Spatial Characterization of Single-Cracked Space Based on Microcrack Distribution in Sandstone Failure
Abstract
:1. Introduction
2. Materials and Experimental Procedure
3. Spatial Characterization Methods
3.1. 3D Convex Hull Algorithm
3.2. Minimum Volume Enclosing Ellipsoid Algorithm
3.3. Theoretical Distribution Pattern Space
4. Experimental Results
5. Analysis and Discussion
5.1. Area and Volume Evaluation at Different Spatial Scales
5.2. Evolution Pattern of Area and Volume
5.3. Deviation Angles at Different Spatial Scales
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoek, E.; Martin, C.D. Fracture initiation and propagation in intact rock—A review. J. Rock Mech. Geotech. Eng. 2014, 6, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Anders, M.H.; Laubach, S.E.; Scholz, C.H. Microfractures: A review. J. Struct. Geol. 2014, 69, 377–394. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar] [CrossRef]
- Wang, C.; Lu, Z.; Liu, L.; Chuai, X.; Lu, H. Predicting points of the infrared precursor for limestone failure under uniaxial compression. Int. J. Rock Mech. Min. Sci. 2016, 88, 34–43. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, H.; Zhao, Y.; Zhang, L.; Deng, L.; Wang, X. Real-time SEM observation of mesoscale failures under thermal-mechanical coupling sequences in granite. Int. J. Rock Mech. Min. Sci. 2018, 112, 35–46. [Google Scholar] [CrossRef]
- Wang, C.; Gao, A.; Shi, F.; Hou, X.; Ni, P.; Ba, D. Three-dimensional reconstruction and growth factor model for rock cracks under uniaxial cyclic loading/unloading by X-ray CT. Geotech. Test J. 2019, 42, 117–135. [Google Scholar] [CrossRef]
- Grosse, C.U.; Finck, F. Quantitative evaluation of fracture processes in concrete using signal-based acoustic emission techniques. Cement Concrete Compos. 2006, 28, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Michlmayr, G.; Cohen, D.; Or, D. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media—A review. Earth-Sci. Rev. 2012, 112, 97–114. [Google Scholar] [CrossRef]
- Wang, C.L. Evolution, Monitoring and Predicting Models of Rockburst: Precursor Information for Rock Failure; Springer Nature: Singapore, 2018. [Google Scholar]
- Li, G.; Lu, R.; Ma, F.; Guo, J. Analysis of acoustic emission characteristics and failure mode of deep surrounding rock of Sanshandao Gold Mine. Int. J. Environ. Res. Public Health 2022, 19, 13351. [Google Scholar] [CrossRef]
- Kourkoulis, S.K.; Pasiou, E.D.; Loukidis, A.; Stavrakas, I.; Triantis, D. Comparative assessment of criticality indices extracted from acoustic and electrical signals detected in marble specimens. Infrastructures 2022, 7, 15. [Google Scholar] [CrossRef]
- Chen, D.; Li, N.; Wang, E. Temporal and spatial evolution of acoustic emission and waveform characteristics of specimens with different lithology. J. Geophys. Eng. 2018, 15, 1878–1888. [Google Scholar]
- Zhang, S.; Wu, S.; Zhang, G.; Guo, P.; Chu, C. Three-dimensional evolution of damage in sandstone Brazilian discs by the concurrent use of active and passive ultrasonic techniques. Acta Geotech. 2020, 15, 393–408. [Google Scholar] [CrossRef]
- Baud, P.; Schubnel, A.; Heap, M.; Rolland, A. Inelastic compaction in high-porosity limestone monitored using acoustic emissions. J. Geophys. Res. Solid Earth 2017, 122, 9989–10008. [Google Scholar] [CrossRef] [Green Version]
- Katsaga, T.; Sherwood, E.G.; Collins, M.P.; Young, R.P. Acoustic emission imaging of shear failure in large reinforced concrete structures. Int. J. Fract. 2007, 148, 29–45. [Google Scholar] [CrossRef]
