Activation of Persulfate for Groundwater Remediation: From Bench Studies to Application
Abstract
:1. Introduction
2. Activation Mechanism of Persulfate for ISCO Application
2.1. Heat Activation
Target Contaminats | Reaction Conditions | Removal Efficiency (%) | Ref. | ||
---|---|---|---|---|---|
Persulfate Conc. | Reaction Duration (d) | Temperature (°C) | |||
PAHs | 0.5 mmol L−1 | 3 | 40 | 87 | [21] |
50 | 96 | ||||
60 | 99 | ||||
TCE | 20 mmol L−1 | 1 | 20 | 7.6 | [61] |
30 | 31.6 | ||||
40 | 100 | ||||
50 | 100 | ||||
TCE | 15 mmol L−1 | 32 | 20 | 100 | [9] |
0.12 | 40 | 100 | |||
0.35 | 50 | 100 | |||
0.013 | 60 | 100 | |||
PCE | 15 mmol L−1 | 0.063 | 50 | 92 | [63] |
TPHs | 1000 mmol L−1 | 2 | 55 | 72.64 | [64] |
HCHs | 10 mmol L−1 | 9 | 55 | 83 | [65] |
Chlorinated Solvents | 100 mmol L−1 | 3 | 50 | 79.5 | [66] |
BPA | 8 mmol L−1 | 0.013 | 30 | 98.5 | [62] |
DDTs | 100 mmol L−1 | 7 | 50 | 92–94 | [67] |
2.2. Alkaline Activation
Target Contaminats | Reaction Conditions | Removal Efficiency (%) | Ref. | |||
---|---|---|---|---|---|---|
Persulfate Conc. | Reaction Duration (d) | pH | Type of Base | |||
PAHs | 0.5 mmol/L | 3 | 10 | NaOH | 55 | [21] |
11 | 62 | |||||
12 | 65 | |||||
HCHs and HeptaCHs | 100–400 mmol/L | 21 | Above 12 | NaOH | HCHs -90 HeptaCHs -70 | [57] |
TPHs | 420 mmol/L | 56 | 12 | NaOH | 98 | [58] |
BCP | 0.21 mol/L | 3 | ˃10 | NaOH | 97 | [13] |
Phenol | 210/420 mmol/L | 7 | 12 | NaOH | 100 | [59] |
BDE | 0.2 mol/L | 0.25 | 12 | NaOH | 30.9 | [70] |
With 55 °C | NaOH | 46.6 | ||||
With Fe2+ | NaOH | 51.5 | ||||
With ultrasonic | NaOH | 49.2 | ||||
TCA and TCE | 10–75 mmol/L | 2 | 12 with 50 °C | NaOH | 100 | [71] |
2.3. Iron Activation
Target Contaminats | Reaction Conditions | Removal Rate (%) | Ref. | ||||
---|---|---|---|---|---|---|---|
Persulfate Conc. | Reaction Times (d) | Iron-Selected | pH | Temperature (°C) | |||
PAHs | 1.85 mol/kg soil | 1 | Fe2+ | 7.2 | 25 ± 1 | 65 | [94] |
TCE | 0.009 mol/kg soil | 1 | Fe2+ | 4.2 | 20 | 100 | [76] |
TPHs | 0.021 mol/kg soil | 30 | Fe2+ | 5.63 | 25 ± 1 | 40 | [15] |
HCHs | 0.3 mol/kg soil | 1 | Fe2+ | 2 | 25 ± 1 | 89 | [95] |
PCBs | 1 mol/L | 3 | Fe2+ | 6.61 | 25 | 81 | [78] |
Atrazine | 50 mmol/L | 0.42 | Fe2+ | 3.0 | 23 | 80 | [96] |
PAHs | 200 mmol/L | 25 | Fe3+/nZVI | 7.5 | 25 | 81.42 | [97] |
PHE | 12 mmol/L | 2 | nZVI | 2.8 | 25 | 76 | [92] |
TBBPA | 25 mmol/L | 0.5 | nZVI | 5.5 | 25 | 78.3 | [93] |
PAHs | 1.2 | 7 | nano-Fe3O4 | 1.3 ± 0.2 | 24 ± 2 | 63 | [98] |
2.4. Electrical Activation
3. Applications and Development of Persulfate in ISCO
Target Contaminates | Activation Method | Persulfate Dosage | Duration | Removal Efficiency (%) | pH | Temperature (°C) | Ref. |
---|---|---|---|---|---|---|---|
PAHs, BTEX | Surfactant-alkaline | Na2S2O8–15,200 kg (25–50 g/L) | 5 months | 90.3 | - | - | [108] |
NaOH-61,950 kg (20 g/L) | |||||||
VerSOL-329,545 kg (5 g/L) | |||||||
PAHs, BTEX, TPH | hydrogen peroxide | Na2S2O8-50–100 g/L | 6.5 weeks | TPH-97 | - | - | [116] |
H2O2-0.5–4% (wt) | PAHs-73 | ||||||
DNAPL-950 L | |||||||
Cl-ethenes, dichloro-methane | Iron, peroxide, heat | Na2S2O8-48,500 L (10.5%wt) Iron-13,750 L (0.07%wt) | 86–96 | - | 45 | [113] | |
TPHs, VOCs & SVOCs | Surfactant-alkaline | VeruSol-2021 L | 7 days | TPH-92 | - | - | [109] |
Na2S2O8-17,413 L | |||||||
NaOH-17,034 L | |||||||
TCE, TCA, DCE | Alkaline (KOH), Fe2+ | Na2S2O8-4221.9 L (10%wt) | 4 months | 100 | - | - | [114] |
Diesel & Gasoline LNAPL | Peroxide | - | - | 99.33 | - | - | [117] |
PAHs, BTEX | Surfactant-iron | - | 70 days | BTEX -92 VOCs -91 | - | - | [118] |
BTEX, napthalene | CaO | - | - | 42–93 | - | - | [112] |
TPH | none | Na2S2O8-20 g/L | 120 days | 98 | - | - | [119] |
TCA, DCE, DCA | electrokinetically | 40 g/L | 208 days | 80 | - | 5–40 | [56] |
PCE, TCE, BTEX | Alkaline (NaOH) | Na2S2O8-26% (wt) | 12 weeks | over 90 | 4.9–9.1 | - | [110] |
NaOH-25% (wt) | |||||||
Na2S2O8:NaOH = 2:1 | |||||||
TCE | 5500 L of 5% persulfate solution | 75 days | 95–100 | 6.70–7.22 | 30.4–31.6 | [120] | |
TPHs, PAHs | CaO | Na2S2O8-249.76 t CaO-404.6 t | - | 60–99% | 1.9–9.3 | - | [121] |
4. Factors Affecting the Application of Persulfate in ISCO
4.1. pH
4.2. Persulfate Dosage
4.3. Persulfate Persistence
4.4. Radius of Influence of Persulfate
4.5. Soil Property
4.6. Dissolved Ions
5. Impact of Environmental Application
5.1. Rebound
5.2. Microbial Communities
6. Conclusions and Outlooks
Funding
Data Availability Statement
Conflicts of Interest
References
- Laud, R.; Kretinin, A.; Betts, S.C. An integrated model for large-scale social entrepreneurship: Addressing global water supply problems. Glob. J. Entrep. 2020, 4, 42. [Google Scholar]
