rectal cancer”, “直肠癌病 rectal can‑
cer disease”}; E(肠intestine) = {“直肠 rectum”}; and S(肠intestine) = {“肠 intestine”}. It is
obvious that the same lexical set may contain more than one word, such as B(肠intestine),
which indicates that there are two words beginning with “肠 intestine”. To achieve a more
harmonious balance among these four purposes and facilitate their fusion, it is essential to
assign weights to them based on word frequency.
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As for the input sequence s = {c1, c2, . . . , cn}, assuming that there is a vocabulary set
L ∈ {B, M, E, S}, the weighted average is expressed as vs(L), which can be calculated as
Equations (2) and (3):

vs(L) =
4
Z ∑

w∈L
Z(w)ew(w) (2)

Z = ∑
w∈B∪M∪E∪S

Z(w) (3)

where w is the word to be embedded; ew is the word embedding lookup table; Z(w) is the
frequency of w counted in the word frequency dictionary.

To retain a greater amount of information, the representations of these four lexical sets
are combined through concatenation. Finally, the embedding representation of ci trans‑
formed by the SoftLexicon can be calculated as Equation (4):

xs
i = [vs(B(ci)); vs(M(ci)); vs(E(ci)); vs(S(ci))] (4)

3.1.3. RoBERTa Representation
In order to obtain better word‑level semantic representation, we also introduce

RoBERTa‑wwm [35], a robust Chinese PLM. RoBERTa‑wwm thoroughly addresses the
necessity of word segmentation in the Chinese language and covers not only individual
characters but entire words when applying masking. Table 1 shows an example of the
whole word masking mechanism of RoBERTa‑wwm. In contrast to BERT, three charac‑
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ters, “直肠癌 rectal cancer”, in RoBERTa‑wwm, are considered as a single unit, and these
characters are masked together. Following the pre‑training phase, the acquired semantic
representation operates at the lexical level, significantly enhancing the overall representa‑
tional capacity of the model beyond the character level.

Table 1. An Example of whole word masking mechanism of RoBERTa‑wwm.

Masking Strategy Result

Original Text 患者诊断为直肠癌病
The patient was diagnosed with rectal cancer disease

BERT 患者诊断为直肠[MASK]病
The patient was diagnosed with rectal [MASK] disease

RoBERTa‑wwm 患者诊断为[MASK] [MASK] [MASK]病
The patient was diagnosed with [MASK] [MASK] disease

With the text sequence s = {c1, c2, . . . , cn} as input, the embedding representation
with RoBERTa‑wwm can be calculated as Equation (5):

xr
i = er(ci) (5)

where er is the vector lookup table of RoBERTa‑wwm.

3.1.4. Representation Fusion
There are two prevalent methods for fusing the aforementioned embedding vectors.

One approach involves performing a weighted summation operation on the vectors, while
the other entails concatenating these vectors. To simplify the computation, we opt for the
latter. This approach offers a degree of flexibility since it does not need to be concerned
about the dimensions of each embedding vector in the representation layer. The final em‑
bedding representation of ci can be calculated as Equation (6):

xi = [xc
i ; xs

i ; xr
i ] (6)

3.2. Encoding Layer
In the encoding layer, we utilize the conventional BiLSTM to understand the fused

representation obtained from the representation layer. BiLSTM stands out as an effective
variant of RNN, capable of retaining information from both preceding and subsequent
neural nodes, allowing for it to capture contextual information and long‑distance depen‑
dencies within sequences [20].

The internal structure of the LSTM cell is shown in Figure 4. Each neural node of
LSTM consists of an input gate, a forgetting gate, and an output gate. Utilizing these gate
control units makes it feasible to determine whether to preserve or discard node‑related
information at each stage, thereby enabling the detection of long‑distance dependencies.
Specifically, the input gate is responsible for determining whether to retain the current
node’s input information, while the forgetting gate determines whether to retain informa‑
tion from the previous neural node’s hidden layer. Lastly, the output gate decides whether
to pass on the current node’s output to the subsequent node.