- Liu, J.P.; Li, Y.H.; Xu, S.D.; Xu, S.; Jin, C.Y.; Liu, Z.S. Moment tensor analysis of acoustic emission for cracking mechanisms in rock with a pre-cut circular hole under uniaxial compression. Eng. Fract. Mech. 2015, 135, 206–218. [Google Scholar] [CrossRef]
- Kourkoulis, S.K.; Pasiou, E.D.; Dakanali, I.; Stavrakas, I.; Triantis, D. Notched marble plates under tension: Detecting prefailure indicators and predicting entrance to the “critical stage”. Fatigue Frac. Eng. Mater. Struct. 2018, 41, 776–786. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Wang, X.; Zhang, C.; Xie, H.; Yang, S.; Lu, W. Acoustic emission characteristics of graded loading intact and holey rock samples during the damage and failure process. Appl. Sci. 2019, 9, 1595. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Wan, B.; Wang, Y.; Lu, Y.; Labuz, J.F. Unifying acoustic emission and digital imaging observations of quasi-brittle fracture. Theor. Appl. Fract. Mech. 2019, 103, 102301. [Google Scholar] [CrossRef]
- López-Comino, J.A.; Cesca, S.; Heimann, S.; Grigoli, F.; Milkereit, C.; Dahm, T.; Zang, A. Characterization of hydraulic fractures growth during the Äspö hard rock laboratory experiment (Sweden). Rock Mech. Rock Eng. 2017, 50, 2985–3001. [Google Scholar] [CrossRef] [Green Version]
- Goebel, T.H.W.; Becker, T.W.; Schorlemmer, D.; Stanchits, S.; Sammis, C.; Rybacki, E.; Dresen, G. Identifying fault heterogeneity through mapping spatial anomalies in acoustic emission statistics. J. Geophys. Res. Solid Earth 2012, 117, B03310. [Google Scholar] [CrossRef] [Green Version]
- Yabe, Y.; Nakatani, M.; Naoi, M.; Philipp, J.; Janssen, C.; Watanabe, T.; Katsura, T.; Kawakata, H.; Georg, D.; Ogasawara, H. Nucleation process of an M2 earthquake in a deep gold mine in South Africa inferred from on-fault foreshock activity. J. Geophys. Res. Solid Earth 2015, 120, 5574–5594. [Google Scholar] [CrossRef]
- Hohl, A.; Griffith, A.D.; Eppes, M.C.; Delmelle, E. Computationally enabled 4D visualizations facilitate the detection of rock fracture patterns from acoustic emissions. Rock Mech. Rock Eng. 2018, 51, 2733–2746. [Google Scholar] [CrossRef]
- Wang, C.; Hou, X.; Liu, Y. Three-dimensional crack recognition by unsupervised machine learning. Rock Mech. Rock Eng. 2021, 54, 893–903. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Hou, X.; Elmo, D. Investigation of the spatial distribution pattern of 3D microcracks in single-cracked breakage. Int. J. Rock Mech. Min. 2022, 154, 105126. [Google Scholar] [CrossRef]
- Mayerhofer, M.J.; Lolon, E.; Warpinski, N.R.; Cipolla, C.L.; Walser, D.W.; Rightmire, C.M. What is stimulated reservoir volume? SPE Prod. Oper. 2010, 25, 89–98. [Google Scholar] [CrossRef]
- Li, L.; Tan, J.; Wood, D.A.; Zhao, Z.; Becker, D.; Lyu, Q.; Shu, B.; Chen, H. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel 2019, 242, 195–210. [Google Scholar] [CrossRef]
- Schwartzkopff, A.K.; Melkoumian, N.S.; Xu, C. Breakdown pressure and propagation surface of a hydraulically pressurized circular notch within a rock material. Rock Mech. Rock Eng. 2020, 54, 191–218. [Google Scholar] [CrossRef]
- Lin, A.; Ma, J. Stimulated-rock characteristics and behavior in multistage hydraulic-fracturing treatment. SPE J. 2015, 20, 784–789. [Google Scholar] [CrossRef]
- Shao, Y.; Huang, X.; Xing, Y. An integrated study on the sensitivity and uncertainty associated with the evaluation of stimulated reservoir volume (SRV). J. Pet. Sci. Eng. 2017, 159, 903–914. [Google Scholar] [CrossRef]
- Cui, G.; Tan, Y.; Chen, T.; Feng, X.T.; Elsworth, D.; Pan, Z.; Wang, C. Multidomain two-phase flow model to study the impacts of hydraulic fracturing on shale gas production. Energy Fuels 2020, 34, 4273–4288. [Google Scholar] [CrossRef]
