Calculation of Theoretical Travel Time and Automatic Picking of Actual Travel Time in Seismic Data
Abstract
:1. Introduction
2. Seismic Phase Theory Travel Time Calculation
3. Automatic Picking of the Seismic Phase Actual Travel Time
4. Application Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Z. Development of Automatic Earthquake Quick Report in China. Earthq. Res. China 2020, 34, 219–226. [Google Scholar]
- Jeffreys, H.; Bullen, K.E. Seismology Tables; British Association of Seismological Investigations: London, UK, 1940. [Google Scholar]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Kenntt, B.L.N.; Engdahl, E.R. Travel times for global earthquake location and phase association. Geophys. J. Int. 1991, 105, 429–465. [Google Scholar] [CrossRef] [Green Version]
- Engdahl, E.R.; Van der Hilst, R.; Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 1998, 88, 722–743. [Google Scholar] [CrossRef]
- Steck, L.K.; Thurber, C.H.; Fehler, M.C. Crust and upper mantle P wave velocity structure beneath Valles caldera, New Mexico: Results from the Jemez teleseismic tomography experiment. J. Geophys. Res. Solid Earth 1998, 103, 24301–24320. [Google Scholar] [CrossRef]
- Bijwaard, H.; Spakman, W. Fast kinematic ray tracing of first-and later-arriving global seismic phases. Geophys. J. Int. 1999, 139, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Keyser, M.; Ritter, J.R.R.; Jordan, M. 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet. Sci. Lett. 2002, 203, 59–82. [Google Scholar] [CrossRef]
- Zhao, D.; Lei, J. Seismic ray path variations in a 3D global velocity model. Phys. Earth Planet. Inter. 2004, 141, 153–166. [Google Scholar] [CrossRef]
- Wang, J.Y. Inverse Theory in Geophysics, 2nd ed.; Higher Education Press: Beijing, China, 2002. [Google Scholar]
- Bai, C.; Huang, G.; Zhao, R. 2-D/3-D irregular shortest-path ray tracing for multiple arrivals and its applications. Geophys. J. Int. 2010, 183, 1596–1612. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.J.; Bai, C.Y.; Greenhalgh, S. Fast and accurate global multiphase arrival tracking: The irregular shortest-path method in a 3-D spherical earth model. Geophys. J. Int. 2013, 194, 1878–1892. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Liu, Q.Y.; Chen, J.H.; Zhao, D.P.; Li, S.C.; Lai, Y.G. Seismic tomography of the Seismic tomography of the crust and upper mantle structure underneath the Chinese Tianshan. Chin. J. Geophys. 2006, 49, 1693–1700. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, D.; Hasegawa, A.; Horiuchi, S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res. Solid Earth 1992, 97, 19909–19928. [Google Scholar] [CrossRef]
- Zhao, D.; Hasegawa, A.; Kanamori, H. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J. Geophys. Res. Solid Earth 1994, 99, 22313–22329. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhao, D. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. Solid Earth 2006, 111, B09305. [Google Scholar] [CrossRef]
- Sleeman, R.; Van Eck, T. Robust automatic P-phase picking: An on-line implementation in the analysis of broadband seismogram recordings. Phys. Earth Planet. Inter. 1999, 113, 265–275. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.H.; Liu, Q.Y.; Li, S.C.; Guo, B. Automatic onset phase picking for portable seismic array observation. Acta Seismol. Sin. 2006, 28, 42–51. (In Chinese) [Google Scholar] [CrossRef]
