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Abstract: Topographic maps comprise a rich data source for the processing and analysis of geographic
information. However, the management of paper topographic maps is still dominated by an inefficient
manual method, and there is no counting equipment for topographic maps that is suitable for
narrow map warehouse passages. The existing algorithms relating to paper counting require paper
hardness and cannot directly obtain the internal information of topographic maps. To address the
above problems, using a map inventory machine transformed from a paddle-type paper counting
machine to perform a preliminary count and obtain the video data of the counting progress, an
automatic counting algorithm for topographic maps for map management is proposed in this study.
First, the periodic feature changes of all the targets and each individual target in the videos are
analyzed. Second, a deformable parts model accelerated by fast feature pyramids and by reducing
the region of interest is used for the object detection of mechanical wheels. The grayscale variance
function is selected to quantify the quality change in the images. Finally, a fusion window counting
model is constructed with the adaptive window and fixed window methods. The experimental
results show that the average counting accuracy of the model is about 95%, which can verify the
initial counting results of the machine and provide high-quality keyframes for the subsequent sheet
designation recognition.

Keywords: map management; topographic map; paper map; counting; deformable parts model; fast
feature pyramids; fusion window counting model

1. Introduction

A map is a ground model established by people after abstracting and generalizing
the real world, and it is an important tool for spatial cognition [1]. As a kind of map, a
topographic map comprehensively represents all kinds of geographical objects in detail,
and it can meet the needs of map users in many ways. It provides basic data for national
construction and original data for compiling other maps [2]. Topographic maps have
always used paper (or similar materials) as an important medium because compared with
electronic maps, paper maps play an irreplaceable role in the national economy and in
national defense construction; their advantages include the overall macro, the ease of
portability, the convenience for plotting, and other characteristics [3]. The topographic
maps mentioned in this paper are all paper maps, and the topographic map style is
shown in Figure 1. Due to the deepening application and the expanding requirements for
topographic maps, their effective management has become an urgent demand in related
fields. Currently, map suppliers mainly use map warehouses to manage maps. A map
warehouse is a unit responsible for the acceptance, statistics, supply, and transportation of
paper maps, and while map counting is tedious and time-consuming, it is very important

Appl. Sci. 2023, 13, 1461. https://doi.org/10.3390/app13031461 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031461
https://doi.org/10.3390/app13031461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2182-7819
https://doi.org/10.3390/app13031461
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031461?type=check_update&version=2


Appl. Sci. 2023, 13, 1461 2 of 19

work [4]. Unlike a general warehouse, the overall space in a map warehouse is huge,
and different map types are stored in map cabinets at different positions and heights. In
addition, map cabinets are large and numerous; so, the storage and operation environment
of maps is complicated and space is limited. In actual inventory work, the relevant staff
need to use small and slow tunnel vehicles to get to and from different map cabinets to
check maps manually according to the requirements of the outbound lists and then bring
them back uniformly for a second verification. A lot of time is consumed between the round
trips and the manual inventory in this process. As a result of the special storage operation
environment in a map warehouse, it is necessary to install suitable automatic map counting
equipment on the narrow tunnel vehicles and design an algorithm that is compatible with
this equipment. In this way, the intelligence level of map warehouses can be improved
effectively, and this will be of great significance in realizing the fine management and
querying of map information.
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2. Related Work

In this section, some relevant works are described briefly. There is no shaped paper
map inventory equipment currently available in warehouses. Considering that paper
is the main medium of topographic maps, the accurate counting of them is one of the
key requirements in the packaging and printing industry [5]; so, special equipment for
checking topographic maps has been designed with reference to the devices related to paper
counting. Today, there are two types of mature paper counting machines on the market. One
is the paper counting device represented by cash counters and paper counting machines,
which can quickly complete the counting of large amounts of paper by using mechanical
paddles, photoelectric machines, and other instruments. The other type comprises paper
transportation machines, which operate through the separation and transport of paper for
counting, such as paper conveyors, paper separators, etc. However, for paper map counting
in complex scenarios such as map warehouses, a non-contact photoelectric machine from
the former category cannot separate the paper for the rapid recording of the internal
information and lacks the ability to identify and sort. The machines in the latter category
are huge in size and unstable in the separation and transportation of large-scale paper.
Therefore, neither type can directly meet the daily inventory, identification, and sorting
needs of map warehouses. Currently, most of the domestic and foreign research on counting
machines is in the form of patents and is mainly aimed at small and thin objects with paper-
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like shapes (such as banknotes, checks, etc.) [6,7]; so, it does not apply to the counting of
large-scale maps and the recognition of internal information.

