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Abstract: Neurodegeneration and impaired neuronal transmission in the brain are at the root
of Alzheimer’s disease (AD) and dementia. As of yet, no successful treatments for dementia or
Alzheimer’s disease have indeed been found. Therefore, preventative measures such as early di-
agnosis are essential. This research aimed to evaluate the accuracy of the Open Access Series of
Imaging Studies (OASIS) database for the purpose of identifying biomarkers of dementia using
effective machine learning methods. In most parts of the world, AD is responsible for dementia.
When the challenge level is high, it is nearly impossible to get anything done without assistance.
This is increasing due to population growth and the diagnostic period. Two current approaches
are the medical history and testing. The main challenge for dementia research is the imbalance of
datasets and their impact on accuracy. A proposed system based on reinforcement learning and
neural networks could generate and segment imbalanced classes. Making a precise diagnosis and
taking into account dementia in all four stages will result in high-resolution sickness probability maps.
It employs deep reinforcement learning to generate accurate and understandable representations of a
person’s dementia sickness risk. To avoid an imbalance, classes should be evenly represented in the
samples. There is a significant class imbalance in the MRI image. The Deep Reinforcement System
improved trial accuracy by 6%, precision by 9%, recall by 13%, and F-score by 9–10%. The diagnosis
efficiency has improved as well.

Keywords: deep learning; reinforcement learning; dementia; Alzheimer; classification; magnetic
Imaging resonance

1. Introduction

Dementia refers to a collection of symptoms produced by brain abnormalities. There
are currently around 46.8 million people living with dementia worldwide, with this number
expected to increase to 131.5 million by 2050 [1,2]. There are numerous forms of dementia,
the most prevalent of which is Alzheimer’s disease (AD). Although significant efforts
have been made to decipher the process of dementia and to create better therapies, a
precise diagnosis of dementia is still a challenging task. In an attempt to develop an
effective method of detecting AD, several computer-aided (CAD) systems have been
examined [3]. Such systems rely on machine learning and include magnetic resonance
imaging (MRI), functional MRI (fMRI), structural MRI (sMRI), and positron emission
tomography (PET) [4,5]. Dementia associated with Alzheimer’s disease [6,7] is typically
classified as one of the following:

• Mild Cognitive Impairment: Many persons have a loss of memory as they become
older, while others get dementia.

• Mild Dementia: Individuals with intermediate dementia frequently experience cog-
nitive impairments that disrupt their daily life. Symptoms of dementia involve
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forgetfulness, insecurity, personality changes, disorientation, and difficulty doing
everyday tasks.

• Moderate Dementia: The patient’s daily life becomes significantly more complicated,
necessitating additional attention and support. The symptoms are comparable to
mild-to-moderate dementia. Even combing one’s hair may require further assistance.
Patients may also have substantial personality changes, such as becoming paranoid or
irritable for no apparent reason. Sleep disturbances are also possible.

• Severe Dementia: Throughout this period, symptoms might worsen. Patients often
lack communication skills, necessitating full-time treatment. One’s bladder function
may be compromised, and even simple events such as holding one’s head up in a
decent position and sitting down become difficult.

Deep learning [8,9] is a subset of artificial intelligence (AI) that uses numerous non-
linear processing unit layers for performing tasks such as feature extraction and transforma-
tion. Each successive layer accepts as input the output of the previous layer [10]. Learning
algorithms can be supervised (for example, classification) or unsupervised (for example,
regression). Deep learning frameworks are critical for semantic video segmentation, image
processing, object detection, and facial recognition, among other applications.

Deep learning (DL) appears to have a framework focused on learning several levels of
data-based interpretations. Attributes are derived from relatively low qualities to construct
a hierarchical representation. Typically, DL is primarily dependent on data representation
learning. A vector of density-based values for every pixel, or features like custom shapes
and edge clusters, can be used to represent a picture. A few of these characteristics help
to depict data better. Instead of handmade features, deep learning techniques employ
sophisticated algorithms for hierarchy-based feature extraction that best reflect data at this
point. Rapid innovations in image analysis have aided the advancement of fast-changing
advanced technologies [11–16]. Image processing has grown in prominence, particularly in
the medical field. In fact, DL is a method that saves time and improves performance when
compared to previous methods. While conventional approaches can only process single-
layer photos, deep learning can process multi-layer images with outstanding performance.
Deep learning’s most essential characteristic is that one can self-discover the variables that
must be manually entered, allowing it to process images inside a single pass. This study
aims to provide software for classifying dementia in MRI scans using deep learning [17–19].

