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Abstract: Anomaly detection is an important research topic in the field of artificial intelligence and
visual scene understanding. The most significant challenge in real-world anomaly detection problems
is the high imbalance of available data (i.e., non-anomalous versus anomalous data). This limits the
use of supervised learning methods. Furthermore, the abnormal—and even normal—datasets in
the airport field are relatively insufficient, causing them to be difficult to use to train deep neural
networks when conducting experiments. Because generative adversarial networks (GANs) are able
to effectively learn the latent vector space of all images, the present study adopted a GAN variant
with autoencoders to create a hybrid model for detecting anomalies and hazards in the airport
environment. The proposed method, which integrates the Wasserstein-GAN (WGAN) and Skip-
GANomaly models to distinguish between normal and abnormal images, is called the Improved
Wasserstein Skip-Connection GAN (IWGAN). In the experimental stage, we evaluated different
hyper-parameters—including the activation function, learning rate, decay rate, training times of
discriminator, and method of label smoothing—to identify the optimal combination. The proposed
model’s performance was compared with that of existing models, such as U-Net, GAN, WGAN,
GANomaly, and Skip-GANomaly. Our experimental results indicate that the proposed model yields
exceptional performance.

Keywords: anomaly detection; generative adversarial networks; deep learning

1. Introduction

With recent advances in artificial intelligence (AI), several scholars have begun to
invest in deep learning research. AI represents the use of mathematical methods to enable
computers to mimic human intelligence by performing inferential, predictive, perceptive,
and social tasks. AI has previously exhibited varying degrees of success in image recog-
nition [1], voice recognition [2], natural language processing [3], expert systems [4], and
automatic planning [5]. A common, everyday example of AI is the automatic driving sys-
tem, which encompasses image recognition, object detection, target recognition, semantic
segmentation, and other imaging technologies [6].

Owing to the exceptional performance achieved by deep learning and AI, many deep
learning models have recently been developed [7,8]. The defining characteristic of deep
learning is the use of an artificial neural network architecture to perform training and
then accomplish prediction, classification, identification, and other tasks. The architecture
of a neural network resembles that of the human brain, wherein it comprises neurons.
These architectures are highly diverse, with examples including the multilayer perceptron
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(MLP) [9], feedforward neural network (FF) [10], recurrent neural network [11], long short-
term memory [11], autoencoders (AE) [12], variational AE (VAE) [13], automatic noise
reduction encoders (Denoising, DAE), convolutional neural networks (CNN) [14], and
generative adversarial networks (GANs) [15]. GANS, which are typically used to generate
images, were proposed by Ian Goodfellow in 2014 [15], representing a breakthrough in the
learning of unsupervised neural networks and rapidly becoming a prevalent research topic.
The current applications of GANs include style transfer [16], as well as mammography,
which is used to generate highly accurate digital breast images [17].

Although deep learning has an overwhelmingly positive impact on data classifica-
tion, detection, and analysis, two challenging factors frequently manifest in the anomaly
detection task: the insufficient quantity of normal and abnormal data during the training
phase. These issues are difficult to address in the context of supervision learning. The
two-stream neural network proposed by Waseem Ullah et al. [18] performs a two-stage
model learning strategy. First, a lightweight convolutional neural network is employed
on resource-constrained IoT devices to classify events as normal or abnormal. Second,
the abnormal data is through bi-directional long short-term memory (BD-LSTM) for fur-
thering their respective anomaly classification. A GAN and AE were adopted in this
study to learn the form of the data latent distribution to generate a new dataset. Thus,
the increase and variety of data are expected to improve the model’s anomaly detection
performance. The proposed method, which integrates the Wasserstein-GAN (WGAN) and
Skip-GANomaly models to distinguish between normal and abnormal images, is called
the Improved Wasserstein Skip-Connection GAN (IWGAN). In the experimental stage, we
evaluated different hyper-parameters—including the activation function, learning rate,
decay rate, training times of discriminator, and method of label smoothing—to identify
the optimal combination. Consequently, the IWGAN can generate high-quality images,
thereby increasing the success rate of abnormal image detection. The contributions of this
study are as follows:

• The proposed IWGAN model, which combines WGAN and Skip-GANomaly, resolves
the issues posed by training difficulty and model collapse.

