Emerging Data-Driven Calibration Research on an Improved Link Performance Function in an Urban Area
Abstract
:1. Introduction
2. Model
2.1. Problem Description
2.2. Model Analysis
3. Solution Method
3.1. Newton’s Method
Algorithm 1 Newton’s method for the calibration of the link performance function |
3.2. Bayesian Optimization
Algorithm 2 Bayesian optimization for the calibration of the link performance function |
Step 0: Set and . Randomly sample parameter sets . For each parameter set , calculate the objective function value . |
Step 1: Build the Gaussian process regression model based on and . Obtain the posterior distribution of based on the sampled points. |
Step 2: Use the posterior information obtained in the previous step, and maximize the acquisition function to determine a new sample point . |
Step 3: With , calculate the corresponding objective function value . Set and update and . |
Step 4: Check the termination criterion. If , return , or return to Step 1. |
3.3. Differential Evolution Algorithm
- (1)
- Initialization of the population
- (2)
- Mutation
- (3)
- Crossover
- (4)
- Selection
Algorithm 3 DE algorithm for the calibration of the link performance function |
4. Case Study
4.1. Study Area and LPR Data Analysis
4.2. Results
4.2.1. Calibration of the Link Performance Function
4.2.2. Calibration of the VOT
- (a)
- VOT of travel for work
- (b)
- VOT of travel for non-work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, J.; Huang, K.; Hawkins, J. The taxi sharing practices: Matching, routing and pricing methods. Multimodal Transp. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Zhou, G.; Huang, K.; Mao, L. Design of Commute Carpooling Based on Fixed Time and Routes. Int. J. Veh. Technol. 2014, 2014, 634926. [Google Scholar] [CrossRef]
- Zhou, G.; Lv, M.; Bao, T.; Mao, L.; Huang, K. Design of intelligent carpooling program based on big data analysis and multi-information perception. Clust. Comput. 2019, 22, 521–532. [Google Scholar] [CrossRef]
- Huang, K.; Liu, F.; Hu, Y.; Liu, Z. An analysis of the taxi-sharing organizing and pricing. In Green Intelligent Transportation Systems: Proceedings of the 7th International Conference on Green Intelligent Transportation System and Safety 7; Springer: Berlin, Germany, 2018; pp. 263–276. [Google Scholar]
- Spiess, H. Conical volume-delay functions. Transp. Sci. 1990, 24, 153–158. [Google Scholar] [CrossRef]
- Branston, D. Link capacity functions: A review. Transp. Res. 1976, 10, 223–236. [Google Scholar] [CrossRef]
- Huntsinger, L.F.; Rouphail, N.M. Bottleneck and queuing analysis: Calibrating volume–delay functions of travel demand models. Transp. Res. Rec. 2011, 2255, 117–124. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, H. Delay-function-based link models: Their properties and computational issues. Transp. Res. Part B Methodol. 2005, 39, 729–751. [Google Scholar] [CrossRef]
- Kucharski, R.R.; Drabicki, A. Estimating Macroscopic Volume Delay Functions with the Traffic Density Derived from Measured Speeds and Flows. J. Adv. Transp. 2017, 2017, 4629792. [Google Scholar] [CrossRef]
- Russo, F.; Vitetta, A. Reverse assignment: Calibrating link cost functions and updating demand from traffic counts and time measurements. Inverse Probl. Sci. Eng. 2011, 19, 921–950. [Google Scholar] [CrossRef]
- Yang, H.; Xu, W.; He, B.-S.; Meng, Q. Road pricing for congestion control with unknown demand and cost functions. Transp. Res. Part C Emerg. Technol. 2010, 18, 157–175. [Google Scholar] [CrossRef]
- Neuhold, R.; Fellendorf, M. Volume Delay Functions Based on Stochastic Capacity. Transp. Res. Rec. J. Transp. Res. Board 2014, 2421, 93–102. [Google Scholar] [CrossRef]
- Foytik, P.; Cetin, M.; Robinson, R.M. Calibration of BPR function based on link counts and its sensitivity to varying demand. In Proceedings of the Transportation Research Board 92nd Annual Meeting, Washington, DC, USA, 13–17 January 2013. [Google Scholar]