- Polemio, M.; Zuffianò, L.E. Review of utilization management of groundwater at risk of salinization. J. Water Resour. Plan. 2020, 146, 03120002. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Saleh, O.K.; Ghanayem, H.M.; Zeleňáková, M.; Kuriqi, A. Numerical assessment of riverbank filtration using gravel back filter to improve water quality in arid regions. Front. Earth Sci. 2022, 10. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Karim, A.V.; Jiao, Y.; Zhou, M.; Nidheesh, P.V. Iron-based persulfate activation process for environmental decontamination in water and soil. Chemosphere 2021, 265, 129057. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.T.; Sun, K.; Lin, C.Y.; Ma, J.; He, M.C.; Ouyang, W. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Yan, Y.E.; Schwartz, F.W. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J. Contam. Hydrol. 1999, 37, 343–365. [Google Scholar] [CrossRef]
- Miller, C.M.; Valentine, R.L. Hydrogen-Peroxide Decomposition and Quinoline Degradation in the Presence of Aquifer Material. Water Res. 1995, 29, 2353–2359. [Google Scholar] [CrossRef]
- Liang, C.J.; Bruell, C.J.; Marley, M.C.; Sperry, K.L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil Sediment Contam. 2003, 12, 207–228. [Google Scholar] [CrossRef]
- Petigara, B.R.; Blough, N.V.; Mignerey, A.C. Mechanisms of hydrogen peroxide decomposition in soils. Environ. Sci. Technol. 2002, 36, 639–645. [Google Scholar] [CrossRef]
- Huang, K.C.; Hoag, G.E.; Chheda, P.; Woody, B.A.; Dobbs, G.M. Oxidation of chlorinated ethenes by potassium permanganate: A kinetics study. J. Hazard. Mater. 2001, 87, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Bruell, C.J. Thermally activated persulfate oxidation of trichloroethylene: Experimental investigation of reaction orders. Ind. Eng. Chem. Res. 2008, 47, 2912–2918. [Google Scholar] [CrossRef]
- Changyin, Z.; Fengxiao, Z.; Fuwang, W.; Juan, G.; Guangping, F.; Dongmei, Z.; Guodong, F. Comparison of persulfate activation and Fenton reaction in remediating an organophosphorus pesticides-polluted soil. Pedosphere 2017, 27, 465–474. [Google Scholar]
- Liang, S.H.; Kao, C.M.; Kuo, Y.C.; Chen, K.F.; Yang, B.M. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system. Water Res. 2011, 45, 2496–2506. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.H.; Chen, K.F.; Kao, C.M.; Liang, S.H.; Chen, T.Y. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants. J. Hazard. Mater. 2011, 186, 2097–2102. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Liang, C.P.; Chen, C.C. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. J. Contam. Hydrol. 2009, 106, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Hou, H.; Fujii, A.; Hosomi, M.; Li, F. Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation. Environ. Sci. Pollut. Res. 2014, 21, 7457–7465. [Google Scholar] [CrossRef]
- Zhong, H.; Brusseau, M.L.; Wang, Y.; Yan, N.; Quig, L.; Johnson, G.R. In-situ activation of persulfate by iron filings and degradation of 1,4-dioxane. Water Res. 2015, 83, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Guo, Y.Y.; Chien, Y.C.; Wu, Y.J. Oxidative Degradation of MTBE by Pyrite-Activated Persulfate: Proposed Reaction Pathways. Ind. Eng. Chem. Res. 2010, 49, 8858–8864. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Z.; Zeng, G.; Liu, Y.; Shao, B.; Li, Z.; Liu, Y.; Zhang, W.; He, Q. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: A mini review. Environ. Sci. Pollut. Res. Int. 2018, 25, 6158–6174. [Google Scholar] [CrossRef]
- Zhao, D.; Liao, X.; Yan, X.; Huling, S.G.; Chai, T.; Tao, H. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J. Hazard. Mater. 2013, s254–s255, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Ferrarese, E.; Andreottola, G.; Oprea, I.A. Remediation of PAH-contaminated sediments by chemical oxidation. J. Hazard. Mater. 2008, 152, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Gryzenia, J.; Cassidy, D.; Hampton, D. Production and accumulation of surfactants during the chemical oxidation of PAH in soil. Chemosphere 2009, 77, 540. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Lo, S.-L.; Chiueh, P.-T.; Chang, D.-G. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res. 2009, 43, 2811–2816. [Google Scholar] [CrossRef]
- Hao, F.; Guo, W.; Wang, A.; Leng, Y.; Li, H. Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant. Ultrason. Sonochem. 2014, 21, 554–558. [Google Scholar] [CrossRef]
