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Abstract: Research in the training simulation sector to improve the realism and immersive experience
of operator training simulators (OTSs) entails combining cutting-edge technologies such as virtual
reality (VR) and augmented reality (AR). Although most of the existing studies has been about
troubleshooting training, research into the response to chemical accidents through mutual cooperation
between the participants has been insufficient. Therefore, we developed an immersive OTS that can
facilitate mutual cooperation. Training processes to educate trainees in general chemical facilities
were selected, while changes that can occur in facilities during an accident and the corresponding
responses in various scenarios were used as the training content. A communication system that
relays information between the worksite and the control room was implemented using a distributed
control system (DCS) and AR technology. We installed a pilot plant and developed a DCS, thereby
establishing an infrastructure that allows the boardman and field operator to cooperate during
accident scenarios. Furthermore, we developed an OTS that allowed trainees to learn prompt and
accurate responses to chemical accidents through operation of the actual equipment. The training
effect of the OTS was found to be approximately 4.5 times better than traditional training methods.
It is, therefore, anticipated that the developed OTS will minimize losses or damage caused by
chemical accidents.

Keywords: operator training simulator (OTS); mutual cooperation system; chemical accident
response; process safety; digital platform

1. Introduction

The chemical industry involves diverse and complex processes and handles flammable,
explosive, and hazardous chemicals; therefore, chemical accidents are frequent, and losses
are large within this industry [1]. The Flixborough (1974), Seveso (1976), Three Mile Island
(1979), Bhopal (1984), and Chernobyl (1986) disasters are representative accidents in the
petrochemical industry, all of which were caused by human error [2]. In fact, most accidents
in the chemical industry [3–6] and 76.1% of domestic chemical accidents are caused by
human error [7]. To mitigate the occurrence of accidents due to human error, research in
the operator training simulator (OTS) sector is being conducted.

Meanwhile, developments in high-tech industries have led to a gradual acceleration
of digital transformation within the chemical industry across diverse sectors such as pro-
cess design, monitoring, process optimization, and training simulation [8]. Within the
chemical industry, digital transformation is causing significant change in the OTS sector [9].
Existing training methods include distributed control system (DCS) training for control
room operators (boardmen). Currently, advanced technologies such as augmented reality
(AR) and virtual reality (VR) are being applied to OTSs to improve their training effect.
In particular, AR and VR are advanced graphic technologies with the capacity to provide
an immersive environment through the application of real-life chemical processes in a
virtual training environment. This technology allows operators to test operating facilities
or receive training on the processes pertaining to responses to chemical accidents in a safe
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virtual environment rather than in a real chemical plant. Thus, it prepares the operators for
real-life applications [10,11].

Currently, OTSs for application in the chemical industry are being developed based
on process simulators, and active research is being conducted in combining advanced
technologies such as AR and VR for 3D immersive training [12,13]. Process simulators
are widely used in the petrochemical industry for worker training, plant design, and
plant optimization. They are used as a framework for OTSs because they can accurately
reproduce plant movements in all operating scenarios, including transient and steady
states, based on physical phenomena, dynamics, mass, heat, momentum transfer, and
thermodynamics [14,15].

Many researchers are applying process simulators and VR or AR technologies to
OTSs to improve the training effect. In particular, research is being conducted into the
development of an immersive environment that enhances the trainees’ ability to respond
to accidents through the implementation of chemical accident scenarios in a safe environ-
ment [10,16].

Research findings from the existing literature are summarized in Table 1. OTSs detailed
in previous studies included a GUI that illustrates a DCS similar to the actual process using
a process simulator. Previous studies have focused on OTSs in which the boardmen operate
and respond to DCSs in abnormal process situations such as overpressure. In addition,
researchers have previously developed systems that allow boardmen and field operators to
collaborate using VR technology to provide appropriate high-level training.