The traditional counting methods for paper or paper-like shaped objects (such as
banknotes, hardboards, etc.) include manual, physical, and mechanical measurement [8],
but these methods generally suffer from low efficiency and high cost. Therefore, with the
continuous development of machine vision and image processing technology in recent
years, the research on paper counting algorithms both at home and abroad has produced a
new method, namely a non-contact paper counting method based on machine vision [9],
which can be divided into two categories according to the placement of the papers. The
first is laminated placement. The side images of the laminated papers are obtained by
directly shooting the whole side or moving to shoot multiple images with a certain overlap
for image stitching, and then, the shading texture features on the side are processed to
achieve the task of counting. Han et al. [10] counted papers by calculating the difference in
the grayscale values in the horizontal directions of the images and proposed an algorithm
for counting compensation combined with the overall information to eliminate the false
detection position and to recover the missed detection position. Wang et al. [11] proposed
a laminated paper counting algorithm based on compressive sensing and the Hough
transform, addressing the shortcomings of conventional algorithms, such as their high
dependence on the quality of laminated paper and noise sensitivity. Huang et al. [12]
combined a wavelet transform and the relevant morphological algorithms for processing
the visual information to acquire the number of connected domains and calculated the
number of corrugated papers. Luan [13] spliced the images of laminated papers with an
overlap of no less than 50% and then used three methods of judging the black stripes,
morphological filtering and Gabor filtering, to achieve counting after comparison and
analysis. In this kind of method, if the interval between the paper and the gap is too small,
this will have a great impact on the imaging effect, and the requirements for the edges of
papers are relatively high, such as the requirement for regular edges with no more than 1
mm of margins misplaced, etc. The second method is arrangement placement. The whole
image is obtained by photographing the paper horizontally, arranged at a certain distance;
then, the edge features of the papers in the image are processed to achieve counting. Junya
Sato et al. [14] extracted the edges of aligned paper images by finding the optimal threshold
of the Canny edge detector with the genetic algorithm and inhibited the false detection to
count six different types of facial oil blotting papers. Chen et al. [15] established template
Gabor filters with different frequencies based on the edge features for pretreatment and then
counted the number of papers using the grayscale value difference algorithm according to
the grayscale pixel curves. Ye et al. [16] divided the edge images of arrayed answer sheets
into multi-row regions of interest and then carried out forward difference on the projected
curve after the accumulation of gray information; finally, they counted the number of
answer sheets according to the probability of peaks, valleys, and positive and negative
zero-crossing values. Such a method requires arranging the papers manually and ensuring
that there is a proper distance between the sheets.

In summary, the current domestic and foreign research on counting topographic maps
has mainly the following problems. This paper focuses on solving these problems:

1. Map inventory machines: at present, the counting of topographic maps is largely
performed manually, which has disadvantages such as low efficiency and the wasting
of resources. Because of the complex and narrow operating environments in map ware-
houses, none of the mature paper counting machines on the market can directly meet
their daily inventory, identification, and sorting needs. Thus, there is a lack of machines
suitable for the rapid inventory of topographic maps in map warehouse environments.

2. Paper counting method: the inventory and sorting of topographic maps requires not
only the counting of the quantity but also the obtaining of the internal information of
the maps simultaneously, e.g., classifying the map belonging to the sheet designation
or scale through the identification of the sheet designation. However, the current paper
counting method based on machine vision cannot obtain the internal information
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of the counted objects; in addition, it demands high intervals of paper, which is
unfavorable for the subsequent identification and sorting.

To address the above problems, in this study we use a map counting device trans-
formed from a paddle-type paper counting machine for preliminary counting, and simulta-
neously obtain the video data of the paddle counting. Based on this, an automatic counting
algorithm for topographic maps for map management is proposed. First, the map counting
machine is used to paddle and turn the simulated maps, and the process is captured in
multiple videos according to different paddle speeds and recording frequencies. Second,
the periodic variation features of all the targets and each individual target in the videos
are analyzed. Taking the mechanical wheel as the object, the accelerated deformable parts
model algorithm is used for object detection, and the image gray variance function is
selected to quantify the changes in image quality. Finally, the interval windows of the
image clarity quantization curves are built with the object detection results, and a fusion
window counting model is established by combining the two methods of the adaptive
window and the fixed window. The preliminary counting results of the device are checked
through the statistics of the periodic peaks in the model, and the clear frame of each key
region is determined accordingly. This algorithm facilitates the subsequent identification
and classification of the sheet designations and lays a solid foundation for the intelligent
management of topographic maps.