- Johnson, R.L.; Tratnyek, P.G.; Johnson, R.O.B. Persulfate persistence under thermal activation conditions. Environ. Sci. Technol. 2008, 42, 9350–9356. [Google Scholar] [CrossRef] [PubMed]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Furman, O.S.; Teel, A.L.; Watts, R.J. Mechanism of base activation of persulfate. Environ. Sci. Technol. 2010, 44, 6423–6428. [Google Scholar] [CrossRef]
- Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 2010, 179, 552–558. [Google Scholar] [CrossRef]
- Xiong, X.; Sun, B.; Zhang, J.; Gao, N.; Shen, J.; Li, J.; Guan, X. Activating persulfate by Fe 0 coupling with weak magnetic field: Performance and mechanism. Water Res. 2014, 62, 53–62. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Teel, A.L.; Watts, R.J. Mechanism of persulfate activation by phenols. Environ. Sci. Technol. 2013, 47, 5864–5871. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Gao, J.; Dionysiou, D.D.; Liu, C.; Zhou, D. Activation of persulfate by quinones: Free radical reactions and implication for the degradation of PCBs. Environ. Sci. Technol. 2013, 47, 4605–4611. [Google Scholar] [CrossRef]
- Furman, O.S.; Teel, A.L.; Ahmad, M.; Merker, M.C.; Watts, R.J. Effect of Basicity on Persulfate Reactivity. J. Environ. Eng. -Asce 2011, 137, 241–247. [Google Scholar] [CrossRef]
- Fang, G.-D.; Dionysiou, D.D.; Al-Abed, S.R.; Zhou, D.-M. Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs. Appl. Catal. B Environ. 2013, 129, 325–332. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Ioannidi, A.A.; Mantzavinos, D.; Frontistis, Z. Heat-activated persulfate for the degradation of micropollutants in water: A comprehensive review and future perspectives. J. Environ. Manag. 2022, 318, 115568. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in aqueous solution. J. Phys. Chem. Eng. 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.X.; Yuan, X.Z.; Zhao, Y.L.; Wang, H. In-situ soil remediation via heterogeneous iron-based catalysts activated persulfate process: A review. Chem. Eng. J. 2022, 431, 133833. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.M.; Huang, D.L.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Gao, Y.; Champagne, P.; Blair, D.; He, O.; Song, T. Activated persulfate by iron-based materials used for refractory organics degradation: A review. Water Sci. Technol. 2020, 81, 853–875. [Google Scholar] [CrossRef] [Green Version]
- Matzek, L.W.; Carter, K.E. Activated persulfate for organic chemical degradation: A review. Chemosphere 2016, 151, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Nadim, F.; Hoag, G.E.; Liu, S.L.; Carley, R.J.; Zack, P. Detection and remediation of soil and aquifer systems contaminated with petroleum products: An overview. J. Pet. Sci. Eng. 2000, 26, 169–178. [Google Scholar] [CrossRef]
- Ranc, B.; Faure, P.; Croze, V.; Simonnot, M.O. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2016, 312, 280–297. [Google Scholar] [CrossRef] [PubMed]
- Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbaek, H.; Siegrist, R.L.; Bjerg, P.L. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiang, Y.; He, Y.; Yang, Y.; Zhang, J.; Luo, L.; Peng, H.; Dai, C.; Zhu, F.; Tang, L. Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. J. Hazard. Mater. 2018, 359, 396–407. [Google Scholar] [CrossRef]
- Devi, P.; Das, U.; Dalai, A.K. In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef]
- Rodriguez, S.; Vasquez, L.; Costa, D.; Romero, A.; Santos, A. Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere 2014, 101, 86–92. [Google Scholar] [CrossRef]
- Xiao, S.; Cheng, M.; Zhong, H.; Liu, Z.F.; Liu, Y.; Yang, X.; Liang, Q.H. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review. Chem. Eng. J. 2020, 384, 123265. [Google Scholar] [CrossRef]
- Wang, Q.F.; Shao, Y.S.; Gao, N.Y.; Liu, S.S.; Dong, L.; Rao, P.H.; Chu, W.H.; Xu, B.; An, N.; Deng, J. Impact of zero valent iron/persulfate preoxidation on disinfection byproducts through chlorination of alachlor. Chem. Eng. J. 2020, 380, 122435. [Google Scholar] [CrossRef]
- Liu, Y.K.; Wang, S.Y.; Wu, Y.L.; Chen, H.C.; Shi, Y.H.; Liu, M.; Dong, W.B. Degradation of ibuprofen by thermally activated persulfate in soil systems. Chem. Eng. J. 2019, 356, 799–810. [Google Scholar] [CrossRef]
- Khan, J.A.; He, X.; Shah, N.S.; Sayed, M.; Khan, H.M.; Dionysiou, D.D. Degradation kinetics and mechanism of desethyl-atrazine and desisopropyl-atrazine in water with OH and SO4− based-AOPs. Chem. Eng. J. 2017, 325, 485–494. [Google Scholar] [CrossRef]
- Monteagudo, J.M.; Duran, A.; Gonzalez, R.; Exposito, A.J. In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Appl. Catal. B-Environ. 2015, 176, 120–129. [Google Scholar] [CrossRef]