• We optimized the training parameters of IWGAN, such as the LeakyReLU activation
layer, decay learning rate, training times, and label smoothing.

• The proposed model was evaluated using the Fréchet Inception Distance (FID) and
Area Under Curve (AUC) values. The experimental results indicate superior per-
formance to that of existing models, such as U-Net, GAN, WGAN, GANomaly, and
Skip-GANomaly.

The remainder of this paper is organized as follows. Section 2 serves as a summary of
the related work. In Section 3, we discuss the proposed network’s overall architecture, as
well as the methods used to overcome the training challenges inherent to GANs. Section 4
presents the experimental results and a discussion of our work. Finally, Section 5 concludes
the paper.

2. Related Works
2.1. AutoEncoder, AE

Although the AE was proposed in 1988, the calculation of high-dimensional data was
complex and difficult to optimize at the time. In 2006, Hinton et al. [19] employed gradient
descent as an optimization tool to produce an abstract representation of original sample
features, thereby improving the reduction in feature dimensionality. Henceforth, the AE
method has attracted considerable scholarly attention. The defining characteristic of an
AE is the use of two networks: an encoder and a decoder. The encoder compresses the
image to reduce dimensionality while retaining the main features and the decoder restores
the image to its original form. At the end of training, the AE obtains a low-dimensional
vector representing the input data in the hidden layer. The optimization objective is to
minimize the gap between the input and reconstructed images. The overall process is
therefore an unsupervised learning method for representing the features of input images.
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Waseem Ullah et al. [20] used an autoencoder to extract spatially optimal features and
forward them to the echo state network to obtain a single spatiotemporal information-aware
feature vector. At the same time, this feature vector is fused with 3D convolution features
to achieve an intelligent dual-stream convolution neural network-based framework for
anomaly detection. This study shows that autoencoders can effectively learn features in
anomaly events. U-Net [21,22], an AE variant proposed by Ronneberger et al. in 2015, is
regarded as one of the best models for image segmentation in biomedical imaging. U-Net
is based on a CNN framework that uses each pixel for classification and its defining feature
is its U-shaped architecture. We adopted the AE to learn the distribution of latent data,
generate a new dataset, and compare it with the experimental dataset.

2.2. Generative Adversarial Network, GAN

The GAN [23] is an unsupervised method that constructs a model through two neural
networks: a generator and discriminator. The underlying concept, along with its many
variations, represents one of the most innovative ideas in machine learning over the last
decade. GANs are most commonly used to generate images, as in the case of CycleGAN [24]
for style conversion, GauGAN [25] for automatic painting, DeepFake for face changing,
and HoloGAN [26] for full-angle image generation. There are also applications in the
medical [2], semiconductor [27], astronomy [28], fashion advertising, and other major fields,
with an extensive scope of applicability. Within the GAN architecture, the discriminator
learns to distinguish between authentic and forged images, whereas the generator attempts
to generate forged images to deceive the discriminator. The two networks are trained
sequentially. The present study examined the task of using a GAN for anomaly detection.

There are several problems associated with the original GAN architecture. If the
discriminator is over-trained, the generator’s gradient will vanish more rapidly, rendering
the generator useless. Conversely, if the discriminator is poorly trained, the generator’s
gradient will be inaccurate. Thus, the overall network operates as intended only if the
discriminator is trained well, which is difficult to ensure. Another problem inherent to
the conventional GAN architecture is the potential mode collapse due to a suboptimal
loss function. WGAN [29,30] can effectively solve these problems by substituting the
loss function with a smoother Earth-Mover (EM) distance. WGAN yields the following
improvements: (1) the last layer of the discriminator removes the sigmoid function; (2) the
losses of the generator and discriminator do not affect the logarithmic operator; (3) the
discriminator weight is updated in each iteration to limit the maximum and minimum
weights; and (4) there is no optimizer based on momentum change, with optimizers such
as RMSProp [31] and SGD [31] being used instead.