However, there is insufficient research into the joint response training of field oper-
ators and boardmen in the event of a chemical accident. Cooperation between them is
essential when a chemical accident such as a chemical leak occurs, and workers must be
able to take prompt and appropriate measures, including communicating the accident
response situation clearly [17]. Therefore, researchers and industrialists should provide an
appropriate OTS environment that conforms to the chemical accident response process and
should establish a mutual cooperation system that facilitates communication between the
control room and field operators [18–20]. Specifically, the next generation of OTSs should
educate trainees in how to take prompt and appropriate measures in a real-life-like virtual
unexpected crisis or emergency scenario.

Following the digital transformation trend, we applied a digital twin approach to an
OTS and developed a multi-collaboration training system in which the boardman and field
operator communicate to resolve problems.

The study proceeded as follows. Firstly, training processes were selected and devel-
oped, after which the development and response processes of high-frequency chemical
accidents were produced as training content. A pilot plant for the training process was then
installed at the training site, and a graphical user interface (GUI) was developed to operate
the DCS created to control the pilot plant in a virtual environment. Finally, a training
system was created and an OTS was developed implementing AR technology in order to
enable collaboration between the boardman who operates the DCS and the field operator
who operates the chemical facilities.

The training effect was evaluated through testing of the system on workers who
participated in related institutions. Consequently, we developed an OTS that enables
workers to respond promptly to chemical accidents using manual equipment during
the accident response process. In particular, the developed chemical accident response
simulator is considered to be a practical training system that can mitigate chemical accidents
through close mutual cooperation between the boardmen who work in the control room
and the field operators who operate at the worksite.
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Table 1. Analysis of articles relating to OTSs for chemical accident response.

Author Accident
Scenario

Applied
Technology Target Cooperation Year Ref.

Brambilla and Manca Pool evaporating, boiling,
and/or ignition, leakage, etc. Process simulator Boardman No 2011 [21]

Manca et al. Pool fire VR,
Process simulator

Field operator,
Boardman No 2013 [17]

Nakai et al. Fire and/or explosion VR,
Process simulator

Field operator,
Boardman Yes 2014 [22]

Sharma et al. Unknown cause Process simulator Boardman No 2015 [23]

Colombo and Golzio Leakage, jet fire VR,
Process simulator

Field operator,
Boardman Yes 2016 [24]

Nakai and Suzuki Equipment malfunction AR Field operator No 2016 [16]
Ahmad et al. Equipment malfunction, fire, etc. Process simulator Boardman No 2016 [25]

Gerlach et al. Overflow, clogging of the
filtration system Process simulator Boardman No 2016 [26]

Ouyang et al. Fire VR Field operator No 2018 [27]
Puskas et al. Equipment malfunction Process simulator Boardman No 2017 [28]

Lee et al. Overpressure Process simulator Field operator No 2017 [29]

Pirola et al. Equipment malfunction VR,
Process simulator

Field operator,
Boardman Yes 2020 [30]

Yang et al. Load fluctuation Process simulator Boardman No 2021 [19]

2. Materials and Methods

A pilot plant was installed to provide a similar environment to an actual chemical
plant. In addition, the accident response process, including changes in the facility’s status
and operation, was developed as scenario-based training content. A DCS was established
to train the boardman in the accident response procedures, and an AR system comprising
IR marker recognition technology was developed to train the field operator in the accident
response procedures. Finally, a training simulator was developed in which the boardman,
field operator, and chief cooperate to respond to chemical accidents, as illustrated in
Figure 1.
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2.1. Selection of the Training Processes

A petrochemical plant generally consists of both static and rotary equipment, as well
as a pipe system connecting each piece of equipment. Static equipment typically includes
storage facilities (e.g., storage tanks), and manufacturing and reaction parts (including
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columns and pressure vessels) and utility facilities (e.g., heat exchangers). Rotary equip-
ment includes transfer facilities such as pumps and compressors. Thus, the chemical
industry is characterized by complex interactions between these related facilities. Therefore,
to train workers in representative chemical facilities, the training process should consist
of a series of processes that comprise various pieces of equipment. To implement typical
chemical plant processes that consist of the shipping, storage, reaction, distillation, com-
pression, decompression, subdivision, and segmentation processes, we selected the process
of producing trimethylchlorosilane (TMCS) by reacting hexamethyldisilane (HMDS) with
hydrogen chloride (HCl) for the training scenario (Figure 2). The properties of the main
materials are reported in Table 2.
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Table 2. Key materials for the pilot plant.