1.1. Gap in Previous Work

Prior research found that the primary barrier to early dementia detection was an
imbalance across classes, which resulted in an increase in the percentage of false positives
and a decrease in precision. This is the main gap observed in previous research. Other
reasons for the lack of precision include:

• Features overlapping as a result of the overlap of pixels and the rise in the difficulty of
fitting in classifiers.

• Presence of noisy features, which enhance the error rate in early dementia detection.

With the help of noisy feature extraction, early dementia detection can become
more accurate.

1.2. Contribution of the Present Research

The goal of this study is to reduce class disparities and the false positive rate of
dementia stages in the early stages. Deep learning-based active reinforcement learning
places a secondary emphasis on learning features and outlier samples. Such an emphasis
improves the accuracy of the proposed method performance metrics and increases dementia
stage detection in the early stages. In brief, the following contributions have been achieved.

I. Class imbalance is improved through deep reinforcement learning and an iterative
policy by balancing instances of each class.
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II. A convolution neural network with deep reinforcement learning is used to improve
segmentation.

III. Structure-based learning is used to improve the classification.

The main problem in medical imaging is the dataset. A class imbalance problem
arises when the problem is exacerbated by the use of more expensive MRI images. Some
researchers solved this problem using augmentation and smote methods, which increase
noise, but our main contribution in the proposed work is to use reinforcement learning
with a deep convolution network, which generates instances based on the learning process.
The rest of this article is organized as follows: Section 2 contains the related work for the
illustration of the Dementia classification scheme. Section 3 goes into great detail about
the proposed methodology. Section 4 gives insight into the experimental findings and
discussions, while Section 5 draws conclusions.

2. Related Work

Deep learning has received much interest because of its potential use in identify-
ing Alzheimer’s disease. Numerous DL algorithms have recently been presented as
Alzheimer’s disease diagnostics aids, supporting clinicians in making educated treatment
decisions. In this area, we provide some works that seem directly connected to this study.