2.3. GANs in Anomaly Detection

Schlegl et al. [32] developed AnoGAN based on a deep convolutional GAN to learn
the information between normal and local anomalies. Zenati et al. [33] improved the
GAN encoder by introducing an extra discriminator to ensure cycle consistency. Fast
Unsupervised Anomaly Detection with GAN (F-AnoGAN) [34] was based upon AnoGAN
and WGAN to achieve anomaly detection. GANomaly [35], which employs the AE and
GAN architectures, comprises four sub-models: an encoder, a decoder, a discriminator, and
an additional encoder. Accordingly, GANomaly uses three loss functions—adversarial,
contextual, and latent—to calculate the distribution of normal images, thereby learning
to distinguish between normal and abnormal datasets as shown in Equation (1). Skip-
GANomaly [36] employs the same principle as GANomaly, except that the generator is
added to the skip connection, the extra encoder is deleted, and the last convolutional layer
of the discriminator is regarded as the encoder. The loss function of Skip-GANomaly is
similar to that of GANomaly.

L = λadvLadv + λconLcon + λlatLlat (1)

where λadv, λcon, and λlat are the weights for the three losses, respectively.
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3. Proposed Model

The following section discusses the proposed network architecture and core tech-
nologies as well as details regarding the internal architecture of each subnetwork. Unlike
the traditional GAN architecture, IWGAN employs WGAN and collaborates with Skip-
GANomaly through a fusion-network structure.

3.1. Generator Architecture

The generator can be divided into two parts joined by a skip connection: an encoder
and a decoder. The skip connection bridges the deep feature of the decoder with the shallow
feature of the encoder, allowing the encoder to refer to the decoder when extracting image
features after convolution, which ensures a higher-quality restoration. In the small structure
of the entire network, the batch normalization layer [37] is used for normalization opera-
tions so that the entire network’s gradient layer does not vanish easily. LeakyReLU [38,39]
was adopted as each network’s activation layer in place of ReLU[40] and Adam [41] was
employed as the optimizer. A dynamic learning rate strategy was implemented to halve
the learning rates among 500, 750, 875, and 950 training iterations. The overall generator
architecture is illustrated in Figure 1.

Figure 1. Generator architecture.

3.2. Discriminator Architecture

The discriminator architecture developed in this study is identical to that of the
encoder, with the addition of two fully-connected layers. The first of these layers is
connected to global pooling (GlobaMaxPooling2D), with 100 connection points used for
feature extraction. This layer corresponds to the feature similarity between the original
and generated images to optimize the model loss. The second fully-connected layer is
represented by one neuron, which reflects the output of determining the falsification of
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an image. The primary difference between the proposed architecture and that of WGAN
is that the sigmoid layer is replaced by the LeakyReLU layer, as shown in Figure 2. In
addition, we adopted the loss function used in Skip-GANomaly, which combines three
loss values: adversarial, contextual, and latent. Adversarial loss is used to increase the
reconstruction ability regarding normal images, contextual loss guides the model to learn
contextual information and sufficiently capture the data distribution, and latent loss helps
generate realistic and contextually similar images. During the training phase, the model is
able to correctly reconstruct normal samples and incur a high loss for the reconstruction of
abnormal samples, thereby improving the efficiency of anomaly detection.

Figure 2. Discriminator architecture.

3.3. Image Normalization

We normalized all the images’ pixels from a [0, 255] range to a [−1, 1] range, as the
neural network performs a weighted inner product on each pixel of the input image during
forward propagation. A wider range leads to a significant increase in computational time,
causing the model to converge slowly during backpropagation. Another reason behind
normalization is the distance between image samples. If the range of feature points per pixel
is particularly wide, the result may be inaccurate. Therefore, the pixels were normalized [42]
to improve the model accuracy.

3.4. Unilateral Label Smoothing

Hard labels may cause overfitting during training, particularly when the number
of training samples is relatively small. Label smoothing [43] can enhance the model
generalizability, alleviate the problem of overfitting, and serve as a preventive measure
against noise. Furthermore, it increases the amount of feature information learned by
the model, which is beneficial for distinguishing relationships between classes within the
data. Szegedy [44] et al. demonstrated this method’s effectiveness for classification using
the weighted average of hard labels, as well as the uniform distribution on the labels as
soft labels. As a method to improve the performance of neural networks and avoid the
overconfidence of the discriminator in real samples, this approach has proven useful across
many models. Therefore, the present study adopted and evaluated this approach.