3. Materials and Methods
3.1. Data Acquisition and Analysis
3.1.1. Map Inventory Machine and Data

Based on a comprehensive consideration of the above analysis, the map counting
equipment used in this paper (as shown in Figure 2) was based on modifying and upgrading
a paddle-type paper counting machine to complete the checking and automatic storage
of map data. The following four aspects were improved. (1) At present, the principle of
automatic paper counting equipment involves distinguishing the number of papers by
vacuum adsorption, which requires high flatness and hardness of the paper. However, due
to the inevitable folding, extrusion, and other operations during the transportation, storage,
and unpacking of maps, their flatness may not meet the relevant requirements. Moreover,
map paper is often soft, and there are uncertain factors in relation to counting directly
with the existing counting equipment. Therefore, the cutter head and press plate of the
inventory machine need to be redesigned and selected specifically for the characteristics of
map paper. (2) A paddle-type paper counting machine simply separates the paper with
very limited gaps and distances. The existing camera equipment can hardly obtain the map
number information located at the corners of the map from its gaps, and it is difficult to
complete the verification of the map counting process. Therefore, in the reconstruction
of the existing paddle counting machine, it is necessary to focus on the redesign of its
separation equipment so that the sheet designations can be effectively identified and read.
(3) In the relevant parts of the quick inventory machine, the camera device is reasonably
installed in conjunction with the transformation of the map separation equipment. This
device can be used to obtain map image data during map paddling and paging and can
also provide a verification method for the inventory to ensure the reliability and accuracy
of the map inventory. (4) The size of the existing equipment platform is still too large, and
the paper needs to be flattened before it can be counted quickly. These requirements are
too complex for tunnel vehicles at high altitudes. Therefore, the equipment platform needs
to be reformed to reduce the size and to improve the paper counting model so that it can
effectively count and verify under relatively simple conditions.
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Figure 2. Map inventory machine.

The map inventory machine is used to toggle the simulated maps, take videos with dif-
ferent paddling speeds and recording frequencies, and intercept the videos frame by frame,
as shown in Figure 3. Among them, the topographic maps in the video were printed in the
same way as the map, in accordance with the standard of “Subdivision and numbering
for the national primary scale topographic maps (GB/T 13989-2012)” [17] published and
implemented in China in 2012, using map printing paper with low deformation to ensure
map accuracy, wear resistance, and folding resistance. Moreover, considering that the
contents of the topographic map are confidential, the specific map contents were discarded,
and the map sheet designation was kept printed on the paper, thus making the simulated
topographic maps for our research.
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3.1.2. Feature Analysis of Map Counting Process in Video Data

Video data may be affected by various environments during the acquisition process,
resulting in interference factors such as occlusion, noise, and motion blur in the targets of
the videos. By fully mining all of the features of the video data, it can first be found that
the mechanical wheel in the videos is clear throughout and that there is good correlation
between its periodic appearance and the page turning of the topographic maps. Secondly,
with each page turning and updating of the maps, the image qualities in the areas of
the sheet designation have the obvious periodic variations of blur–clear–blur. Next, the
mechanical wheel targets in the video are analyzed by features, and they can be specifically
divided into various parts, as shown in Figure 4, where the mechanical wheel part is
composed of R1, R2, R3, and R4, and A1 is a non-mechanical wheel part. The whole target
can be regarded as being composed of several objects [18], and the relative relationship
among them is fixed. In each map counting process, the mechanical wheel also exists in
three states, as shown in Figure 5. The first state (Figure 5a) comprises the mechanical
wheel and the other parts of the machine appearing on the video screen at the same time
before the equipment starts counting; the area occupied by the wheel is relatively small,
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and the other parts of the machine may affect the recognition of the wheels. In the second
state (Figure 5b), before and after each map page-turning action occurs during the counting
process, the wheel mainly appears above the video. The third state (Figure 5c) is in the
proximity of the map page-turning process; that is, when this angle appears, the map will
flip at the next moment. At this time, the wheel mainly appears in the upper right corner of
the video and accounts for a larger proportion of the area on the screen. According to the
properties of the mechanical wheel object with multiple parts and components, taking it as
the object of the target detection can achieve better detection results.
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wheel and the other parts of the machine appearing on the video screen at the same time before
the equipment starts counting. (b) The second state, before and after each map page-turning action
occurs during the counting process, the wheel mainly appears above the video. (c) The third state is
in the proximity of the map page-turning process; that is, when this angle appears, the map will flip
at the next moment.

3.2. The Proposed Fusion Window Counting Algorithm

According to the periodicity of the map counting process for the video data, first
the mechanical wheels in the videos are taken as the target, and they are detected by
the deformable parts model (DPM) algorithm. Then, the time-consuming defect of the
algorithm is improved by combining it with fast feature pyramids (FFP); this is called the
FFP–DPM algorithm. For all of the video data in the research, the region of interest (ROI) is
reduced through a certain number of image detection results at the beginning of the video
to reduce the computation for the subsequent detection in the video, thereby shortening the
operation time of the whole video; this is called the FFP–DPM–ROI algorithm. Secondly,
the times of the mechanical wheel toggles in the whole video can be obtained according to
the periodicity of the detection results, but considering the idling of the mechanical wheel
and the need to select the clear frames of the sheet designations while counting, the change
in image quality is quantified using the value of the clarity evaluation function. Finally,
the object detection results are organically combined with the image quality evaluation
curve to establish the fusion window counting model and realize the inventory research
regarding topographic maps based on machine vision. The following describes the detailed
implementation process, as shown in Figure 6.
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3.2.1. Deformable Parts Model Based on Fast Feature Pyramids

The DPM algorithm [19–22] can better detect different types of targets in complex
natural environments by integrating the overall information of the target to be detected
and the relationships between its components. The algorithm adopts a multi-component
strategy to construct a mixed multi-angle deformable parts model for the existence of
multiple views of the target; for the deformation problem of the target itself, it adopts a
strategy based on the graph structure, which improves the adaptability of the model to the
various deformation problems of the target. Moreover, ideal results have been achieved
in the identification of mixed multi-angle targets, such as people and cars [23,24]; so, it is
feasible to use this algorithm to detect mechanical wheel targets.