- Cheng, Q.; Liu, Z.; Lin, Y.; Zhou, X. An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship. Transp. Res. Part B Methodol. 2021, 153, 246–271. [Google Scholar] [CrossRef]
- Lu, Z.; Meng, Q.; Gomes, G. Estimating link travel time functions for heterogeneous traffic flows on freeways. J. Adv. Transp. 2016, 50, 1683–1698. [Google Scholar] [CrossRef]
- Hou, G.; Chen, S.; Bao, Y. Development of travel time functions for disrupted urban arterials with microscopic traffic simulation. Phys. A Stat. Mech. Its Appl. 2022, 593, 126961. [Google Scholar] [CrossRef]
- Wollenstein-Betech, S.; Sun, C.; Zhang, J.; Cassandras, C.G.; Paschalidis, I.C. Joint Data-Driven Estimation of Origin–Destination Demand and Travel Latency Functions in Multiclass Transportation Networks. IEEE Trans. Control Netw. Syst. 2022, 9, 1576–1588. [Google Scholar] [CrossRef]
- Balakrishna, R.; Ben-Akiva, M.; Koutsopoulos, H.N. Offline calibration of dynamic traffic assignment: Simultaneous de-mand-and-supply estimation. Transp. Res. Rec. 2007, 2003, 50–58. [Google Scholar] [CrossRef]
- Ran, B.; Rouphail, N.M.; Tarko, A.; E Boyce, D. Toward a class of link travel time functions for dynamic assignment models on signalized networks. Transp. Res. Part B Methodol. 1997, 31, 277–290. [Google Scholar] [CrossRef]
- Kachroo, P.; Sastry, S. Traffic Assignment Using a Density-Based Travel-Time Function for Intelligent Transportation Systems. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1438–1447. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, Z.; Guo, J.; Wu, X.; Pendyala, R.; Belezamo, B.; Zhou, X. Estimating key traffic state parameters through parsimonious spatial queue models. Transp. Res. Part C Emerg. Technol. 2022, 137, 103596. [Google Scholar] [CrossRef]
- Xing, J.; Liu, R.; Zhang, Y.; Choudhury, C.F.; Fu, X.; Cheng, Q. Urban network-wide traffic volume estimation under sparse deployment of detectors. Transp. A Transp. Sci. 2023, 2197511. [Google Scholar] [CrossRef]
- Zhou, X.S.; Cheng, Q.; Wu, X.; Li, P.; Belezamo, B.; Lu, J.; Abbasi, M. A meso-to-macro cross-resolution performance approach for connecting polynomial arrival queue model to volume-delay function with inflow demand-to-capacity ratio. Multimodal Transp. 2022, 1, 100017. [Google Scholar] [CrossRef]
- Akuh, R.; Zhong, M.; Raza, A.; Dong, Y. A method for evaluating the balance of land use and multimodal transport system of new towns/cities using an integrated modeling framework. Multimodal Transp. 2023, 2, 100063. [Google Scholar] [CrossRef]
- Almeida, L.S.; Goerlandt, F. An ant colony optimization approach to the multi-vehicle prize-collecting arc routing for connectivity problem. Multimodal Transp. 2022, 1, 100033. [Google Scholar] [CrossRef]
- Parishwad, O.; Jiang, S.; Gao, K. Investigating machine learning for simulating urban transport patterns: A comparison with traditional macro-models. Multimodal Transp. 2023, 2, 100085. [Google Scholar] [CrossRef]
- Xiao, D.; Kim, I.; Zheng, N. Recent advances in understanding the impact of built environment on traffic performance. Multimodal Transp. 2022, 1, 100034. [Google Scholar] [CrossRef]
- Durrani, U.; Lee, C. Calibration and Validation of Psychophysical Car-Following Model Using Driver’s Action Points and Perception Thresholds. J. Transp. Eng. Part A Syst. 2019, 145, 04019039. [Google Scholar] [CrossRef]
- Omrani, R.; Kattan, L. Concurrent Estimation of Origin-Destination Flows and Calibration of Microscopic Traffic Simulation Parameters in a High-Performance Computing Cluster. J. Transp. Eng. Part A Syst. 2018, 144, 04017068. [Google Scholar] [CrossRef]
- Ghiasi, A.; Hussain, O.; Qian, Z.; Li, X. Lane Management with Variable Lane Width and Model Calibration for Connected Automated Vehicles. J. Transp. Eng. Part A Syst. 2020, 146, 04019075. [Google Scholar] [CrossRef]
- Highway Capacity Manual; Transportation Research Board Special Report 209; Transportation Research Board, National Research Council: Washington, DC, USA, 1985.