3.5. Proposed Architecture

The proposed architecture integrates WGAN and Skip-GANomaly, as shown in
Figure 3. WGAN avoids the various training challenges inherent to the conventional
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GAN and uses the EM distance smoothness to completely resolve the vanishing gradient
issue. In addition to producing satisfactory results for the anomaly detection task, Skip-
GANomaly uses three loss functions to improve the generator’s performance in identifying
anomalous objects [36]. We also converted the hard labels of the GAN network into smooth
soft labels and reduced the optimizer’s learning rate at specific iterations of the training
process to determine the optimal weights of the neural network. Furthermore, LeakyReLU
was applied in each activation layer to prevent gradient vanishing. In detecting anomaly
data, we use the anomaly score that was proposed by [32,33]. We evaluate the new image
data x as being normal or abnormal images. The anomaly score is defined by Equation (2).

S(x) = λR(x) + (1− λ)Llat(x) (2)

where λ is the weight for controlling the importance of the score function, S(x) is the
anomaly score function, and R(x) is the reconstruction score that measured the contextual
similarity between the input and generated image. In the testing dataset Dtest, we will
obtain the anomaly score vector S such that S = { Si : S(xi), xi ∈ Dtest }. Finally, we scale
the Si anomaly scores within the probabilistic range from 0 to 1. The hyperparameters are
set as same as the reference [36].

Figure 3. Proposed architecture.

4. Experiment
4.1. Environment Setup and Evaluation Metrics

The experimental environment was a Windows 10 computer with an Intel(R) Core(TM)
i7-8500 CPU @ 3.20 GHz and a memory of 16.0 G. All the programs were written in the
Python3.7 programming language.

An output value is referred to as a true positive (TP) if it is correctly predicted to be
positive, whereas a false positive (FP) occurs when a value is incorrectly predicted to be
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positive. Conversely, a false negative (FN) is a value incorrectly predicted to be negative,
whereas a true negative (TN) is a value correctly predicted to be negative. Precision, recall,
and F1-score were used as the evaluation indices in this experiment. In addition, the AUC
of the receiver operating characteristics (ROC) was calculated using the true positive rate
(TPR) and false positive rate (FPR).

Precsion =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5)

TPR =
TP

TP + FN
(6)

FPR =
FP

TN + FP
(7)

4.2. Dataset

Our experiments were conducted on the GDXray+ [45] database, which comprises
more than 19,407 X-ray images and is used for research and educational purposes only. The
dataset encompasses five types of X-ray images: castings, welds, luggage, natural objects,
and environments. Only the luggage category was considered in this study. This category
includes 8150 X-ray images over a total of 77 series, such as pocket knives, pistols, and
razor blades, as shown in Figure 4.

Figure 4. GDXary+ dataset.

4.3. Data Augmentation

To diversify the data, an augmentation method was applied [46], wherein the original
images were randomly rotated, offset in the horizontal or vertical direction, sheared,
zoomed in or out, and horizontally flipped. To avoid information loss during augmentation,
any missing areas of images were filled via a neighboring interpolation, wherein the nearest
pixel’s value was used as a supplementary pixel. Either GAN or the augmentation method
would be used to generate the new data and increase the performance of the deep neural
network efficiently.

4.4. Difference between ReLU and LeakyReLU

This study evaluated the effectiveness of ReLU and LeakyReLU on the proposed
model, under a fixed learning rate and the use of hard labels. Using ReLU as the activation
layer, the images that generated over 900 epochs exhibited high quality in the later stages,
although the model performed poorly in the early stages of training. The results are shown
in Figures 5 and 6.
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Figure 5. Image generated using ReLU activation layer after Epoch 1.

Figure 6. Image generated using ReLU activation layer after Epoch 900.

The anomaly scores were calculated using the Skip-GANomaly evaluation method
after training. All the test set images contained anomalous and normal images. The scatter
points shown in Figure 7 illustrate the distribution of anomaly scores for all the images.
Here, the red dots represent anomalous data and the blue dots represent normal data.
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Figure 7. Anomaly score point scatter using ReLU as an activation layer.