However, the traditional DPM algorithm suffers from the problems of being com-
putationally intensive and time-consuming [25,26], and therefore, it cannot satisfy the
requirements for the fast checking of topographic maps. According to the detection process
of the algorithm, the detection speed mainly depends on two aspects: (1)’ the feature
extraction of feature pyramids and (2) the sliding window method for target localization.
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The acceleration of the feature pyramid part can not only shorten the construction time of
the pyramid, it can also largely reduce the computation of the sliding convolution operation.
Therefore, in this paper, we draw on the idea of fast feature pyramids for optimization and
adopt the FFP–DPM algorithm to detect mechanical wheels. This process mainly includes
the following key stages.

1. Model training to obtain filters

The training phase is a crucial process that enables the model to play an ideal role in
the detection phase. The essence of model training in the DPM algorithm is the obtaining
of filters, which include three parts: a coarse-root filter describing the global contour of
the target; several part filters describing the detailed features of the target; and a spatial
model describing the deviation loss of each part filter relative to the root filter. The filter is
a rectangular template defined by a d-dimensional weight vector, and a model for an object
with n parts can be defined as an (n + 2) tuple:

F = (F0, P1, · · · , Pn, b) (1)

where F0 is a root filter, Pi is a model for the ith part, and b is a real-valued bias term. Each
part model is defined by

Pi = (Fi, vi, di) (2)

where Fi is a filter for the ith part, vi is the coordinate of part i relative to the root position,
and di defines a deformation cost for each possible placement of the part relative to the
anchor position.

2. Building the fast feature pyramids

As the size and position of the mechanical wheels in the image are not fixed, the
traditional DPM algorithm adopts the idea of multi-scale to construct the feature pyramid,
in which the features are based on the enhanced histogram of the oriented gradient pro-
posed by Felzenszwalb (FHOG). The specific steps to build the pyramid are as follows:
starting from the original image, we down-sample in each octave from the previous step
2(1/interval) times to obtain the image pyramid, with 10 scales in each octave in the model
(i.e., interval = 10), and then, the feature pyramid is formed by combining the characteristic
diagrams obtained by computing the features on each level of the image. The idea of the fast
feature pyramid [27] approximates the features of the current scale image from the features
of the adjacent scale image by extrapolation, which can improve the detection speed with
almost no loss of accuracy. The specific process is as follows (as shown in Figure 7).

The general feature pyramid is constructed by scaling the image I to scale s and then
calculating the FHOG features of the image Is; that is, Cs = Ω(S(I, s)), where C = Ω(I)
denotes the feature extraction function, and S denotes the sampling function. The fast fea-
ture pyramid selects a benchmark scale (s ∈ {1, 0.5, 0.25, · · ·}) in each octave and calculates
features by using the general feature pyramid method Cs = Ω(S(I, s)), s ∈ {1, 0.5, 0.25, · · ·}
for feature extraction at the key scales. Through the features of the key scales, the
features at the adjacent scales are estimated using the approximate estimation method
Cs ≈ S(Cs, s/s′)(s/s′)−λΩ , where s′ is the nearest scale to s. The constant coefficient λΩ
needs to be estimated by the training samples in advance based on specific features, and
the coefficient λΩ of the FHOG features is −0.091.
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3. Model matching

The DPM algorithm adopts the sliding window method for model matching. At first,
the overall convolution operation of the pyramid is performed using the root filter, and the
response value of the root filter position of the level is obtained as:

R0,l(x0, y0) = F0·φ(H, (x, y, l)) (3)

where (x0, y0) is the coordinate of the root filter in its level, H is the feature pyramid,
p(x, y, l) is the position of level l in the specified pyramid, and φ(x) is the feature vector at
x in the image.

Similarly, the response value of the ith part filter at the lth level of the feature pyramid
can be obtained, but it should be considered that it has the coordinate offset dx, dy relative
to the root filter:

Ri,j(x0 + dx, y0 + dy) = Fi·φ(H, (x0 + dx, y0 + dy, l)) (4)

After calculating these filter response values, they are converted so that they have
spatial uncertainty. This transformation can extend the filter’s high scores to adjacent
positions while also considering the deformation costs:

Di,j(x, y) = max
dx,dy

(Ri,j(x + dx, y + dy)− di·φd(dx, dy)) (5)

where the Di,j(x, y) value means the maximum contribution to the root position score when
the anchor of the ith part is placed at the location (x, y) in level l.