Assuming that the output of the hidden layer of the last node is ht−1, and the input of
the current node is xt, the forgetting gate ft, the input gate it, and the output gate ot can be
calculated as Equations (7)–(9):

ft = σ(Wx f xt + Wh f ht−1 + b f ) (7)

it = σ(Wxixt + Whiht−1 + bi) (8)

ot = σ(Wxoxt + Whoht−1 + bo) (9)
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where σ is the sigmoid activation function; Wx f , Wh f , Wxi, Whi, Wxo, and Who are trainable
weights, and b f , bi, and bo are biases.
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With these calculated gates, the memory cell corresponding to the current node can
be calculated as Equation (10):

ct = ftct−1 + ittanh(Wxcxt + Whcht−1 + bc) (10)

where tanh is the activation function; Wxc and Whc are trainable weights, and bc is a bias.
Then, we can obtain the output of the hidden layer of the current nodewith the output

gate ot, which can be calculated as Equation (11):

ht = ottanh(ct) (11)

The described process outlines the computation of LSTM. BiLSTM comprises both
a forward LSTM and a backward LSTM, allowing for the simultaneous capture of
information from both the preceding and following moments. It can be calculated as
Equations (12)–(14):

→
ht =

→
LSTM(xt) (12)

←
ht =

←
LSTM(xt) (13)

ht =

[→
ht,
←
ht

]
(14)

where
→
ht and

←
ht denote the outputs in both directions.

3.3. Label‑Decoding Layer
TheNER task can be viewed as a label prediction task, and these predicted labels have

associations with neighboring labels. For instance, when the current predicted label is “I‑
Type1”, the preceding label can only be “I‑Type1” or “B‑Type1”. Within the encoding layer,
we solely focus on the contextual information present in the electronic medical record text
and do not account for label dependencies. As a result, we introduce a CRF layer after the
neural network layer to determine the globally optimal sequence of labels, thus identifying
possible entities.

Assuming that there is an input sequence x = {x1, x2, . . . , xn} and the corresponding
predicted label sequence is y = {y1, y2, . . . , yn}, the score of the predicted label sequence
y corresponding to the input sequence x can be calculated by Equation (15):

S(x, y) =
n

∑
i=1

Ayi−1,yi +
n

∑
i=1

Pi,yi (15)
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where A is the transfer score matrix; Ayi−1,yi is the score of the label yi−1 transfer to the
label yi; P is the character label score matrix obtained from the output of the BiLSTM layer,
and Pi,yi is the score of the i‑th character predicted as yi by the BiLSTM layer.

Then, the probability distribution of the label sequence y is obtained by normalizing
S(x, y) with the softmax function, which can be calculated as Equation (16):

p(y|x) = es(x,y)

∑∼y∈Yx
es(x,

∼
y)

(16)

where y denotes the true label sequence, and Yx denotes all the predicted label sequences.
To improve loss calculation, this paper opts for maximum likelihood estimation, aim‑

ing to maximize the probability of the actual label sequences, which can be calculated as
Equation (17):

log(p(y|x)) = S(x, y)− log( ∑
∼
y∈Yx

eS(x,
∼
y)) (17)

Ultimately, we employ the Viterbi algorithm to identify the label sequence with the
highest score, which can be calculated as Equation (18):

y′ = argmax
∼
y∈Yx

(S
(

x,
∼
y
)
) (18)

4. Experiments
4.1. Datasets

We assess the performance of SLRBC using the publicly available electronic medical
record datasets from CCKS2018 (https://www.sigkg.cn/ccks2018/?page_id=16 (accessed on
10 November 2023)) and CCKS2019 (https://www.sigkg.cn/ccks2019/?page_id=62 (accessed
on 10 November 2023)). The entity distribution statistics of the datasets are shown in
Tables 2 and 3. CCKS2018 consists of 5 entity types and comprises 3251 sentences for train‑
ing, 358 for validating, and 432 for testing. CCKS2019, on the other hand, defines 6 entity
types and includes 5708 sentences for training, 755 for validation, and 743 for testing.

Table 2. CCKS2018 dataset entity distribution.

CCKS2018 Anatomical
Location

Symptom
Description

Independent
Symptom Medicine Surgery

Number 7838 2066 3055 1005 1125
Proportion 51.95% 13.69% 20.25% 6.66% 7.46%

Table 3. CCKS2019 dataset entity distribution.

CCKS2019 Disease
Diagnosis

Image
Inspection

Laboratory
Test Surgery Medicine Anatomical

Location

Number 4212 969 1195 1029 1768 8426
Proportion 23.93% 5.51% 6.79% 5.85% 10.05% 47.88%

The datasets are labeled with the BIO annotation method, in which the first character
constituting the entity is labeled as “B‑Type”; the rest characters constituting the entity are
labeled as “I‑Type”, and the other non‑entity characters are labeled as “O”. As a result,
there are 11 different labels in CCKS2018 and 13 in CCKS2019.