- Davidson, K.B. A flow travel time relationship for use in transportation planning. In Proceedings of the 3rd Australian Road Research Board (ARRB) Conference, Sydney, Australia, 5–9 September 1966. [Google Scholar]
- Akçelik, R. Travel time functions for transport planning purposes: Davidson’s function, its time dependent form and alternative travel time function. Aust. Road Res. 1991, 21, 49–59. [Google Scholar]
- Singh, R. Updating Speed-Flow and Speed-Capacity Relationships in Traffic Assignment: 1990 Mtc Regional Travel Demand Model Development Project: Draft; University of California: Berkeley, CA, USA, 1993. [Google Scholar]
- Skabardonis, A.; Dowling, R. Improved Speed-Flow Relationships for Planning Applications. Transp. Res. Rec. J. Transp. Res. Board 1997, 1572, 18–23. [Google Scholar] [CrossRef]
- Davidson, K.B. The theoretical basis of a flow-travel time relationship for use in transportation planning. Aust. Road Res. 1978, 8, 23–35. [Google Scholar]
- Rose, G.; Taylor, M.A.P.; Tisato, P. Estimating travel time functions for urban roads: Options and issues. Transp. Plan. Technol. 1989, 14, 63–82. [Google Scholar] [CrossRef]
- Singh, R.; Dowling, R. Improved speed-flow relationships: Application to transportation planning models. Commonwealth of Massachusetts, Executive Office of Transportation and Construction; and Boston Metropolitan Planning Organization. In Proceedings of the Seventh TRB Conference on the Application of Transportation Planning Methods Transportation Research Board, Boston, MA, USA, 7–11 March 2002. [Google Scholar]
- Wang, Y.; Zhou, W.; Lyu, L. Research on the theory and application of road impedance function. J. Highw. Transp. Res. Dev. 2004, 21, 82–85. [Google Scholar]
- Paleti, R.; Vovsha, P.; Givon, D.; Birotker, Y. Impact of individual daily travel pattern on value of time. Transportation 2015, 42, 1003–1017. [Google Scholar] [CrossRef]
- Sobol, I.M. Sensitivity analysis for non-linear mathematical models. Math. Model. Comput. Exp. 1993, 1, 407–414. [Google Scholar]
- Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis. The Primer; John Wiley & Sons, Ltd.: London, UK, 2007. [Google Scholar]
- Dembo, R.S.; Eisenstat, S.C.; Steihaug, T. Inexact newton methods. SIAM J. Numer. Anal. 1982, 19, 400–408. [Google Scholar] [CrossRef]
- Huo, J.; Liu, Z.; Chen, J.; Cheng, Q.; Meng, Q. Bayesian optimization for congestion pricing problems: A general framework and its instability. Transp. Res. Part B Methodol. 2023, 169, 1–28. [Google Scholar] [CrossRef]
- Huo, J.; Liu, C.; Chen, J.; Meng, Q.; Wang, J.; Liu, Z. Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach. Transp. Res. Part E Logist. Transp. Rev. 2023, 173, 103108. [Google Scholar] [CrossRef]
- Otsuka, T.; Shimizu, H.; Iwata, T.; Naya, F.; Sawada, H.; Ueda, N. Bayesian optimization for crowd traffic control using multi-agent simulation. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, Auckland, New Zealand, 27–30 October 2019; pp. 1981–1988. [Google Scholar]