Then, the synthesis score for each level of the root position can be obtained as the
root filter response value for that level plus the response value of the part filter after
transformation and subsampling, minus the deformation cost of this position relative to
the root filter, plus the deviation b:

Score(x0, y0, l0) = R0,l0(x0, y0) +
n
∑

i=1
Di,l0−λ(2(x0, y0) + vi) + b (6)
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In the process of calculating Di,l , we can also calculate the optimal position of the
part—that is, the function of the anchor coordinates. After finding a root position (x0, y0, l0)
with a high score, the corresponding optimal position of the part can be found as follows:

Pi,j(x, y) = arg max
dx,dy

(
Ri,j(x + dx, y + dy)− di·φd(dx, dy)

)
(7)

Finally, the score of each window is calculated; then, the threshold is determined
based on the training data. When the score is greater than the threshold, the window is
considered to contain the mechanical wheel, and the position of the window in the image is
marked with a rectangular box. After model matching, each frame of the video will produce
multiple detection boxes with the mechanical wheel as the target, and one detection box
corresponds to one score. The scores are ranked, and the best detection box is selected by
non-maximum suppression (NMS) to obtain the final detection results.

3.2.2. Selecting the Region of Interest

According to the existing state of the mechanical wheels in the video, they only exist
in the part area of each frame. However, the DPM algorithm builds a feature pyramid for
the whole image and finds the target candidate regions by the sliding window method. If
the picture size is large, this will lead to more candidate regions in an image and increase
the algorithmic operand. Therefore, the algorithm reduces the operation time of the whole
video by learning to diminish the ROI; that is, when detecting each video frame by frame,
the maximum bounding rectangle of the target is determined according to the detection
box of a certain number of frames after the beginning of the video, and the subsequent
frames use the determined maximum bounding rectangle as the region of interest to realize
the object detection.

Suppose the coordinates of the ith frame detection box are
(
xi

1, yi
1
)
,
(
xi

1, yi
2
)
,
(

xi
2, yi

1
)
,

and
(

xi
2, yi

2
)
, where xi

1 < xi
2, yi

1 < yi
2. The coordinates of the maximum bounding rectangle

determined by the image detection box of the first n frames are
(
Xn

1 , Yn
1
)
,
(
Xn

1 , Yn
2
)
,
(
Xn

2 , Yn
1
)
,

and (Xn
2 , Yn

2 ), where: 
Xn

1 = min
{

x1
1, x2

1, · · · , xn
1
}

Xn
2 = max

{
x1

2, x2
2, · · · , xn

2
}

Yn
1 = min

{
y1

2, y2
2, · · · , yn

2
}

Yn
2 = max

{
y1

2, y2
2, · · · , yn

2
} (8)

The absolute values of the coordinate difference of the maximum bounding rectangle
determined by the image detection of the first n frames and the first n−1 frames are∣∣∣Xn

1 − Xn−1
1

∣∣∣, ∣∣∣Xn
2 − Xn−1

2

∣∣∣, ∣∣∣Yn
1 −Yn−1

1

∣∣∣, and
∣∣∣Yn

2 −Yn−1
2

∣∣∣, respectively.
Suppose that the threshold of the allowable coordinate difference is δ. If the coordinate

difference of consecutive m frames is within the threshold range, the coordinates of the
maximum bounding rectangle R can be determined as

(
XN

1 , YN
1
)
,
(
XN

1 , YN
2
)
,
(
XN

2 , YN
1
)
,

and
(
XN

2 , YN
2
)
, through N frames, where Xi

1 < Xi
2, Yi

1 < Yi
2, and the relationship between

n, m, and M in the first M frames can be expressed as {1, 2, 3, · · · , n, n + 1, · · · , n + m, M}.
Empirically, δ is taken as 20 pixels and m as 10. After R is determined, the subsequent
images in the same video are clipped using the R for the object detection.

3.2.3. Fusion Window Counting Model

The turning frequency of the mechanical wheel can be judged from the object detection
results. However, the toggle frequency does not accurately represent the number of maps
due to factors such as the video shooting time, the angle, and the adhesion between
papers. The object detection progress of each frame is supplemented by image quality
assessment (IQA) [28,29] to improve the accuracy of the counting. In the no-reference
quality assessment algorithms, image clarity [30] is one of the important indicators used
to measure the quality of images and can better reflect the subjective feeling of humans.
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We selected the sum of the modulus of gray difference (SMD) function, which is most
applicable to the images in this study [31].

According to the relationship between the appearance of mechanical wheels and
the clarity change in the images in the video, the clearer frames corresponding to sheet
designations are mainly concentrated in the interval without mechanical wheels. At the
same time, because the pictures in this interval are visually free of mechanical wheel
occlusion, the influence of the mechanical wheels on the clarity calculation of the images
can also be reduced. Therefore, we propose a fusion window counting model, combining
the FFP–DPM–ROI algorithm with IQA. Firstly, the mechanical wheels are quickly detected
according to the improved deformable parts model. Secondly, the SMD function is used as
the clarity assessment algorithm to quantify the image quality, and the two are combined
to build the counting model. The specific combination process is as follows:

Assume that the detection result and clarity value of the ith frame image are Di and Ti,
respectively. If the mechanical wheel is detected, assign Di to 1, otherwise assign 0; then,
each video will obtain the periodic pulse curve of the detection result Di about image i.
Through the above analysis, the clarity curves need to satisfy the following.