Since the word frequency dictionary needs to be constructed in the representation
layer of SLRBC, we extract words from the datasets and count the frequency of each word.
In this regard, the CCKS2018 word frequency dictionary encompasses 7619 words, while

https://www.sigkg.cn/ccks2018/?page_id=16
https://www.sigkg.cn/ccks2019/?page_id=62
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the CCKS2019 word frequency dictionary comprises 10,566 words. Exemplary words and
their respective frequencies from the word frequency dictionary are depicted in Figure 5.
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4.2. Experimental Setup
SLRBC is implemented on a single RTX 2080 Ti GPUwith PyTorch version 1.10.0. We

carry out an extensive array of experiments and record the parameter values at which the
model achieves its optimal performance. The networkweights are optimized by the Adam
algorithm, and other details of the parameters are specified in Table 4.

Table 4. Specific setting of experimental parameters.

Parameter Value

character vector dimension 50
word vector dimension 50

RoBERTa vector dimension 1024
LSTM hidden layer dimension 300

learning rate 0.015
batch size 6
epoch 30
dropout 0.5

In our experiments, we use standard Precision (P), Recall (R), and F1‑score (F1) to
evaluate the model performance:

P =
TP

TP + FP
× 100% (19)

R =
TP

TP + FN
× 100% (20)

F1 = 2× P× R
P + R

× 100% (21)

where TP represents the number of entities correctly identified by themodel; FP represents
the number of entities identified by the model as unrelated, and FN represents the number
of correct entities not identified by the model.

4.3. Baselines
To verify the effectiveness of SLRBC, we conduct comparison experiments on the elec‑

tronicmedical record datasets of CCKS2018 andCCKS2019with the followingmodels: the
first three are character‑basedmethods, while the remaining two are hybridmethods. Note
that there are few existing Chinese word‑based methods, and they do not perform as well
as the other two types of methods, so we do not consider this type of method.

• CNN‑CRF [19] uses a CNN‑based character embedding layer and employs CRF to
decode;
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• BiLSTM‑CRF [20] uses a BiLSTM‑based character embedding layer and employs CRF
to decode;

• BERT‑BiLSTM‑CRF [22] is an improvement in the BiLSTM‑CRF model, which intro‑
duces BERT on the top of the encoder;

• SoftLexicon‑BiLSTM‑CRF [15] combines character‑level and word‑level representa‑
tions and adopts the classical BiLSTM‑CRF framework;

• SoftLexicon‑BERT [15] combines SoftLexicon and BERT to achieve better representations.

4.4. Main Results
In this section, we compare and analyze the performance of SLRBC with other base‑

line models. The experimental results are shown in Table 5. It is noticeable that when com‑
pared to these baselinemodels, SLRBC has enhanced the F1 score on the CCKS2018 dataset
by 7.81%, 9.71%, 0.8%, 1.62%, and 0.78%, respectively, and on the CCKS2019 dataset by
16.93%, 2%, 1.43%, 2.36%, and 1.32%, respectively.

Table 5. Experimental results of different models on CCKS2018 and CCKS2019.

Model
CCKS2018 CCKS2019

P R F1 P R F1

CNN‑CRF 83.72% 90.88% 87.16% 61.97% 76.49% 68.47%
BiLSTM‑CRF 86.39% 84.15% 85.26% 82.92% 83.88% 83.40%

BERT‑BiLSTM‑CRF 94.37% 93.87% 94.17% 83.81% 84.14% 83.97%
SoftLexicon‑BiLSTM‑CRF 93.22% 93.48% 93.35% 81.98% 84.14% 83.04%

SoftLexicon‑BERT 94.06% 94.32% 94.19% 83.21% 84.97% 84.08%
SLRBC 94.70% 95.23% 94.97% 84.62% 86.19% 85.40%

The winner is in bold.

Through horizontal comparison, we observe that the performance of all models is
superior on CCKS2018 compared to CCKS2019. This discrepancy is evidently due to vari‑
ations in the granularity of entity annotation between the two datasets. The clearer the
annotation of training data, the better the performance of the model. Among these mod‑
els, the CNN‑CRF model displays the most prominent performance variation between the
two datasets. Its performance on CCKS2019 notably lags behind that of the other models.
This discrepancy arises from the fact that the named entities in CCKS2019 are longer, and
the CNN model struggles to capture long‑distance dependencies effectively. It is evident
that our SLRBC can effectively address this issue.