- Reddy, K.R.; Cameselle, C. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Wen, D.; Guo, X.; Li, Q.; Fu, R. Enhanced electrokinetically-delivered persulfate and alternating electric field induced thermal effect activated persulfate in situ for remediation of phenanthrene contaminated clay. J. Hazard. Mater. 2022, 423, 127199. [Google Scholar] [CrossRef]
- Chen, X.Q.; Murugananthan, M.; Zhang, Y.R. Degradation of p-Nitrophenol by thermally activated persulfate in soil system. Chem. Eng. J. 2016, 283, 1357–1365. [Google Scholar] [CrossRef]
- Head, N.A.; Gerhard, J.I.; Inglis, A.M.; Nunez Garcia, A.; Chowdhury, A.I.A.; Reynolds, D.A.; de Boer, C.V.; Sidebottom, A.; Austrins, L.M.; Eimers, J.; et al. Field test of electrokinetically-delivered thermally activated persulfate for remediation of chlorinated solvents in clay. Water Res. 2020, 183, 116061. [Google Scholar] [CrossRef] [PubMed]
- García-Cervilla, R.; Santos, A.; Romero, A.; Lorenzo, D. Remediation of soil contaminated by lindane wastes using alkaline activated persulfate: Kinetic model. Chem. Eng. J. 2020, 393, 124646. [Google Scholar] [CrossRef]
- Lominchar, M.A.; Santos, A.; de Miguel, E.; Romero, A. Remediation of aged diesel contaminated soil by alkaline activated persulfate. Sci. Total Environ. 2018, 622–623, 41–48. [Google Scholar] [CrossRef]
- Lominchar, M.A.; Rodriguez, S.; Lorenzo, D.; Santos, N.; Romero, A.; Santos, A. Phenol abatement using persulfate activated by nZVI, H(2)O(2) and NaOH and development of a kinetic model for alkaline activation. Environ. Technol. 2018, 39, 35–43. [Google Scholar] [CrossRef]
- House, D.A. Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 1962, 62, 185–203. [Google Scholar] [CrossRef]
- Gu, X.G.; Lu, S.G.; Li, L.; Qiu, Z.F.; Sui, Q.; Lin, K.F.; Luo, Q.S. Oxidation of 1,1,1-Trichloroethane Stimulated by Thermally Activated Persulfate. Ind. Eng. Chem. Res. 2011, 50, 11029–11036. [Google Scholar] [CrossRef]
- Xue, W.; Cao, S.; Liu, R.; Tang, R.; Chen, H.; Jiang, F. Preparation of nitrogen-containing carbon using a one-step thermal polymerization method for activation of peroxymonosulfate to degrade bisphenol A. Chemosphere 2020, 248, 126053. [Google Scholar] [CrossRef] [PubMed]
- Costanza, J.; Otano, G.; Callaghan, J.; Pennell, K.D. PCE oxidation by sodium persulfate in the presence of solids. Environ. Sci. Technol. 2010, 44, 9445–9450. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, Z.; Chen, Q.; Wang, C.; Ma, L.; Shen, G. Kill three birds with one stone: Iron-doped graphitic biochar from biogas residues for ammonium persulfate activation to simultaneously degrade benzo [a] pyrene and improve lettuce growth. Chem. Eng. J. 2022, 430, 132844. [Google Scholar] [CrossRef]
- Dominguez, C.M.; Romero, A.; Checa-Fernandez, A.; Santos, A. Remediation of HCHs-contaminated sediments by chemical oxidation treatments. Sci. Total Environ. 2021, 751, 141754. [Google Scholar] [CrossRef]
- Qi, C.D.; Liu, X.T.; Lin, C.Y.; Zhang, X.H.; Ma, J.; Tan, H.B.; Ye, W. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chem. Eng. J. 2014, 249, 6–14. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, D.; Zhu, F.; Liu, S.; Fang, G.; Gao, J.; Zhou, D. Rapid DDTs degradation by thermally activated persulfate in soil under aerobic and anaerobic conditions: Reductive radicals vs. oxidative radicals. J. Hazard. Mater. 2021, 402, 123557. [Google Scholar] [CrossRef]
- Block, P.A.; Brown, R.A.; Robinson, D. Novel activation technologies for sodium persulfate in situ chemical oxidation. In Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, 24–27 May 2004; pp. 24–27. [Google Scholar]
- Petri, B.G.; Watts, R.J.; Tsitonaki, A.; Crimi, M.; Thomson, N.R.; Teel, A.L. Fundamentals of ISCO using persulfate. In In Situ Chemical Oxidation for Groundwater Remediation; Springer: Berlin/Heidelberg, Germany, 2011; pp. 147–191. [Google Scholar]
- Peng, H.; Xu, L.; Zhang, W.; Liu, F.; Lu, X.; Lu, W.; Danish, M.; Lin, K. Different kinds of persulfate activation with base for the oxidation and mechanism of BDE209 in a spiked soil system. Sci. Total Environ. 2017, 574, 307–313. [Google Scholar] [CrossRef]
- Huang, M.; Wang, X.; Zhu, C.; Zhu, F.; Liu, P.; Wang, D.; Fang, G.; Chen, N.; Gao, S.; Zhou, D. Efficient chlorinated alkanes degradation in soil by combining alkali hydrolysis with thermally activated persulfate. J. Hazard. Mater. 2022, 438, 129571. [Google Scholar] [CrossRef]
- Kolthoff, I.; Medalia, A.; Raaen, H.P. The reaction between ferrous iron and peroxides. IV. Reaction with potassium persulfate1a. J. Am. Chem. Soc. 1951, 73, 1733–1739. [Google Scholar] [CrossRef]