The author’s De and Chowdhury [20] used Diffusion Tensor Imaging (DTI) in 3D to
distinguish Alzheimer’s disease, CN, EMCI, and Late Mild Cognitive Impairment (LMCI)
for the first time in a direct four-class classification test. Individual VoxCNNs are trained
on MD values, EPI intensities, and FA values extracted from a 3D DTI scan volume. Nawaz
et al. [21] proposed Alzheimer’s stage detection based on in-depth features, using early
layers imported from an AlexNet model and CNN deep features extracted. They ap-
plied ML techniques such as those of k-nearest neighbors (KNN), random forest (RF),
and support-vector machines (SVM) to the recovered deep features. Evaluation results
indicate that a feature-based model outperforms handmade and deep-learning approaches
by 99.21%. Mohammed et al. [22] evaluated multiple machine-learning techniques for
detecting dementia using a big, publicly available OASIS dataset. They evaluated AD
detection using CNN models (ResNet-50 and AlexNet) and hybrid DL and ML techniques
(ResNet-50+SVM and AlexNet+SVM). After correcting missing data in the OASIS database
using t-SNE, i.e., the Stochastic Embedding method, they represented high-dimensional
data in low-dimensional space using t-SNE. ML algorithms in every way you can think
of. All these metrics were met or exceeded by the random forest method, which had an
overall accuracy of 94%. Ghosh et al. [23] demonstrated the applicability of DL and its
accompanying techniques, which could have a far-reaching impact on the diagnosis of
dementia phases and lead to future treatments for image retrieval. In the study databases,
MRI scans were categorized into four degrees of AD severity: no dementia, very mild
dementia, mild dementia, and moderate dementia. Each patient’s dementia stage was
classified via the CNN approach based on these four imaging criteria. Using the CNN-
based model, the researchers could accurately diagnose and predict the different phases
of Alzheimer’s disease. Abol Basher et al. [24] showed a way to diagnose AD by taking
slice-wise volumetric characteristics from structural MRI data of the right and left brain
hemispheres. The suggested method uses both CNN and DNN models. The classification
networks were trained and tested using the image’s volumetric features. Using this pro-
posed method, the researchers in [24] got a TA weighted average classification accuracy
of 94.02 percent for the right and 94.82 percent for the left. Also, the AUC for the right
was 90.62 percent, while 92.54 percent for the left. Herzog and Magoulas [25] focused on
using transfer learning architectures for MRI image categorization. The basic model and
fully connected layers or functions serve as the foundation. To look at changes in the brain,
scientists use segmented images of brain asymmetry, which were recently shown to be a
sign of early-onset dementia. The diagnostic strategy is made using these data. Murugan
et al. [26] used a CNN to create a structure for recognizing AD features in MRI scans.
By utilizing the four stages of dementia, the proposed framework achieves exceptional
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disease probability mapping from the local anatomical brain to an understanding of specific
AD risk. To maintain a balanced distribution of instances, each class must include the
same number of each kind. Class imbalance is a severe issue in the MRI picture database.
Patients’ dementia stages are detected using an MRI-based technique. Al-Shoukry et al. [27]
reviewed some of the most recent research on Alzheimer’s disease and explored how DL
can aid in the early diagnosis of the condition. Pan et al. [28] suggested two effective
sampling procedures for improving data distributions. Adaptive-SMOTE is a method that
enhances the SMOTE approach by selecting risk and internal data groups from the minority
class and constructing a new minority class based on the selected data. This is done to
prevent the categorization boundary from expanding and to preserve the distributional
properties of the original data. By contrast, Gaussian Oversampling combines the Gaussian
distribution with a reduction in the number of dimensions. This shortens the tail of the
Gaussian distribution. Chen et al. [29] analyzed three modern architectures: the VGG16,
the ResNet-152, and the DenseNet-121. A total of 1315 participants were included. They
utilized optimization techniques to train the neural network (NN) to deal with the limited
data, including multiple dementia types. Their efforts resulted in a computerized and
standardized evaluation of a person’s dementia test result and severity level. The work
exceeded both the declared state-of-the-art and human accuracies, with screening levels of
96.65% accuracy and score accuracies as high as 98.54 percent.

Li et al. [30] analyzed MRI scans from 2146 patients (1,343 for verification and 803 for
training). A deep learning algorithm was created and validated to predict the progression
of MCI participants to Alzheimer’s disease in a time-to-event analysis setting.

Ucuzal et al. [31] employed deep learning to construct open-source software for the
classification of dementia in MRI images. A framework for deep learning is used to develop
a model capable of distinguishing between dementia patients and healthy individuals. The
findings demonstrate that the proposed technique can identify individuals suspected of
having dementia.

Tsang et al. [32] summarized the current state-of-the-art machine-learning approaches
for dementia in healthcare informatics. The research analyzes and evaluates current sci-
entific methodologies to identify significant challenges and obstacles when dealing with
vast quantities of health data. While machine learning has demonstrated promise in data
analysis for dementia care, there have been few attempts to utilize advanced machine
learning techniques to leverage unified heterogeneous data. Raza et al. [33] presented a
novel ML-based method for identifying and monitoring AD-like diseases. The DL analysis
of MRI scans is used to diagnose AD-like disorders, together with an activity monitoring
framework that records participants’ everyday tasks using body-worn inertial sensors. The
activity surveillance system provides a foundation for assisting patients with daily tasks
and gauges their sensitivity based on their activity level. Kaka and Prasad [34] proposed a
new supervised ML technique for diagnosing Alzheimer’s disease using MRI. They used
the OASIS and ADANI datasets. They obtained an image with improved contrast, applied
Fuzzy C Mean clustering to segment tissues, and extracted features from segmented brain
tissues. They used the Correlation-Based Feature Selection (CFS) techniques to reduce the
dimensionality of features. Table 1 summarizes important contributions to the literature on
DL-based dementia.