- Sha, D.; Ozbay, K.; Ding, Y. Applying Bayesian Optimization for Calibration of Transportation Simulation Models. Transp. Res. Rec. J. Transp. Res. Board 2020, 2674, 215–228. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Baskonus, H.M.; Ali, M.R.; Shah, N.A. Heuristic computing with sequential quadratic programming for solving a nonlinear hepatitis B virus model. Math. Comput. Simul. 2023, 212, 234–248. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Amin, F.; Saeed, T.; Sanchez, Y.G. Design of intelligent computing solver with Morlet wavelet neural networks for nonlinear predator–prey model. Appl. Soft Comput. 2023, 134, 109975. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Sabir, Z.; Alqhtani, M.; Umar, M.; Saad, K.M. Neuro-Evolutionary Computing Paradigm for the SIR Model Based on Infection Spread and Treatment. Neural Process. Lett. 2022, 55, 4365–4396. [Google Scholar] [CrossRef]
- Liu, J.; Lampinen, J. A fuzzy adaptive differential evolution algorithm. In Proceedings of the IEEE TENCOM’02, 2002 IEEE Region 10 Conference on Computer, Communications, Control and Power Engineering, Beijing, China, 28–31 October 2002. [Google Scholar]
- Huo, J.; Wu, X.; Lyu, C.; Zhang, W.; Liu, Z. Quantify the Road Link Performance and Capacity Using Deep Learning Models. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18581–18591. [Google Scholar] [CrossRef]
1.697 | 1.008 | |
5.5 × 10−5 | 2.406 × 10−4 | |
2.00 × 10−6 | 4.335 × 10−8 |
License Plate No. | Timestamp | Intersection No. | Intersection Name | Lane No. | Speed | Entrance Direction |
---|---|---|---|---|---|---|
ZB 1234 | 15 June 2018 07:00:00 | 330281000000011086 | Intersection of Chengdong Road and Ziling Road | 02 | 40 | 02 |
Monthly income range (yuan) | (0, 3000] | (3000, 6000] | (6000, 10,000] |
VOT range (yuan/hour) | (0, 17.05] | (17.05, 34.09] | (34.09, 56.82] |
Monthly income range (yuan) | (10,000, 15,000] | (15,000, 20,000] | (20,000, +∞] |
VOT range (yuan/hour) | (56.82, 85.23] | (85.23, 113.64] | (113.64, +∞] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Huang, K.; Wang, J.; Liu, W.; Shi, Y. Emerging Data-Driven Calibration Research on an Improved Link Performance Function in an Urban Area. Appl. Sci. 2023, 13, 13318. https://doi.org/10.3390/app132413318
Chen M, Huang K, Wang J, Liu W, Shi Y. Emerging Data-Driven Calibration Research on an Improved Link Performance Function in an Urban Area. Applied Sciences. 2023; 13(24):13318. https://doi.org/10.3390/app132413318
Chicago/Turabian StyleChen, Ming, Kai Huang, Jian Wang, Wenzhi Liu, and Yuanyuan Shi. 2023. "Emerging Data-Driven Calibration Research on an Improved Link Performance Function in an Urban Area" Applied Sciences 13, no. 24: 13318. https://doi.org/10.3390/app132413318
APA StyleChen, M., Huang, K., Wang, J., Liu, W., & Shi, Y. (2023). Emerging Data-Driven Calibration Research on an Improved Link Performance Function in an Urban Area. Applied Sciences, 13(24), 13318. https://doi.org/10.3390/app132413318