- Ahn, S.; Peterson, T.D.; Righter, J.; Miles, D.M.; Tratnyek, P.G. Disinfection of ballast water with iron activated persulfate. Environ. Sci. Technol. 2013, 47, 11717–11725. [Google Scholar] [CrossRef]
- Liu, H.Z.; Bruton, T.A.; Doyle, F.M.; Sedlak, D.L. In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(III)- and Mn(IV)-Containing Oxides and Aquifer Materials. Environ. Sci. Technol. 2014, 48, 10330–10336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usman, M.; Faure, P.; Ruby, C.; Hanna, K. Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere 2012, 87, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Bruell, C.J.; Marley, M.C.; Sperry, K.L. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 2004, 55, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Pardo, F.; Rosas, J.M.; Santos, A.; Romero, A. Remediation of a Biodiesel Blend-Contaminated Soil with Activated Persulfate by Different Sources of Iron. Water Air Soil Pollut. 2015, 226, 1–12. [Google Scholar] [CrossRef]
- Tang, X.J.; Hashmi, M.Z.; Zeng, B.; Yang, J.W.; Shen, C.F. Application of iron-activated persulfate oxidation for the degradation of PCBs in soil. Chem. Eng. J. 2015, 279, 673–680. [Google Scholar] [CrossRef]
- Zhu, J.P.; Lin, Y.L.; Zhang, T.Y.; Cao, T.C.; Xu, B.; Pan, Y.; Zhang, X.T.; Gao, N.Y. Modelling of iohexol degradation in a Fe(II)-activated persulfate system. Chem. Eng. J. 2019, 367, 86–93. [Google Scholar] [CrossRef]
- Liang, C.; Bruell, C.J.; Marley, M.C.; Sperry, K.L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 2004, 55, 1213–1223. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, Y.; Wang, P.; Li, H.; Dong, W. Degradation of bisphenol A in aqueous solution by persulfate activated with ferrous ion. Environ. Sci. Pollut. Res. Int. 2013, 20, 4947–4953. [Google Scholar] [CrossRef]
- Rao, Y.F.; Qu, L.; Yang, H.; Chu, W. Degradation of carbamazepine by Fe(II)-activated persulfate process. J. Hazard. Mater. 2014, 268, 23–32. [Google Scholar] [CrossRef]
- Liang, C.; Lee, I.-L.; Hsu, I.-Y.; Liang, C.-P.; Lin, Y.-L. Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere 2008, 70, 426–435. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, X.; Mao, J.; Wu, X. Decomposition of sulfadiazine in a sonochemical Fe0-catalyzed persulfate system: Parameters optimizing and interferences of wastewater matrix. Appl. Catal. B Environ. 2016, 185, 31–41. [Google Scholar] [CrossRef]
- Ahmad, M.; Teel, A.L.; Watts, R.J. Persulfate activation by subsurface minerals. J. Contam. Hydrol. 2010, 115, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Teel, A.L.; Ahmad, M.; Watts, R.J. Persulfate activation by naturally occurring trace minerals. J. Hazard. Mater. 2011, 196, 153–159. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Xiang, L.; Bian, Y.; Zhao, Z.; Gao, Z.; Cheng, J.; Schaeffer, A.; Jiang, X.; Dionysiou, D.D. Degradation of mineral-immobilized pyrene by ferrate oxidation: Role of mineral type and intermediate oxidative iron species. Water Res. 2022, 217, 118377. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Han, D.Q.; Xu, Y.; Liu, Y.Y.; Shang, J.G. Persulfate activation by sulfide -modified nanoscale iron supported by biochar (S-nZVI/BC) for degradation of ciprofloxacin. Sep. Purif. Technol. 2020, 235, 116202. [Google Scholar] [CrossRef]
- Tosco, T.; Petrangeli Papini, M.; Cruz Viggi, C.; Sethi, R. Nanoscale zerovalent iron particles for groundwater remediation: A review. J. Clean. Prod. 2014, 77, 10–21. [Google Scholar] [CrossRef]
- Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology 2017, 30, 1–14. [Google Scholar] [CrossRef]
- Liu, G.; Liao, B.; Quan, X.; Xu, W.; Lu, T.; Deng, X.; Liu, J. Highly remediation capacity of tetracycline by iron-manganese bimetallic materials: Performance and mechanisms. J. Water Process Eng. 2022, 50, 103318. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, J.Y.; Kim, T.Y.; Shin, W.S.; Hwang, I. Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI. Environ. Sci. Technol. 2018, 52, 3625–3633. [Google Scholar] [CrossRef]
- Yuan, X.; Li, T.; He, Y.; Xue, N. Degradation of TBBPA by nZVI activated persulfate in soil systems. Chemosphere 2021, 284, 131166. [Google Scholar] [CrossRef]
- Shih, Y.J.; Binh, N.T.; Chen, C.W.; Chen, C.F.; Dong, C.D. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes. Chemosphere 2016, 150, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Tascone, O.; Faure, P.; Hanna, K. Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils. Sci. Total Environ. 2014, 476-477, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Hu, X.X.; Yang, Y.; Jiang, C.L.; Bian, C.; Liu, C.; Zhang, M.Y.; Cai, T.M. Degradation of atrazine and structurally related s-triazine herbicides in soils by ferrous-activated persulfate: Kinetics, mechanisms and soil-types effects. Chem. Eng. J. 2018, 351, 523–531. [Google Scholar] [CrossRef]