Through vertical comparison, we observe a significant improvement in model per‑
formance after incorporating SoftLexicon compared to the traditional CNN and BiLSTM
model structures. This result further validates the positive impact of the purpose‑driven
approach on enhancing NER accuracy. Simultaneously, it is evident that the F1 scores for
BERT‑BiLSTM‑CRF and SoftLexicon‑BERT with PLM, as well as our SLRBC, are notably
superior to those without PLM. It proves the effectiveness of introducing large PLMs. The
remarkable performance of SLRBCunderscores the effectiveness of themodel structurewe
proposed, which integrates SoftLexicon and RoBERTa in the realm of Chinese electronic
medical record NER.

In addition, we conduct a comparison of the training speed and testing speed of each
model, as shown in Table 6. It can be found that the model without BERT or RoBERTa,
including CNN‑CRF, BiLSTM‑CRF, and SoftLexicon‑BiLSTM‑CRF, has faster processing
speed, primarily due to the simpler model structures and fewer parameters. However,
SLRBC operates at a slower pace, indicating that RoBERTa, with its increased parameter
count, contributes to the slower processing speed compared to BERT. Meanwhile, the out‑
put vector dimension of BERT is 768, while the output vector dimension of RoBERTa is
1024, which further increases the overall computational load of the model.
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Table 6. Comparison of training speed and testing speed of each model.

Model
CCKS2018 CCKS2019

Training Speed Testing Speed Training Speed Testing Speed

CNN‑CRF 18.39 st/s 46.04 st/s 21.97 st/s 54.29 st/s
BiLSTM‑CRF 18.80 st/s 48.21 st/s 21.65 st/s 54.31 st/s

BERT‑BiLSTM‑CRF 15.53 st/s 20.86 st/s 17.73 st/s 22.22 st/s
SoftLexicon‑BiLSTM‑CRF 18.56 st/s 46.45 st/s 21.51 st/s 54.36 st/s

SoftLexicon‑BERT 15.21 st/s 20.37 st/s 17.14 st/s 21.96 st/s
SLRBC 11.85 st/s 13.56 st/s 13.57 st/s 14.13 st/s

“st/s” represents the number of sentences processed by the model per second.

4.5. Ablation Study
4.5.1. Analysis of Different Representation Layers

To further investigate the impact of four modules in representation layers on model
performance, we conduct ablation experiments. Acknowledging character embedding
(char) as the most basic representation, we make the deliberate decision to retain it con‑
sistently in each experiment. Subsequently, we progressively eliminate either one or both
bichars, SoftLexicon, and RoBERTa. Table 7 shows the specific experimental results.

Table 7. Effects of different modules in representation layer on model performance.

Four Modules in Representation Layer F1 on Two Datasets

Char Bichar SoftLexicon RoBERTa CCKS2018 CCKS2019
√

×
√ √

94.35% 84.12%√ √
×

√
93.88% 84.75%√ √ √

× 93.35% 83.04%√
× ×

√
93.73% 84.70%√

×
√

× 93.12% 83.38%√ √
× × 92.38% 82.83%√ √ √ √

94.97% 85.40%
“
√
” means to add the module, and “×” means to remove the module.

In the representation layer of our SLRBC, char, bichar, SoftLexicon, and RoBERT are
used simultaneously to achieve the best results on both datasets, once again verifying the
validity of SLRBC. The removal of SoftLexicon or RoBERTa results in a significant decrease
in F1 compared to SLRBC. F1 reaches its lowest point when both are removed simultane‑
ously, providing conclusive evidence that these two modules play a crucial role in the
representation layer of SLRBC. However, when bichar is removed, F1 does not decrease
significantly compared with SLRBC. This is due to the fact that bichar, serving as an ad‑
junct to char, makes a relatively smaller contribution to the representation. Experiments
conducted on the two datasets reveal that the F1 for CCKS2018 exhibited less fluctuation
compared to that of CCKS2019. This result indicates that when the entity annotation of
training data is clearer, the change in the representation layer has less influence on the
final recognition performance.

4.5.2. Analysis of Different Neural Networks
In the SLRBC proposed in this paper, BiLSTM is selected as the encoding layer. In

order to explore the influence of different neural networks on the overall model and subse‑
quently optimize the neural network layer, we replace the BiLSTM with CNN and Trans‑
former in ablation experiments. The experimental results are shown in Table 8, which
indicates that the model performs best when using BiLSTM in the encoding layer. When
employing CNN and Transformer, there is a discernible disparity in F1 on both datasets
compared to BiLSTM. It can be inferred that the constrained receptive field of CNNhinders
its ability to capture long‑distance dependencies, and the ability of Transformer to capture
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such dependencies is also marginally inferior to that of BiLSTM. Therefore, we choose to
use BiLSTM in the encoding layer, resulting in the best overall model performance.