Ti =

{
Ti, Di = 0
0, Di = 1

(9)

Let the length of the jth interval without the mechanical wheel be Ij, and the extremum
of clarity in the interval be Tjmax. If the interval satisfies ∀i ∈ [l, k], Di ≡ 0 and Dk+1 = 1,
then {

Ij = k− 1
Tjmax = max{Ti, Ti+1, · · · , Tk}

(10)

For each video, there is a theoretical interval without mechanical wheels in the video
for each map counting process, and there is an extremum in each interval. However, the
actual videos cannot accurately correspond one by one; so, the following different methods
are used to define the windows in which the extremums are located in order to realize the
counting. Suppose that the size of the window in which the mth extremum is located is Wm.

1. Adaptive window method: take each Ij directly as the size of the window, i.e.,
Wm1 = Ij(m = j); the number of extremums obtained is numa.

2. Fixed window method: take the fixed value as the size of the window, i.e., Wm2 = Mo
(

Ij
)
,

where Mo is the mode function; generally, m 6= j and the number of extremums ob-
tained is num f .

3. Fusion window method: The toggle speed of the mechanical wheel is approximately
uniform; there are several intervals of different lengths, but the lengths are stable
within the threshold range of a certain fixed value Wm2; so, the counting results of the
above two methods can reflect each other. The fusion window counting model fuses
the two, and if we set the final count value of the topographic maps in the video to
Num, then

Num =

{
Num + 1, numa = num f

Num, numa 6= num f
(11)

That is, if numa = num f , the map counting result is increased by one, and this method
is used to count each interval in the video to obtain the final number of maps.

4. Results
4.1. Comparison and Analysis of Mechanical Wheel Detection Results

For the experimentation, we adopted the integration of the DPM algorithm and the
FFP algorithm; we used Girshick’s voc-release5 and Piotr’s Computer Vision MATLAB
Toolbox (PMT) version 3.50 written by Piotr Dollar of UCSD in the United States. The
platform adopted a combination of Visual Studio 2015 developed by Microsoft in the
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United States and MATLAB R2016 developed by MathWorks in the United States, and
the running environment was a PC with a Windows 10 operating system (CPU: I5-10400F
2.90GHz; RAM:16GB). In this experiment, a certain number of images, all of which were
720 pixels × 480 pixels, were selected from the frame by frame images of many videos to
form the training set, test set, and validation set containing positive and negative samples
of the three components of the mechanical wheels. The deformable parts model was built
by training these samples and was then used to detect the videos frame by frame. The
detection results of one frame are shown in Figure 8, and the precision/recall curves for the
DPM algorithm and the FFP–DPM algorithm were compared and are shown in Figure 9.
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Figure 8. Target detection results: (a) initial detection results; (b) final detection results. The red
rectangular boxes indicate the possible position of the detected target; there is more than one target
candidate box in the figure, and the boxes will overlap with each other. The blue rectangular boxes
represent the positioning results of the part model inside each red box.
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Figure 8a shows the initial detection results. The red rectangular boxes indicate the
possible position of the detected target; there is more than one target candidate box in the
figure, and the boxes will overlap with each other. The blue rectangular boxes represent
the positioning results of the part model inside each red box. Figure 8b shows the best
target bounding box obtained from Figure 7a after non-maximum suppression to eliminate
the redundant candidate boxes. It can be seen that the algorithm can accurately detect the
specific position of the mechanical wheels and mark it completely. The PR curve is one
of the important indexes used to evaluate the performance of the trained model, and P
and R in the curve indicate precision and recall. The former represents the ability of the
model to detect irrelevant information, and the latter represents the ability of the model
to detect relevant information; so, the higher the recall, the lower the accuracy. The AP
(average precision) value is the area enclosed by the PR curve, and the larger the value, the
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stronger the detection ability of the model. As can be seen in Figure 9, both the DPM and
the FFP–DPM algorithm have a stronger detection capability, and the detection ability of
the FFP–DPM algorithm is only slightly lower than that of the DPM algorithm.