- Bear, L.K.; Pavlis, G.L. Multi-channel estimation of time residuals from broadband seismic data using multi-wavelets. Bull. Seismol. Soc. Am. 1999, 89, 681–692. [Google Scholar] [CrossRef]
- Chevrot, S. Optimal measurement of relative and absolute delay times by simulated annealing. Geophys. J. Int. 2002, 151, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532. [Google Scholar] [CrossRef]
- da Silva, S.L.E.F.; Corso, G. Microseismic event detection in noisy environments with instantaneous spectral Shannon entropy. Phys. Rev. E 2022, 106, 014133. [Google Scholar] [CrossRef]
- Wu, H.; Xiao, W.; Ren, H. Automatic Time Picking for Weak Seismic Phase in the Strong Noise and Interference Environment: An Hybrid Method Based on Array Similarity. Sensors 2022, 22, 9924. [Google Scholar] [CrossRef] [PubMed]
- Dimililer, K.; Dindar, H.; Al-Turjman, F. Deep learning, machine learning and internet of things in geophysical engineering applications: An overview. Microprocess. Microsyst. 2021, 80, 103613. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, Z.; Liu, C.; Zhao, D.; Yao, Z. Deep learning for picking seismic arrival times. J. Geophys. Res. Solid Earth 2019, 124, 6612–6624. [Google Scholar] [CrossRef]
- Russell, B. Machine learning and geophysical inversion—A numerical study. Lead. Edge 2019, 38, 512–519. [Google Scholar] [CrossRef]
- Molyneux, J.B.; Schmitt, D.R. First-break timing: Arrival onset times by direct correlation. Geophysics 1999, 64, 1492–1501. [Google Scholar] [CrossRef] [Green Version]
- VanDecar, J.C.; Crosson, R.S. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bull. Seismol. Soc. Am. 1990, 80, 150–169. [Google Scholar]
- Rawlinson, N.; Kennett, B.L.N. Rapid estimation of relative and absolute delay times across a network by adaptive stacking. Geophys. J. Int. 2004, 157, 332–340. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, Y.; Xiong, B.; Ren, Q.; Hu, J.; Gao, W.; Tian, Y.; Xi, Z. Numerical modeling of global seismic phases and its application in seismic phase identification. Earthq. Sci. 2019, 32, 72–79. [Google Scholar] [CrossRef]
- Boisse, P.H.; Bussy, P.; Ladeveze, P. A new approach in non-linear mechanics: The large time increment method. Int. J. Numer. Methods Eng. 1990, 29, 647–663. [Google Scholar] [CrossRef]
Depth (km) | Radius (km) | VP (km/s) | VS (km/s) |
---|---|---|---|
0.0~20.0 | 6351~6371 | 5.8 | 3.36 |
20.0~35.0 | 6336~6351 | 6.5 | 3.75 |
35.0~120.0 | 6251~6336 | 8.78541 − 0.749530x | 6.706231 − 2.248585x |
120.0~210.0 | 6161~6251 | 25.41389 − 17.69722x | 5.750200 − 1.274200x |
210.0~410.0 | 5961~6161 | 30.78765 − 23.25415x | 15.242130 − 11.085520x |
410.0~660.0 | 5711~5961 | 29.38896 − 21.40656x | 17.707320 − 13.506520x |
660.0~760.0 | 5611~5711 | 25.96984 − 16.93412x | 20.768900 − 16.531470x |
760.0~2740.0 | 3631~5611 | 25.14860 − 41.15380x + 51.99320x2 − 26.60830x3 | 12.930300 − 21.259000x + 27.89880 x2 − 14.10800 x3 |
2740.0~2889.0 | 3482~3631 | 14.49470 − 1.47089x | 8.166160 − 1.582060x |
2889.0~5153.9 | 1217.1~3482 | 10.03904 + 3.75665x − 13.67046 x2 | 0 |
5153.9~6371.0 | 0~1217.1 | 11.24094 − 4.09689 x2 | 3.564540 − 3.452410 x2 |
Event | Time (UTC) | Longitude | Latitude | Depth (km) | Magnitude | Phase |
---|---|---|---|---|---|---|