Literature Review and Observation

The following analysis shows that there are problems in databases and claims that
the proposed approach will significantly improve these problems. In this article, we use
three datasets.

Kaggle-based tiny dataset
OASIS Imbalance dataset
Balanced ADNI dataset
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One of the problems that lead to poor performance in classification is the categorization
of a dataset that has unbalanced categories. Except for the accuracy scale, the rating scales
require that the categories be distributed evenly throughout the available slots. In this article,
the OASIS dataset includes three classifications that are not evenly distributed [21,24].

The majority of medical datasets do not include enough images to fulfill the require-
ments for deep learning models, which need a large dataset. Consequently, the issue may
be remedied by producing further images using the same information. In addition [24]

When the dataset is tiny, the issue of overfitting arises owing to a lack of data during
the training phase. This problem is caused by a lack of data [21].

This article, https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-classes-
of-images, (accessed on 5 October 2022) uses this dataset to resolve problems using the
proposed approach, as well as the OASIS dataset.

“Extensive preprocessing,” which often takes place in architectures other than CNNs,
is applied to imaging features like texture, forms, or cortical thickness and regional charac-
teristics, respectively [29].

Table 1. Study of literature for Deep learning-based Dementia.

Ref Year Aim Methodology Feature Dataset Limitation

ADNI Dataset

[20] (2021)
Alzheimer’s disease(AD)

classification using
diffusion tensor imaging

DTI processing in three
dimensions using

CNNs and RF Rank
modulated decision

fusion for merging the
outputs of CNNs

and RF.

Fractional Anisotropy
(FA)

Mean Diffusivity
(MD)

Echo Planar Imaging
(EPI)

ADNI database
Study of literature for
Deep learning-based

Dementia

OASIS Dataset

[21] (2021)
Alzheimer’s disease stages

detection system in
real time

Efficient framework for
transfer learning Deep Learning OASIS dataset Overfitting and

class imbalance

[31] (2019) Deep-learning-based
imaging classification DLB and AD Deep-learning-based

imaging classification OASIS-2 data

This investigation
was conducted at a

single facility. Despite
the small sample size,

the accuracy was
deemed adequate.

OASIS AND ADNI Dataset

[25] (2021)

Using DL technology,
Alzheimer’s illness can be
recognized automatically

using MRI data.

3D brain MRI with DL CNN Network
Training

ADNI and OASIS
database

[34] (2022)

Alzheimer’s Disease
Diagnosis and Monitoring
Using Classical Machine

Learning Techniques

A unique method for
diagnosing and
monitoring AD

using ML

A correlation-based
feature selection (CFS)

OASIS and
ADNI dataset

A large dataset is a
significant challenge.

Other Dataset

[24] (2021)

The diagnosis of AD in
(Mild Cognitive

Impairment) MCI patients
using DNN

Volumetric Features
Extraction and DNN

Structural MRI
features GUARD Individual Modalities

[29] (2020)
Automatic detection and
classification of dementia

using DL

Transfer learning and
Deep neural networks

Clockdrawing test’
(CDT)

From July 2018, a
neuropsychiatric

clinic will be
located in
Nürnberg,
Germany.

Overfitting

https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-classes-of-images
https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-classes-of-images
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3. Proposed System
3.1. Dataset