In practical applications, the detection speed is as important as the detection accuracy.
In this study, we detected many videos according to the above detection process and used
the corresponding evaluation indexes to compare and analyze the detection effects of three
methods: the traditional DPM algorithm, the FFP–DPM algorithm, and the FFP–DPM–ROI
algorithm. The following are the detection results for the various videos, as shown in
Tables 1 and 2. The detection speed adopts the average time-consumed index, and the
detection accuracy adopts three indexes: accuracy (ACC), the true positive rate (TPR),
and the false negative rate (FNR). The accuracy refers to the proportion of the number
of images with correct detection results in the total number of images. The true positive
rate refers to the proportion of the number of images with correctly detected mechanical
wheels in the number of pictures with actual mechanical wheels, and the false negative
rate refers to the proportion of the number of images with the incorrect detection of no
mechanical wheels in the number of images with actual mechanical wheels. Finally, the
time-consuming values and the accuracy of multiple video detection results were averaged,
and the overall detection efficiency of the three algorithms was compared and analyzed, as
shown in Figure 10.

Table 1. Comparison of detection times of different algorithms for each video (s).

Video
Number of

Images
Traditional DPM FFP–DPM FFP–DPM–ROI

Total Time Average Time Total Time Average Time Total Time Average Time

1 1812 30,360.461 16.755 8963.497 4.947 8877.310 4.899
2 6120 102,877.465 16.810 30,630.299 5.005 29,969.693 4.897
3 6389 107,624.298 16.845 31,945.032 5.000 26,866.572 4.205
4 2146 36,032.633 16.798 10,779.174 5.025 9364.335 4.366
5 2145 36,023.563 16.794 10,793.490 5.032 9327.416 4.348

average time 16.801 5.002 4.543

Table 2. Comparison of detection accuracies of different algorithms for each video.

Video Number of Images
Traditional DPM FFP–DPM FFP–DPM–ROI

Acc TPR FNR Acc TPR FNR Acc TPR FNR

1 1812 0.995 0.990 0.010 0.986 0.963 0.037 0.984 0.965 0.035
2 6120 0.992 0.983 0.017 0.976 0.936 0.064 0.974 0.937 0.063
3 6389 0.968 0.952 0.048 0.937 0.857 0.143 0.935 0.852 0.148
4 2146 0.971 1 0 0.968 0.955 0.045 0.967 0.957 0.043
5 2145 1 1 0 0.970 0.956 0.044 0.968 0.958 0.042

average value 0.979 0.985 0.015 0.967 0.934 0.066 0.966 0.934 0.066

Table 1 shows that the traditional DPM algorithm is the slowest, with an average
time of 16.801 s. After combining the fast feature pyramids to accelerate the traditional
DPM algorithm, the FFP–DPM algorithm is significantly faster, with an average time of
5.002 s. The FFP–DPM–ROI algorithm, obtained by learning to reduce the region of interest
of the targets to accelerate the whole video, takes an average time of 4.545 s. It has a
weak acceleration effect on the FFP–DPM algorithm, but it accelerates by nearly 3.7 times
compared with the traditional DPM algorithm. Table 2 shows that the accuracy and the
true positive rate of the traditional DPM algorithm are the highest, and the false negative
rate is the lowest. Compared with this algorithm, the FFP–DPM algorithm and the FFP–
DPM–ROI algorithm decrease the accuracy and the true positive rate by about 0.01 and 0.05,
respectively, and increase the false negative rate by about 0.05. The comprehensive analysis
of the figures and tables shows that the accuracies of the FFP–DPM and the FFP–DPM–ROI
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algorithm are only slightly reduced on the basis of the obvious acceleration effect, which
meets the needs of the practical application.
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Through analyzing the accuracy of the above algorithms, we found a few false detec-
tions in the experiment results; if these values are directly used in the subsequent counting
process, they will interfere with the results. According to the continuity of the process
from appearance to disappearance or from disappearance to appearance of the mechanical
wheels, we smoothed the anomaly detection using the detection results before and after
the false detections to improve the counting accuracy, as shown in Figure 11.
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4.2. Analysis of Paper Map Inventory Results Based on Fusion Window Counting Model

Combining the target detection results with the image quality assessment index, the
counting experiments for multiple videos were carried out according to three methods:
the adaptive window, the fixed window, and the fusion window. Because the FFP–DPM–
ROI algorithm improved the operation speed with less loss of detection accuracy in the
experimental results for object detection, we combined it with the SMD clarity assessment
function (hereinafter called the FFP–DPM–ROI–SMD algorithm) for the inventory research
of topographic maps. The fusion window method in this algorithm is the fusion window
counting model proposed in this paper. Taking video 3 as an example, the counting process
of the FFP–DPM–ROI–SMD algorithm is shown in Figure 12. The counting results of this
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algorithm and the DPM algorithm combined with the SMD clarity assessment function
(hereinafter referred to as the DPM–SMD algorithm) were compared and analyzed, as
shown in Figure 13, where the left figure shows the counting results of the DPM–SMD
algorithm and the right figure shows the counting results of the FFP–DPM–ROI–SMD
algorithm. Table 3 shows the counting accuracies of the different algorithms.
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Table 3. Comparison of counting accuracies of different algorithms.