- Pardo, F.; Santos, A.; Romero, A. Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: A column study. Sci. Total Environ. 2016, 566–567, 480–488. [Google Scholar] [CrossRef]
- Peluffo, M.; Rosso, J.A.; Morelli, I.S.; Mora, V.C. Strategies for oxidation of PAHs in aged contaminated soil by batch reactors. Ecotoxicol. Environ. Saf. 2018, 151, 76–82. [Google Scholar] [CrossRef]
- Yuan, S.; Liao, P.; Alshawabkeh, A.N. Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environ. Sci. Technol. 2014, 48, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Lu, H.; He, L.; Zhang, Y. Enhanced electrokinetic technologies with oxidization-reduction for organically-contaminated soil remediation. Chem. Eng. J. 2014, 247, 111–124. [Google Scholar] [CrossRef]
- Fan, G.; Cang, L.; Fang, G.; Qin, W.; Ge, L.; Zhou, D. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of injection spot. Chemosphere 2014, 117, 410–418. [Google Scholar] [CrossRef]
- Yang, G.C.; Chiu, Y.-H.; Wang, C.-L. Integration of electrokinetic process and nano-Fe3O4/S2O82− oxidation process for remediation of phthalate esters in river sediment. Electrochim. Acta 2015, 181, 217–227. [Google Scholar] [CrossRef]
- Isosaari, P.; Piskonen, R.; Ojala, P.; Voipio, S.; Eilola, K.; Lehmus, E.; Itavaara, M. Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay. J. Hazard. Mater. 2007, 144, 538–548. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Ma, J.; Qu, J.; Yang, Y.; Zhang, S. Remediation of soil co-contaminated with decabromodiphenyl ether (BDE-209) and copper by enhanced electrokinetics-persulfate process. J. Hazard. Mater. 2019, 369, 448–455. [Google Scholar] [CrossRef]
- Yang, G.C.; Yeh, C.-F. Enhanced nano-Fe3O4/S2O82− oxidation of trichloroethylene in a clayey soil by electrokinetics. Sep. Purif. Technol. 2011, 79, 264–271. [Google Scholar] [CrossRef]
- Yukselen-Aksoy, Y.; Reddy, K.R. Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim. Acta 2012, 86, 164–169. [Google Scholar] [CrossRef]
- Fan, G.P.; Cang, L.; Fang, G.D.; Zhou, D.M. Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. Sep. Purif. Technol. 2014, 123, 106–113. [Google Scholar] [CrossRef]
- EthicalChem, 2016a. S-ISCO Remediation of Coal Tar Contamination at NYC Brownfield Site, Queens, New York. Available online: http://media.wix.com/ugd/9b5eec_3b8b10eb81f84e2bbbf9f88775d626d4.pdf (accessed on 27 February 2016).
- EthicalChem, 2016b. S-ISCO Remediation of EPH Contamination at a Former Truck Service Facility in New Jersey. Available online: http://media.wix.com/ugd/9b5eec_d4fdd4f242924236b19f8c37d659d2f0.pdf (accessed on 27 February 2016).
- Dombrowski PE, P.M.; Kelly PE, K.M.; Brown PE, J. Fast-track remedial design of full-scale ISCO application using pilot scale testing and field screening parameters. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Amherst, MA, USA, 18–21 October 2010; p. 16. [Google Scholar]
- Wang, Z.; Deng, D.Y.; Yang, L.L. Degradation of dimethyl phthalate in solutions and soil slurries by persulfate at ambient temperature. J. Hazard. Mater. 2014, 271, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Lewis, R.; Rafalko, L.; Erbe, M.; Brown, R. Remediating MGP residuals using sodium persulfate and calcium peroxide. In Proceedings of the Third International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater (ORT-3); Redox Technologies: San Diego, CA, USA, 2004. [Google Scholar]
- Thompson, S.; Riggenbach, J.; Brown, R.; Hines, J.; Haselow, J. Catalyzed persulfate remediation of chlorinated and recalcitrant compounds in soil. In Proceedings of the 5 th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, 22–25 May 2006; Battelle Press: Columbus, OH, USA, 2006. [Google Scholar]
- Smith, G.; Barnes, J.; Janes, M.; Patterson, C. In-situ chemical oxidation utilizing potassium permanganate and sodium persulfate. In Proceedings of the ISCO of Contaminated Soil and Groundwater with Persulfate, Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds; Battelle Press: Columbus, OH, USA, 2006. [Google Scholar]
- Besha, A.T.; Bekele, D.N.; Naidu, R.; Chadalavada, S. Recent advances in surfactant-enhanced In-Situ Chemical Oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers. Environ. Technol. Innov. 2018, 9, 303–322. [Google Scholar] [CrossRef]
- EthicalChem, 2016c. SEPR and S-ISCO Remediation of MGP Gasworks, Sydney Australia. Available online: http://media.wix.com/ugd/9b5eec_1cc453253d8d48149bc96f2ab39f0894.pdf (accessed on 27 February 2016).