#1 | 4 November 2015 3:44:15 | 124.88 | −8.34 | 20.00 | 6.5 | P |
#2 | 26 November 2015 5:45:18 | −71.29 | −9.19 | 599.35 | 6.7 | PKIKP |
Stat | Lat. | Lon. | Alt. (m) | #1 | #2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Distance | Tobs | Tcal | Tdelt | Coef | Distance | Tobs | Tcal | Tdelt | Coef | ||||
YK21 | 21.9943 | 111.0042 | 97 | 33.193 | 394.642 | 395.242 | −0.6 | 0.933 | 166.948 | 1138.193 | 1137.163 | 1.03 | 0.949 |
FS21 | 22.0011 | 109.9945 | 84 | 33.617 | 398.328 | 398.928 | −0.6 | 0.909 | 167.069 | 1138.244 | 1137.254 | 0.99 | 0.945 |
YA11 | 23.0113 | 111.9918 | 39 | 33.739 | 399.389 | 399.989 | −0.6 | 0.990 | 165.767 | 1137.350 | 1136.240 | 1.11 | 0.943 |
GL21 | 22.0069 | 109.4934 | 65 | 33.838 | 400.549 | 400.849 | −0.3 | 0.941 | 167.100 | 1138.087 | 1137.277 | 0.81 | 0.957 |
NP21 | 21.9902 | 108.9901 | 2 | 34.046 | 402.453 | 402.653 | −0.2 | 0.976 | 167.136 | 1137.884 | 1137.304 | 0.58 | 0.943 |
ZC11 | 23.0118 | 109.0052 | 86 | 34.937 | 410.847 | 410.347 | 0.5 | 0.986 | 166.114 | 1137.632 | 1136.522 | 1.11 | 0.918 |
ZP21 | 24.0041 | 111.0215 | 120 | 35.007 | 411.052 | 410.952 | 0.1 | 0.971 | 164.962 | 1136.745 | 1135.575 | 1.17 | 0.964 |
SB11 | 23.5074 | 109.4913 | 135 | 35.169 | 412.608 | 412.340 | 0.269 | 1.000 | 165.602 | 1136.938 | 1136.108 | 0.83 | 0.918 |
BB21 | 24.5018 | 111.4985 | 153 | 35.287 | 413.154 | 413.354 | −0.2 | 0.941 | 164.399 | 1136.211 | 1135.081 | 1.13 | 0.959 |
JX21 | 24.0076 | 109.9857 | 183 | 35.414 | 414.745 | 414.445 | 0.3 | 0.953 | 165.072 | 1136.518 | 1135.668 | 0.85 | 0.976 |
XP21 | 24.4994 | 110.4897 | 194 | 35.660 | 416.958 | 416.558 | 0.4 | 0.987 | 164.536 | 1136.256 | 1135.206 | 1.05 | 0.900 |
JY21 | 25.0271 | 111.0226 | 339 | 35.941 | 419.264 | 418.964 | 0.3 | 0.986 | 163.950 | 1135.772 | 1134.682 | 1.09 | 0.946 |
YF21 | 25.0157 | 110.0182 | 138 | 36.309 | 422.412 | 422.112 | 0.3 | 0.976 | 164.065 | 1135.537 | 1134.787 | 0.75 | 0.979 |
SD21 | 25.0039 | 109.5137 | 358 | 36.497 | 424.116 | 423.716 | 0.4 | 0.988 | 164.107 | 1135.508 | 1134.825 | 0.68 | 1.000 |
LC21 | 25.0046 | 108.9980 | 137 | 36.707 | 425.899 | 425.499 | 0.4 | 0.990 | 164.122 | 1135.398 | 1134.839 | 0.56 | 0.949 |
SJ21 | 25.9423 | 109.5843 | 240 | 37.314 | 431.058 | 430.658 | 0.4 | 0.986 | 163.166 | 1134.542 | 1133.952 | 0.59 | 0.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Wang, Y.; Yang, Y.; Peng, S.; Yu, S.; Liu, L.; Yan, L. Calculation of Theoretical Travel Time and Automatic Picking of Actual Travel Time in Seismic Data. Appl. Sci. 2023, 13, 1341. https://doi.org/10.3390/app13031341
Gao W, Wang Y, Yang Y, Peng S, Yu S, Liu L, Yan L. Calculation of Theoretical Travel Time and Automatic Picking of Actual Travel Time in Seismic Data. Applied Sciences. 2023; 13(3):1341. https://doi.org/10.3390/app13031341
Chicago/Turabian StyleGao, Wenqi, Youxue Wang, Yang Yang, Sanxi Peng, Songping Yu, Lu Liu, and Lei Yan. 2023. "Calculation of Theoretical Travel Time and Automatic Picking of Actual Travel Time in Seismic Data" Applied Sciences 13, no. 3: 1341. https://doi.org/10.3390/app13031341
APA StyleGao, W., Wang, Y., Yang, Y., Peng, S., Yu, S., Liu, L., & Yan, L. (2023). Calculation of Theoretical Travel Time and Automatic Picking of Actual Travel Time in Seismic Data. Applied Sciences, 13(3), 1341. https://doi.org/10.3390/app13031341