Equipment Item Abbreviation Capacity
(m3)

Operating
Pressure (MPa)

Operating
Temperature (◦C) Phase

Storage tank TK-101 0.5 AMB AMB Liquid
Reactor R-101 0.3 0.6 70 Liquid/gas
Column T-101 0.1 0.3 (1 stage) - Liquid/gas

Reflux Drum D-101 0.18 0.3 25 Liquid/gas
Condenser C-101 0.005 0.5 - Liquid/gas

Vessel V-101 A/B 0.09/0.55 0.8 AMB Gas

The training process was as follows. HMDS (the raw material) was unloaded from the
tank of a truck and transferred to a storage tank, where it was reacted with HCl (the reactant)
to produce TMCS. The by-products of the reaction included hydrogen and trimethylsilane
(TMS); hydrogen was discharged to a scrubber while TMS proceeded to the next process via
a distillation column. At this point, the process of refluxing TMCS mixed with impurities
at the bottom of the distillation column was added. This was a scaled-down pilot plant
resembling an actual chemical plant in which 4 kg-mol/h of HMDS (raw material) and
3.33 kg-mol/h of HCl (the reactant) were added to produce TMCS at a yield of greater than
or equal to 85%.

The operating conditions for the training process were derived using the Aspen Plus
(Aspen Technology, Inc., USA) and UniSim Design (Honeywell International, Inc., USA)
simulators, which are typically used in the chemical industry. First, Aspen Plus was used
to derive the process operating conditions [31]. The Peng–Robinson model, which has
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exhibited a high level of accuracy in real gas systems, was selected as the thermodynamic
model [32], while the RStoic reactor was designed using conversion rate and stoichiometry
information. After obtaining basic information pertaining to the distillation column using
DSTWU (a simple distillation column model), the RadFrac model was used to derive
process operating conditions used to manufacture the product at a yield greater than or
equal to 85% [33]. Subsequently, UniSim Design was used to design the simulation with
the process operating conditions, which were verified by confirming a TMCS yield greater
than or equal to 85%. Finally, a pilot plant was manufactured and installed based on the
operating conditions and specifications of the training process (Table 3).

Table 3. Design and operation specifications for the pilot plant.

Division Chemical Formula CAS No. Boiling Point (◦C) Vapor Pressure (mmHg)

Hexamethyldisilane Si2C6H18 1450-14-2 113 20.8
Hydrogen chloride HCl 7647-01-0 −85.05 35.42

Trimethylsilane C3H10Si 993-07-7 6.7 594
Trimethylchlorosilane C3H9SiCl 75-77-4 57 200

2.2. Selection of the Chemical Accident Content for Training

Most accidents that occur in chemical processes are due to chemical leakage, fires,
and explosions, with the primary causes including pipe system failure or reactor and
storage tank defects [34]. Chemical accidents can occur in pipe systems due to the use
of inappropriate pipe materials at the design stage or defects during pipe fabrication.
Accidents that involve a pipe connected to a high-pressure vessel can lead to major incidents
such as chemical leakage and discharge or fires. In addition, the high-pressure vessels
that are mainly used in reactors handle fluids under a pressure exceeding 0.2 MPa, and
this pressure can lead to significant damage to the surrounding facilities in the event of a
chemical accident resulting from a damaged vessel.

2.2.1. Chemical Accident Case Selection

In this study, high-frequency chemical leakage cases based on a reactor (i.e., a high-
pressure vessel) were selected as the training content for the OTS. Three examples of
chemical accidents were selected: (1) leakage from flange connections due to aging; (2) leak-
age from pipes due to corrosion by HCl (a corrosive chemical); and (3) leakage from vessels
connecting the reactor to the liquid level system. These scenarios are summarized in Table 4.