- USEPA, 2016. A Citizen’s Guide to in Situ Chemical Oxidation. 2012. Available online: https://cluin.org/download/Citizens/a_citizens_guide_to_in_situ_chemical_oxidation.pdf (accessed on 16 March 2016).
- EthicalChem, 2016d. Surfactant Enhanced In-Situ Chemical Oxidation (S-ISCO Remediation of TCA at a New York Site). Available online: http://media.wix.com/ugd/9b5eec_a6bbe301ad114f7580dc59ea7c7507fe.pdf (accessed on 27 February 2016).
- Sra, K.S.; Thomson, N.R.; Barker, J.F. Persulfate injection into a gasoline source zone. J. Contam. Hydrol. 2013, 150, 35–44. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, T.Y.; Tsai, Y.P.; Chen, K.F. Remediation of trichloroethene (TCE)-contaminated groundwater by persulfate oxidation: A field-scale study. RSC Adv. 2018, 8, 2433–2440. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Shi, F.; You, H.; Wang, S. Integrated remediation for organic-contaminated site by forcing running-water to modify alkali-heat/persulfate via oxidation process transfer. Chemosphere 2021, 262, 128352. [Google Scholar] [CrossRef]
- Waisner, S.; Medina, V.F.; Morrow, A.B.; Nestler, C.C. Evaluation of chemical treatments for a mixed contaminant soil. J. Environ. Eng. 2008, 134, 743–749. [Google Scholar] [CrossRef]
- Xing, S.T.; Li, W.Q.; Liu, B.; Wu, Y.S.; Gao, Y.Z. Removal of ciprofloxacin by persulfate activation with CuO: A pH-dependent mechanism. Chem. Eng. J. 2020, 382, 122837. [Google Scholar] [CrossRef]
- Sperry, K.; Marley, M.; Bruell, C.; Liang, C.; Hochreiter, J. Iron catalyzed persulfate oxidation of chlorinated solvents. In Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, 20–23 May 2002; p. 2002. [Google Scholar]
- Crimi, M.L.; Taylor, J. Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil Sediment Contam. 2007, 16, 29–45. [Google Scholar] [CrossRef]
- da Silva-Rackov, C.K.; Lawal, W.A.; Nfodzo, P.A.; Vianna, M.M.; do Nascimento, C.A.; Choi, H. Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite. Appl. Catal. B Environ. 2016, 192, 253–259. [Google Scholar] [CrossRef]
- Deng, R.R.; Xie, Z.M.; Liu, Z.H.; Tao, C.Y. Leaching kinetics of vanadium catalyzed by electric field coupling with sodium persulfate. J. Electroanal. Chem. 2019, 854, 113542. [Google Scholar] [CrossRef]
- Krembs, F.J. Critical Analysis of the Field Scale Application of in Situ Chemical Oxidation for the Remediation of Contaminated Groundwater; Colorado School of Mines Golden: Golden, CO, USA, 2008. [Google Scholar]
- Sra, K.S.; Thomson, N.R.; Barker, J.F. Persistence of persulfate in uncontaminated aquifer materials. Environ. Sci. Technol. 2010, 44, 3098–3104. [Google Scholar] [CrossRef]
- Sra, K.S.; Thomson, N.R.; Barker, J.F. Stability of Activated Persulfate in the Presence of Aquifer Solids. Soil Sediment. Contam 2014, 23, 820–837. [Google Scholar] [CrossRef]
- Favero, M.; Freitas, J.G.; Furquim, S.A.; Thomson, N.R.; Cooper, M. How ISCO Can Interfere in Soil Pore Distribution and Solute Transport. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA; 2016; p. H33A-1508. [Google Scholar]
- Merker, M.C. Persulfate Transport in Two Low-Permeability Soils; Washington State University: Washington, DC, USA, 2010. [Google Scholar]
- Fan, G.; Cang, L.; Gomes, H.I.; Zhou, D. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: Effect of different activation methods. Chemosphere 2016, 144, 138–147. [Google Scholar] [CrossRef]
- Sutton, N.B.; Kalisz, M.; Krupanek, J.; Marek, J.; Grotenhuis, T.; Smidt, H.; de Weert, J.; Rijnaarts, H.H.M.; van Gaans, P.; Keijzer, T. Geochemical and Microbiological Characteristics during in Situ Chemical Oxidation and in Situ Bioremediation at a Diesel Contaminated Site. Environ. Sci. Technol. 2014, 48, 2352–2360. [Google Scholar] [CrossRef]
- Zlotnik, V.A.; Zurbuchen, B.R. Field study of hydraulic conductivity in a heterogeneous aquifer: Comparison of single-borehole measurements using different instruments. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Haselow, J.S.; Siegrist, R.L.; Crimi, M.; Jarosch, T. Estimating the total oxidant demand for in situ chemical oxidation design. Remediat. J. J. Environ. Cleanup Costs Technol. 2003, 13, 5–16. [Google Scholar] [CrossRef]