- Hubbert, M.K.; Willis, D.G. Mechanics of hydraulic fracturing. Mem. Am. Assoc. Pet. Geol. 1972, 18, 153–163. [Google Scholar] [CrossRef]
- Healy, D.; Jones, R.R.; Holdsworth, R.E. Three-dimensional brittle shear fracturing by tensile crack interaction. Nature 2006, 439, 64–67. [Google Scholar] [CrossRef]
- Meredith, P.G.; Atkinson, B.K. Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys. J. Int. 1983, 75, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Dalguer, L.A.; Irikura, K.; Riera, J.D. Simulation of tensile crack generation by three-dimensional dynamic shear rupture propagation during an earthquake. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Freund, L.B. The mechanics of dynamic shear crack propagation. J. Geophys. Res. Solid Earth 1979, 84, 2199–2209. [Google Scholar] [CrossRef]
- Ohno, K.; Ohtsu, M. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 2010, 24, 2339–2346. [Google Scholar] [CrossRef]
- Li, Y.H.; Liu, J.P.; Zhao, X.D.; Yang, Y.J. Experimental studies of the change of spatial correlation length of acoustic emission events during rock fracture process. Int. J. Rock Mech. Min. 2010, 47, 1254–1262. [Google Scholar] [CrossRef]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Yildirim, E.A. Minimum-volume enclosing ellipsoids and core sets. J. Optim. Theory Appl. 2005, 126, 1–21. [Google Scholar] [CrossRef]
- Khachiyan, L.G. Rounding of polytopes in the real number model of computation. Math. Oper. Res. 1996, 21, 307–320. [Google Scholar] [CrossRef]
- Moradian, Z.; Einstein, H.H.; Ballivy, G. Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals. Rock Mech. Rock Eng. 2016, 49, 785–800. [Google Scholar] [CrossRef]
- Zhou, X.P.; Zhang, J.Z.; Qian, Q.H.; Niu, Y. Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques. J. Struct. Geol. 2019, 126, 129–145. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Xiong, Q.Q. A Method for multiscale interpretation of fracture processes in carrara marble specimen containing a single flaw under uniaxial compression. J. Geophys. Res. Solid Earth 2018, 123, 6459–6490. [Google Scholar] [CrossRef]
- Moore, D.E.; Lockner, D.A. The role of microcracking in shear-fracture propagation in granite. J. Struct. Geol. 1995, 17, 95–114. [Google Scholar] [CrossRef]
Specimen | S2 | S3 | S5 | ||||||
---|---|---|---|---|---|---|---|---|---|
Method | TDPS | 3DCH | MVEE | TDPS | 3DCH | MVEE | TDPS | 3DCH | MVEE |
Area | 0.970 | 0.986 | 0.971 | 0.988 | 0.982 | 0.988 | 0.969 | 0.984 | 0.968 |
Volume | 0.983 | 0.982 | 0.976 | 0.988 | 0.983 | 0.985 | 0.981 | 0.984 | 0.9670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Zhai, H.; Wang, C.; Wang, T.; He, X.; Sun, X.; Bai, Z.; Zhou, B.; Li, X. Spatial Characterization of Single-Cracked Space Based on Microcrack Distribution in Sandstone Failure. Appl. Sci. 2023, 13, 1462. https://doi.org/10.3390/app13031462
Hou X, Zhai H, Wang C, Wang T, He X, Sun X, Bai Z, Zhou B, Li X. Spatial Characterization of Single-Cracked Space Based on Microcrack Distribution in Sandstone Failure. Applied Sciences. 2023; 13(3):1462. https://doi.org/10.3390/app13031462
Chicago/Turabian StyleHou, Xiaolin, Hongyu Zhai, Chunlai Wang, Tingting Wang, Xiang He, Xiang Sun, Zhian Bai, Baokun Zhou, and Xiaoshuang Li. 2023. "Spatial Characterization of Single-Cracked Space Based on Microcrack Distribution in Sandstone Failure" Applied Sciences 13, no. 3: 1462. https://doi.org/10.3390/app13031462
APA StyleHou, X., Zhai, H., Wang, C., Wang, T., He, X., Sun, X., Bai, Z., Zhou, B., & Li, X. (2023). Spatial Characterization of Single-Cracked Space Based on Microcrack Distribution in Sandstone Failure. Applied Sciences, 13(3), 1462. https://doi.org/10.3390/app13031462