Table 4. Accident scenarios for training.

Case No. Scenario Situation Response Leakage Model

1 Piping failure 1 Leakage from a flange gap due to
gasket aging.

Close the valve and shut off
the pump. Liquid leakage from the pipe

2 Piping failure 2 Leakage due to corrosion of the
hydrochloric acid supply pipe.

Close the valve connected to
the reactor. Gas leakage from the pipe

3 Level gauge leakage Leakage at the bottom of the
reactor due to poor welding.

Block the inflow and outflow
by closing the valve connected

to the reactor.
Liquid leakage from the vessel

2.2.2. Derivation of Changes to the Facility Status due to a Chemical Accident

Based on the selected cases, leakage-source modeling was used to numerically calcu-
late changes in leakage amounts, reactor pressure, and liquid levels. This was performed in
accordance with the Center for Chemical Process Safety guidelines [35]. Gradual changes in
the liquid levels and pressure of the reactor were achieved by calculating them according to
the procedure outlined in Figure 3. The liquid levels and pressure of the reactor measured
one second after the start of the leak were calculated by determining the leakage rate at
zero seconds, after which the result was inserted in the leakage rate equation. Each case
was calculated after one second, and repeated until h equaled 0.
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Liquid leakage from the pipe system (case 1) is calculated as follows:
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√
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where Re denotes the Reynolds number, f denotes the friction coefficient, A denotes the
area of the leakage source, D denotes the inner diameter of the pipe, LP denotes the distance
between the vessel and the leakage point, P denotes the pressure of the pipe system, PCF
denotes the critical flow pressure, Pa denotes the atmospheric pressure, h denotes the
height difference between the leakage point and liquid in the facility, and ε denotes the
pipe roughness.

Gas leakage from the pipe system (case 2) is calculated as

Q = AMaP1

√
γgc MW

RT1
(2)

where γ denotes the specific heat coefficient from the database embedded in Aspen Plus,
MW denotes the molecular weight of the leaking substance, R denotes the gas constant, T1



Appl. Sci. 2023, 13, 1382 7 of 16

denotes the initial temperature of the pipe, and Ma denotes the Mach number calculated
using Excel’s Solver tool. Liquid leakage from the vessel (case 3) is calculated using

Q = CD AρL

√[
2gc(P− Pa)

ρL
+ 2gh

]
, (3)

where CD is the leakage coefficient calculated with respect to the flow state.
Subsequently, the liquid levels and pressure of the reactor are calculated based on the

leakage rate in each case using Equations (1)–(3). The reactor liquid level is derived from
the mass balance as

hn+1 = (Q× tn)/(A× ρL). (4)

Meanwhile, the reactor pressure is calculated by applying Boyle’s law as follows:

Pn+1 = (Pn × hn)/hn+1. (5)

2.2.3. Development of the Content for the Chemical Accident Response Cases

When complex systems such as oil refinery simulators are involved, training is com-
monly conducted in small groups of four to six participants (including the chief) under
the supervision of an instructor to ensure effective learning. We used this training method
and thus constructed a team consisting of a chief (the site supervisor), a field operator who
operates the facilities at the worksite, and a boardman who handles the DCS (Figure 4).
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To collaborate in the problem-solving process, the field operator and boardman com-
municated using a two-way radio and were required to continually report their progress
to the chief. Moreover, the training system was designed to enable the chief to relay
appropriate instructions applicable to the situation to the field operator and boardman.

The training content was developed into scenarios by documenting a series of accident
response processes ranging from chemical accidents to release prevention measures. Sys-
tematic training pertaining to the chemical accident response process for leakage accidents
was provided by categorizing the training into accident occurrence, response, and recov-
ery stages. In the accident occurrence stage, workers are required to report the accident
situation promptly and accurately. In the accident response stage, workers wear personal
protective equipment and operate manual and automatic safety devices. Finally, in the
accident recovery stage, workers carry out processes such as decontamination [36].