Table 8. Experimental results of different encoding layer models on CCKS2018 and CCKS2019.

Encoding Layer Model
CCKS2018 CCKS2019

P R F1 P R F1

CNN 91.25% 94.32% 92.76% 76.23% 84.46% 80.13%
Transformer 91.83% 92.22% 92.02% 79.57% 80.54% 80.05%
BiLSTM 94.70% 95.23% 94.97% 84.62% 86.19% 85.40%

4.5.3. Analysis of Different Hidden Layer Dimensions
We set the hidden layer dimensions as 100, 200, 300, 400, and 500 to investigate its

impact on model performance. At the same time, we compare the total loss and F1 of the
model under different hidden layer dimensions on CCKS2018 and CCKS2019, which can
be seen in Figures 6 and 7. With a training epoch count below 10, the total loss experiences
the most rapid decline, and F1 shows the most noticeable increase. Beyond 20 training
epochs, both the total loss and F1 begin to gradually stabilize. Consequently, we opt to set
the epoch to 30. In general, the dimension of the hidden layer exhibits nodiscernible impact
on F1. Setting the hidden layer dimension to 100 results in the fastest convergence, and
the speed diminishes with an increase in the hidden layer dimension. When the hidden
layer dimension is set to 300, SLRBCdemonstrates relatively excellent overall performance,
reaching the peak of F1. Therefore, we set the dimension of the hidden layer to 300 in
this paper.
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5. Discussion
Our experimental results demonstrate that the proposed SLRBC can provide more

accurate recognition performance by using a purpose‑driven approach with the fusion of
SoftLexicon and RoBERTa. We compare SLRBCwith five baseline models: CNN‑CRF [19];
BiLSTM‑CRF [20]; BERT‑BiLSTM‑CRF [22]; SoftLexicon‑BiLSTM‑CRF [15]; and
SoftLexicon‑BERT [15]. By comparing CNN‑CRF, BiLSTM‑CRF, and BERT‑BiLSTM‑CRF,
we prove the importance of lexical information in Chinese electronic medical record NER.
Then, we compare SLRBC with SoftLexicon‑BiLSTM‑CRF and SoftLexicon‑BERT, which
belong to hybrid methods. The latter two only consider one or both representations, while
our SLRBC considers basic character representation, SoftLexicon representation, and
RoBERTa representation at the same time, thus achieving a more comprehensive represen‑
tation. Moreover, the classical BiLSTM‑CRF framework is adopted in our SLRBC, which
helps to capture contextual information of entities more effectively.

However, we also notice that SLRBC operates at a slower pace compared with other
baseline models. This may be attributed to the fusion method adopted by the represen‑
tation layer. In SLRBC, we use the simple concatenate method to fuse different represen‑
tations. This approach preserves as much of the original information as possible but in‑
creases the dimensions of representation features. Although it is helpful to improve the
performance of entity recognition, it also significantly increases the time and space cost.
Therefore, different fusion methods can be explored to further improve SLRBC.

6. Conclusions
In this paper, we propose a novel purpose‑drivenmodel called SLRBC for the Chinese

electronic medical record NER model, namely, SLRBC, which uses the fusion of SoftLexi‑
con and RoBERTa within the representation layer. Compared to existing character‑based,
word‑based, and hybrid methods, SLRBC fuses SoftLexicon and RoBERTa, constructing
four sets with different purposes to achieve a more comprehensive purpose representa‑
tion. Such a purpose‑driven approach helps to incorporate the word lexicon information
from electronic medical records into the character representations, thereby endowing the
model with more extensive semantic embedding representations. Simultaneously, SLRBC
introduces the classical BiLSTM‑CRF framework to enhance the model’s ability in med‑
ical entity recognition. We conducted several comparative experiments on two public
NER datasets. The experimental results show that each module plays an indispensable
role in our proposed SLRBC. Specifically, the F1 of SLRBC increases by 0.78% to 9.71%
on CCKS2018 and 1.32% to 16.93% on CCKS2019, which validates the effectiveness of
the model and lays the foundation for clinical knowledge discovery in electronic medi‑
cal records.

Although SLRBC has achieved advanced performance in experiments, there are still
challenges and space for improvement. In the future, faced with increasingly complex
medical knowledge, we will delve deeper into integrating more domain knowledge and
merging the latest prompt learning paradigm to further elevate the model’s performance
and its practical value in clinical applications.
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