Video
Number

DPM–SMD FFP–DPM–ROI–SMD

Adaptive
Window

Fixed
Window

Fusion
Window

Adaptive
Window

Fixed
Window

Fusion
Window

1 95% 83% 99% 95% 85% 98%
2 99% 95% 92% 99% 95% 93%
3 98% 96% 99% 98% 97% 99%
4 91% 88% 95% 91% 82% 92%
5 91% 88% 95% 91% 82% 92%

Average accuracy 96% 95%

As can be seen in Figure 12, for the first interval without mechanical wheels, there
is one extremum in the adaptive window method and there are two extremums in the
fixed window method, and according to the idea of a fusion window, the fusion window
counting model does not add one to the count value for this interval. The observation
of the videos shows that the topographic maps are not updated in the first cycle when
the mechanical wheel appears; so, the fusion window method is more in line with the
counting of the topographic maps in the actual videos. The comparison and analysis of the
two algorithms in Figure 13 and Table 3 reveal that both of the adaptive window methods
have the same counting results and higher accuracy, and the count results of the two fixed
window methods are greatly affected by the accuracy of the object detection algorithm
and have lower count accuracy. The counting results of the fusion window method for
all the videos except video 2 are closest to the actual number of maps, and the average
counting accuracy of the FFP–DPM–ROI–SMD algorithm is slightly lower than that of
the DPM–SMD algorithm. In short, we have shown that the FFP–DPM–ROI algorithm
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affects the final counting accuracy while increasing the detection speed, leading to a slight
decrease in detection accuracy. It also affects the counting results of the final fusion window
method, mainly by changing the counting process of the fixed window method. When we
combined these results with the actual data, we found that the counting accuracies of the
two algorithms for video 2 were low. This was due to the shooting angle, which caused
the sheet designation area to be blocked in the later stages of the video. In addition, the
clarity assessment value cannot accurately represent the image quality of the map area, and
there are situations such as that of a broken edge, or there is adhesion between the maps,
which also provides a reference with respect to the relevant shooting conditions for the
subsequent acquisition of the video data.
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Figure 13. Counting results of different algorithms for topographic maps: (a) DPM–SMD method
counting result; (b) FFP–DPM–ROI–SMD method counting result. Blue represents the actual number
of maps in the videos, orange represents the counting result of the adaptive window, gray represents
the counting result of the fixed window, and yellow represents the counting result of the fusion
window counting algorithm.

In summary, through the experimental results, we can also find that the average
time consumption of the FFP–DPM algorithm accelerated nearly 3.7 times compared with
the traditional DPM algorithm, and the average time consumption of the FFP–DPM–ROI
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algorithm increased by about 0.5 s compared with the FFP–DPM algorithm. The accuracy
of the FFP–DPM algorithm and the FFP–DPM–ROI algorithm decreased by only 0.01
compared with the DPM algorithm. Therefore, the accuracies of the FFP–DPM and the
FFP–DPM–ROI algorithm are only slightly reduced based on the obvious acceleration effect,
which meets the needs of the practical application. On this basis, the average counting
accuracy of the FFP–DPM–ROI–SMD counting algorithm can reach about 95%, which is
mutually verified with the mechanical counting results of the map inventory machine. In
addition, the algorithm can determine clearer keyframes while counting, which is beneficial
to the identification and classification of the subsequent sheet designation.

5. Conclusions

Aiming at the current problems of inefficiency and incompatibility with the intelligent
development needs of the manual counting of topographic maps, we used a map inventory
machine transformed from a paddle-type paper counting device to perform a preliminary
paper count and obtain video data for the counting, and we designed a matching auto-
matic counting algorithm for paper topographic maps to realize the acquisition of internal
information while counting so as to realize the fine and intelligent management of paper
map information. A topographic map counting method based on the periodicity features
of map counting in videos was proposed. First, we took the mechanical wheel in the videos
as the object, constructed a fast deformable parts model by introducing the idea of fast
feature pyramids to detect the target and used the learning process to reduce the region
of interest to further accelerate the detection effect. Second, according to the correlation
characteristics, we selected the gray variance function as the image quality assessment
index. Finally, we established the fusion window counting model by combining the two
counting methods of the adaptive window and the fixed window. The experimental results
show that compared with the traditional DPM algorithm, the average operation time of the
FFP–DPM–ROI target detection algorithm proposed in this paper was reduced by nearly
3.7 times, and the average detection accuracy was only reduced by 0.01. On this basis, the
average counting accuracy of the fusion window counting model can reach about 95%, and
clearer keyframes can be determined simultaneously, which fully proves the feasibility of
this method.

In the actual management application of a map warehouse, it is required that the
speed and accuracy of the counting should be as high as possible; therefore, we will
consider optimizing the following aspects in future work. (1) We realized the acceleration
by improving the feature pyramid of the DPM algorithm. Subsequently, we can improve
the processing speed of the object location to achieve two-stage acceleration. (2) In the
analysis of the above experiments, it was found that the video shooting environment, the
angle and equipment, and the other influencing factors can directly affect the accuracy
of the final counting results. Therefore, we can continuously adjust these factors through
various experiments to further improve the counting accuracy.
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