2.3. OTS Infrastructure Construction

To create highly realistic training, a DCS was created to facilitate the virtual chemical
process identical to the actual process, which was subsequently developed into a GUI [37].

2.3.1. DCS Configuration

As illustrated in Figure 5, the DCS was designed to transmit the status of the facility
in real time when instrumentation devices such as valves are operated.
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Since the OTS does not deal with chemicals directly, a sensor was installed in the
facility to create a virtual environment, so that users could feel as if the chemicals were
actually present. In addition, a programmable logic controller (PLC) module used for
automatic control and monitoring was installed in the pilot plant to transmit information
between the control room and the worksite. It was configured to transmit and receive
data by converting analog signals to digital signals, and it was programmed to transmit
and receive signals to and from a computer in the control room and an AR head-mounted
display (HMD) in real time. A local network was then configured to exchange signals with
each module, and the corresponding values were stored on a server PC.
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The DCS was used to transmit the scenario information to the PLC installed in the
pilot plant at the beginning of the chemical accident scenario. It was configured to visualize
the status of the facility as per the scenario through the instrumentation device attached to
the facility. In addition, the system enabled the trainees to confirm the status of the facility
through the GUI located in the control room.

2.3.2. Synchronization with the AR System

AR is a graphical technique for merging virtual objects or information into a real
environment. The virtual objects resemble objects in the original environment. In this
study [38], AR was used as a tool for operating actual devices or visualizing changes in
the surrounding environment caused by leakages. Accordingly, the scenario data corre-
sponding to the cases reported in Table 4, as well as the gradual changes in the status of the
facility and leakage type, were stored in the database. In addition, chemical accident data
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were visualized and presented to trainees during the training process via the HMDs they
were wearing (Figure 6).
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2.4. Construction of the Pilot Plant and Infrastructure

The pilot plant constructed at the training site installed in the research center detailed
in Table 3 is illustrated in Figure 7. The pilot plant was designed to imitate chemicals
that were moving inside the pipe, thereby eliminating the need for the trainees to handle
real chemicals. A sensor was inserted into the instrumentation device to transmit facility
information from the control room to the field operator (Figure 8). The PLC module
was attached to the back of the instrumentation device for the smooth transmission of
information. A motor was attached to the back of the instrumentation device (a bourdon
tube) to transmit electrical signals to operate the instrumentation. Ten LED bulbs were
vertically attached to the sight glass liquid level meter to display the change in liquid levels.

Subsequently, the DCS was built to control the distributed PLC models from a single
server PC. A GUI was also designed so that the boardman could respond to chemical
accidents in accordance with the accident development process, which was initiated by
operating the instrumentation device (Figure 9). Intuitive graphics were applied to the GUI
to show the installation location of each device and provide numbers to illustrate the status
of the reactor.
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An example of the OTS operation is shown in Figure 10. When a field worker closes a
field-installed valve, the icon in the GUI changes from green (Figure 9) to red (Figure 10).
Similarly, when a boardman clicks the green valve icon in the GUI, the valve light on the
site changes from green to red.
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3. Results
3.1. Development of Changes in the Status of the Facility as Training Contents

Based on Figure 3, the leakage rate of the reactor, as well as gradual changes in pressure
and liquid levels, were derived for each chemical accident case (Figure 11). The results show
that the leakage rate was initially high but gradually decreased over time. In particular, in
Figure 11, the change in liquid level and pressure is a linear function with Q as a variable
(Equations (4) and (5)), and when the diameter of the leak source decreases according to
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the reduced size, the change in the pilot plant and Q value is small (e) and (h), and (c) and
(f) show similar trends. In addition, the liquid levels and pressure were used to confirm
the effect of the leakage accident on the chemical facility, and the values were used in the
DCS content. The GUI in Figure 8 was programmed to illustrate gradual changes in the
status of the reactor in the control room, and the pilot plant was designed to illustrate the
changes in the status of the reactor by receiving signals from the liquid level meter and
the bourdon tube pressure gauge installed around the reactor. Consequently, we created a
tense atmosphere to increase the trainees’ level of immersion in the training.
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3.2. Development of Accident Response Scenarios