Using LeakyReLU as the activation function, the model exhibited a similar increase in
quality over 900 epochs.

The distribution of abnormal images and the distribution density of normal images
are shown in Figure 8. LeakyReLU evidently performed better than ReLU. Both activation
layers were used for ten training sessions to draw a box-and-whisker plot to ensure relia-
bility, as shown in Figure 9. Table 1 shows all the AUC values corresponding to the two
activation layers after 10 training cycles. Although LeakyReLU is slightly less stable than
ReLU, it achieved higher maximum values, indicating superior performance.

Figure 8. Distribution desity map of different activation functions.

Table 1. The AUC value comparison of using LeakyReLU and RELU layers.

std min Q1 Q2 Q3 Max IQR

ReLU 0.0948 0.6100 0.7200 0.7840 0.8271 0.9048 0.1071
LeakyReLU 0.1521 0.5228 0.6444 0.7942 0.8745 0.9392 0.2301
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Figure 9. AUC average box and whisker after model training 10 times.

4.5. Difference in Learning Rate

To evaluate whether the learning rate decay [47] is effective within the proposed model,
the learning rate decay ratio was evaluated at 0.1 and 0.5, with the ReLU activation layer
and hard labels. As shown in Figure 10, the learning rate decayed by a factor of 0.1 every
100 iterations to avoid missing weights closer to the optimal convergence point. Under
this decay rate, the images generated over 900 epochs indicate that the proposed model
performs poorly in the early stages of the training process. However, when comparing
these results with Figure 5, the learning rate decay evidently yields improved performance,
as shown in Figure 11.

Figure 10. Learning rate with decay rate 0.1.

A learning rate decay rate of 0.5 applied every 100 iterations is shown in Figure 12.
Although the network performed poorly in the early stages of the training process, it
successfully generated high-quality images in later stages, as shown in Figure 13. The
distribution density plots corresponding to different learning rates are shown in Figure 14.
The AUC values of the ten training sessions were drawn into a box-and-whisker plot to
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ensure reliability at learning rate decay rates of 0.1 and 0.5. The decay rate of 0.1 yields
superior results, as shown in Figure 15.

Figure 11. Generated images of learning rate with decay rate 0.1.

Figure 12. Learning rate with decay rate 0.5.

Figure 13. Generated images of learning rate with decay rate 0.5.
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Figure 14. Distribution density map of different decay rates.

Figure 15. AUC average box and whisker after model training 10 times with different decay rates.

4.6. Training Iterations for Discriminators

We evaluated the most effective number of training iterations for the discriminator by
alternating that number between 3 and 5. The five-iteration setup represents a parameter
specified in the WGAN paper. Both experiments used a ReLU activation layer, fixed
learning rate, and hard labels. After three training iterations, the network performed
poorly in the early stages of the training process. However, the generated images were
of a higher quality in the later stages. After five training iterations, although the network
still performed poorly in the early training stages, it was an improvement compared to
its performance after three iterations. Likewise, the network generated higher-quality
images at later stages. Both iteration settings were used in 20 training sessions to draw
box-and-whisker plots. The results indicate that the use of five training iterations yielded
substantially improved performance, as shown in Figure 16.
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Figure 16. AUC average box and whisker after model training 20 times with different training times.

4.7. Smoothing Label

This section evaluates the impact of label smoothing in the proposed model. The
experiment was performed using unilateral and bilateral label smoothing, with a ReLU
activation layer and fixed learning rate being used for both settings. Under unilateral label
smoothing, the images that generated over 900 epochs indicate that the network performed
poorly in the early stages of training. However, the performance was improved over the
case of using a simple hard label and higher-quality images were generated in later stages.
Under bilateral label smoothing, although the network still performed poorly in the early
stages, there was a clear improvement. Likewise, excellent-quality images were generated
in the later stages. Table 2 lists all the AUC values over 10 training sessions with unilateral
and bilateral training. According to the AUC values in Table 2, unilateral labels are better
than double labels.