- Fang, G.D.; Chen, X.R.; Wu, W.H.; Liu, C.; Dionysiou, D.D.; Fan, T.T.; Wang, Y.J.; Zhu, C.Y.; Zhou, D.M. Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification. Environ. Sci. Technol. 2018, 52, 14352–14361. [Google Scholar] [CrossRef] [PubMed]
- Koprivnjak, J.; Blanchette, J.; Bourbonniere, R.; Clair, T.; Heyes, A.; Lum, K.; McCrea, R.; Moore, T. The underestimation of concentrations of dissolved organic carbon in freshwaters. Water Res. 1995, 29, 91–94. [Google Scholar] [CrossRef]
- Kiem, R.; Kögel-Knabner, I. Refractory organic carbon in particle-size fractions of arable soils II: Organic carbon in relation to mineral surface area and iron oxides in fractions < 6 μm. Org. Geochem. 2002, 33, 1699–1713. [Google Scholar]
- Mustapha, N.A.; Liu, H.; Ibrahim, A.O.; Huang, Y.; Liu, S. Degradation of aniline in groundwater by persulfate with natural subsurface sediment as the activator. Chem. Eng. J. 2021, 417, 128078. [Google Scholar] [CrossRef]
- Bennedsen, L.R.; Muff, J.; Sogaard, E.G. Influence of chloride and carbonates on the reactivity of activated persulfate. Chemosphere 2012, 86, 1092–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Li, L.; Lin, K.; Zhang, W.; Lu, S.; Luo, Q. Removal of 1,1,1-trichloroethane from aqueous solution by a sono-activated persulfate process. Ultrason. Sonochem. 2013, 20, 855–863. [Google Scholar] [CrossRef]
- Anand, M.; Ma, K.M.; Okonski, A.; Levin, S.; McCreath, D. Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient. Sci. Total Environ. 2003, 311, 247–259. [Google Scholar] [CrossRef]
- Mora, V.C.; Madueno, L.; Peluffo, M.; Rosso, J.A.; Del Panno, M.T.; Morelli, I.S. Remediation of phenanthrene-contaminated soil by simultaneous persulfate chemical oxidation and biodegradation processes. Environ. Sci. Pollut. Res. Int. 2014, 21, 7548–7556. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, Y.; Zhang, Q.; Cao, M.; Guo, W.; Li, H.; Wu, Y.; Wang, H.; Su, Y.; Cao, J. Promotion of short-chain fatty acids production and fermented sludge properties via persulfate treatments with different activators: Performance and mechanisms. Bioresour. Technol. 2020, 295, 122278. [Google Scholar] [CrossRef]
- Sutton, N.B.; Atashgahi, S.; van der Wal, J.; Wijn, G.; Grotenhuis, T.; Smidt, H.; Rijnaarts, H.H. Microbial dynamics during and after in situ chemical oxidation of chlorinated solvents. Ground Water 2015, 53, 261–270. [Google Scholar] [CrossRef]
Target Contaminats | Reaction Conditions | Removal Efficiency (%) | Ref. | ||||
---|---|---|---|---|---|---|---|
Persulfate Conc. | Reaction Duration (d) | Coupling Method | pH | Temperature (°C) | |||
PAHs | 223 mmol/L | 56 | 6.5 | 20 | 35 | [103] | |
TCE | 1 g/L | 14 | 7.23 | 25 | 92.4 | [105] | |
1 g/L | 14 | nano- Fe3O4 | 7.23 | 25 | 97.4 | ||
PCBs | 30% by weight | 10 | 4.9 | 23 | 77.9 | [106] | |
Dimethl phthalate | 3.14 g/L | 28 | nano- Fe3O4 | 7.7 | 20 | 97.92 | [102] |
PCBs | 20% by weight | 15 | pH = 12 | 12 | - | 40.5 | [107] |
BDE-209 and Cu | 0.1 mol/L | 10 | Coupled with NaNO3 | 5.1 | - | 88.6 | [104] |
PHE | 10% | 25 | 0.01 mol/L NaNO3 | 7.99 | 15 | 78.8% | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, G.; He, J.; Zhong, H. Activation of Persulfate for Groundwater Remediation: From Bench Studies to Application. Appl. Sci. 2023, 13, 1304. https://doi.org/10.3390/app13031304
Li Y, Liu G, He J, Zhong H. Activation of Persulfate for Groundwater Remediation: From Bench Studies to Application. Applied Sciences. 2023; 13(3):1304. https://doi.org/10.3390/app13031304
Chicago/Turabian StyleLi, Yan, Guansheng Liu, Jinping He, and Hua Zhong. 2023. "Activation of Persulfate for Groundwater Remediation: From Bench Studies to Application" Applied Sciences 13, no. 3: 1304. https://doi.org/10.3390/app13031304
APA StyleLi, Y., Liu, G., He, J., & Zhong, H. (2023). Activation of Persulfate for Groundwater Remediation: From Bench Studies to Application. Applied Sciences, 13(3), 1304. https://doi.org/10.3390/app13031304