The detailed procedures for each chemical accident response scenario were prepared
based on textbooks from related Korean institutions. The scenarios were divided into
overview, process, training details, and situational directions (Figure 12). The scenario
overview consisted of the purpose of the training, difficulty level, chemical accident case,
and recommended number of trainees. The scenario process consisted of the training
phase, duration, and identifiable training code, whereas the training details included the
instructions, report, and operations to be performed by each role. Finally, to enhance
the ability of trainees to understand the system, the directing of the scenario included
information on the background arrangements of the DCS screen handled by the boardman
and on the AR screen viewed by the field operators.

3.3. Pilot Operation and Results

After installing the pilot plant and control room, we demonstrated the OTS to the
trainees. They comprised a field operator who had a background in chemical engineering
but no practical knowledge of the field, a boardman with a non-chemical engineering major,
and a chief with a chemical engineering major.
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The trainees took appropriate passive–active mitigation measures with respect to the
progression of the chemical leakage accidents. As indicated in Figure 13, the boardman
used the DCS to monitor the progress of the accident from the control room and used
the AR HMD (e.g., HoloLens2) to assess the leakage situation and accident progress
on site. From the training, the field operator understood the location and form of the
related facilities, as well as their operation and mitigation methods if an accident occurred.
Furthermore, the boardman learned the response measures for the facilities with respect to
the accident progression.
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The readiness of the OTS was evaluated through assessment of the connection status
between each segment. The evaluation verified the real-time exchange of information
between the sensor and the module located in the pilot plant and server PC. Consequently,
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this confirmed the possibility of smooth communication between the worksite and the
control room.

3.4. Comparison between the OTS and Traditional Training Methods

There are limited comparisons with traditional training in the process industry [13].
However, the OTS considered in this study, which is characterized by mutual cooperation
and experiential training, has advantages in terms of training effect and costs. According
to the Learning Pyramid of Applied Behavioral Science [39], which is the most cited
educational effect, experiential OTS trainees remember approximately 90% of the training
content, which is approximately 4.5 times higher than that of conventional lecture-based
education. In addition, educational institutions run by Korean government agencies have
been conducting lecture-type education for approximately 16 h per session to respond
to chemical accidents [40]. However, based on the results of this study, it is possible to
educate a series of accident response processes by creating a curriculum of approximately
2 h, including background explanation, OTS session, and after-training discussion. In other
words, it is possible to reduce the training time to one-eighth.

4. Conclusions

Existing training methods used in the chemical industry consist of theoretical content
delivered in a tedious manner over long periods of time. Moreover, the lack of interaction
causes the trainee to lose interest. Accordingly, recent training methods have involved
cutting-edge technologies such as VR and AR to enhance the training effect.

The developed OTS can train operators to respond to chemical accidents—from the
start of the accident to recovering from it. Specifically, a pilot plant was installed to create
an environment similar to an actual chemical plant, and an OTS was developed to enable
the trainees to perform a series of processes related to responding to an accident, such as
facility operation. In particular, the developed OTS differs from existing training methods
in that it allows operators to respond to chemical accidents through mutual cooperation,
and it provides hands-on chemical accident response training to field operators while
allowing them to actually operate the facility. In addition, compared to the traditional
lecture-type training, the training effect is approximately 4.5 times better, and the cost can
be reduced by approximately 8 times. The utilization of OTSs is expected to increase, and
in the near future the above-mentioned OTS will be tested with a view to qualifying its
value for operators or undergraduate students studying chemical engineering.

When applied to industries that entail the handling of chemicals, the developed OTS
can train the various participants on the entire chemical accident process in an environment
similar to the actual worksite. Furthermore, the trainees do not have to handle actual
chemicals. We anticipate that the developed OTS will enable trainees to learn prompt and
accurate response processes that apply to emergencies.
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