Table 2. The AUC value comparison of using unilateral and bilateral labels.

std min Q1 Q2 Q3 Max IQR

Single Label 0.1100 0.6050 0.7637 0.8127 0.8907 0.9717 0.1270
Double Label 0.1400 0.5197 0.6553 0.7995 0.8734 0.9373 0.2281

4.8. Discussion and Analysis

Although the parametric analysis discussed in the previous sections is not fully inter-
pretable, each parameter had an impact on the overall performance during training. The
box-and-whisker plots corresponding to different activation layers indicate that although
ReLU is more stable than LeakyReLU, the latter produced superior maximum and average
AUC values. The use of a decaying learning rate has been demonstrated to stabilize the
model accuracy, with a rate of 0.1 yielding superior performance to a rate of 0.5. The dis-
criminator was trained repeatedly to effectively reduce false positives, with five iterations
of training demonstrating superior results over three iterations of training. Furthermore,
the dataset labels were smoothed, with unilateral smooth labeling producing superior
results compared to bilateral or hard labeling. Under optimal parameters, although the
images generated in the first training epoch are of a somewhat higher quality, they are still
not sufficiently good. However, high-quality images were generated after 900 epochs, as
shown in Figure 17.
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Figure 17. Generated images of IWGAN.

4.9. Evaluation

Two evaluation methods are generally used to evaluate the quality and diversity
of images generated by GANs: the inception score (IS) [48] and the FID [49]. However,
IS exhibits a disadvantage wherein certain types of images lead to an incorrect IS score.
Accordingly, we employed the FID to evaluate the distance between the two images’
data distributions, wherein a smaller FID value indicates higher quality and diversity
of the generated image. We evaluated the quality of images generated using U-NET,
GAN, WGAN, and GANomaly, as summarized in Table 3. The proposed model exhibits
a significant improvement in performance. Table 4 lists the AUC values and F1 scores
obtained by each model, likewise indicating the superior performance of IWGAN.

Table 3. FID comparison.

Methods Fréchet Inception Distance

U-Net 116.017
GAN 325.596

WGAN 369.543
GANomaly 304.231

Skip-GANomaly 91.804
IWGAN-ReLU 73.295

IWGAN 56.421

Table 4. The AUC value and F1-score of each method.

Methods AUC Value F1-Score

GAN 0.79 0.84
WGAN 0.84 0.83

GANomaly 0.75 0.79
Skip-GANomaly 0.97 0.81
IWGAN-ReLU 0.69 0.81

IWGAN 0.95 0.96

For the evaluation of time complexity, this paper uses floating-point operations per
second (FLOPs) for comparison, as shown in Table 5. The method proposed in this paper
requires a large amount of computation in execution. Compared with Skip-GANomaly,
IWGAN has additional 20% of computing resources. However, compared with Skip-
GANomaly, IWGAN improves the performance by 38.5% and 19% in the evaluation
indicators of the FID and F1-score, respectively. In the case of unconstrained resources, the
method proposed in this paper can obtain better results of anomaly detection.
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Table 5. The FLOPs of each method.

Methods FLOPs(G)

GAN 2.98
WGAN 3.11

GANomaly 3.04
Skip-GANomaly 3.27
IWGAN-ReLU 3.92

IWGAN 3.92

5. Conclusions

The anomaly detection task involves two major challenges: insufficient data and in-
sufficient abnormal data. This paper proposes the IWGAN network, whose architecture
combines WGAN and Skip-GANomaly. The WGAN subnetwork mitigates the issues of
training difficulty and mode collapse, while the excellent detection ability of Skip-GANomaly
resolves the insufficient data problem. In addition, we found an optimal combination of
training parameters for IWGAN: the LeakyReLU activation layer, a decay learning rate of 0.1,
five training iterations, and unilateral label smoothing. The proposed model was evaluated
using the FID, with experimental results exhibiting significant improvements in performance.
The AUC value of the overall network for the GDXray+ discriminant gun samples reached
an average of approximately 0.95, which is excellent in terms of a single-generation network.
In future work, we will introduce an attention model mechanism to extend the proposed
model’s applicability for all anomaly detection tasks. In addition, we plan to adopt a neural
architecture search to optimize the hyper-parameters (HPO) automatically.
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