Figure 1 depicts in step 1 the input Dementia dataset. The data came from https:
//www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images (accessed
on 5 October 2022). The data consists of MRI images. The data consists of four groups of
images for training and testing: mildly deranged, moderately deranged, not deranged, and
very mildly crazy. The ADNI dataset was gathered from over 40 radiology hubs, and it
comprised 509 cases in total (137 AD cases, 76 MCIc cases, 134 MCInc cases, and 162 CN
cases) [35]. The time frame to supervise the transition to AD was 18 months. ADNI was
previously utilized in many studies to categorize AD and understand its transformation
into AD. http://www.oasis-brains.org/longitudinal_facts.html (accessed on 5 October
2022) [36]. The Oasis longitudinal dataset contains 15 features of 374 patients aged 10,
28, or 5 of 20 between 60 and 90 years old, of whom 37 are converted, 190 are demented,
and 147 are non-demented. There are a lot of different topics to choose from in each class.
Figure 1 shows the main idea behind the DRLA technique that was suggested. A system
for diagnosing the disease is trained using data consisting of samples with labels prior
(i.e., (Xl, Yl)) and samples selected and labeled during reinforcement learning. During the
learning process, an actor-network uses the learned policy and the current state to choose
the most relevant dementia samples from unlabeled trained data (i.e., Xu). An annotator
then assumes responsibility for making notes on the selected samples. Because of this,
one can get more and more training data to improve the Xg-Boost classifier. Finally, a
critic network can be taught to determine whether or not the selection of the actor-network
improved the classifier’s performance. By using a deep reinforcement learning technique to
train the critic and actor networks, one can choose and label the most specific example that
seems to help train an effective classifier, thereby improving the classifier’s performance.
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3.2. CNN Layer

Table 2 discusses the CNN layers details in brief. With a kernel size of 45 × 45 × 45
and an image size of 8 blocks, convolution operations are carried out on the image. Strides
1, 2, and 3 have four convolutional layers, and the first filter has 32 3 × 3 kernels. The
kernels act as feature finders and convolve with the picture to generate a set of features
that have been convolved. Regional connection of the neurons to the previous volume is
consequently enforced in neural networks because the size of the kernel denotes a neuron
receptive field. Figure 1 of the CNN architecture shows the final arrangement.

Table 2. Details of CNN Layers.

Layer Output Kernel Size Activation Layer

Conv2D-1 128 3 × 3 RELU

Conv2D-2 64 3 × 3 Sigmoid

Conv2D-3 32 3 × 3 RELU

Conv2D-4 16 2 × 2

Pool size(2 × 2)

Dropout 0.2

3.3. Training the Classifier

In Figure 1, step 2, and step 3, classifiers are trained. Let Id serve as the variable of a
classifier network. At the start of the learning phase, one can pre-train the classifier using a
labeled training data set. Then, deep reinforcement learning is used to choose and annotate
samples, and then training of the classifier is done further to improve its performance.

The Dementia training samples are Dl = {di}
nl
i=1 and the labels Ll = {Li}

nl
i=1, where

nl expresses the number of labelled data. The cross-entropy loss is reduced by training the
classifier network, which is characterized as:

Lce = −
nl

∑
i=1

M

∑
j=1

I(Li = i)logPr(li = i|xi ; θd) (1)

I(yi = i) : determines whether the label of an ith sample is either j or not, M represents
the classes number, and I (·) expresses the indicating function.

Pr
(
yi = i|xi ; θj

)
represents Xg-Boost output of a classifier provided xi for the jth class,

denoting the likelihood of xi belonging to label j as determined by the classifiers with
parameters θd.

3.4. Extreme Gradient (XG) BOOST Learning with Deep Reinforcement

Figure 1, step 2, depicts a novel approach for developing a policy that leads the actor-
network in the selection of samples for annotation. The next sections go over the suggested
approach in depth.

XGij = Pr(yu
i = j|nu

i ; θd), (2)

Here yu
i represents the uncertain label, and nu

i represents an unlabeled training sample.
Action: Define θa as the actor network’s parameters. Since the objective of an actor-

network would be to annotate training samples out of unlabeled training data, we specify
the action in terms of ∈(0, 1)Nu , where every other component refers to an unlabeled
training instance. Also, as an activation function for every element, the sigmoid function is
used to produce a value amid 0 and 1.

A policy π(S, θa) is learnt to produce action in response to a state S. After collecting the
action vector; one can rate all candidate image samples, excluding those that have already
been picked, and pick the very first specimens with the greatest values for annotations.
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The annotator’s several sorts of samples and labels are described by {ns
t , ls

t}
ns
i=1 whereas the

enhanced labeled training data are represented by

(Xl , Yl ): = (Ll , Yl ) ∪ {xs
t , ys

t}
ns
i=1.

State Transition. One can upgrade the classifier using the enriched training data
(Xl , Yl) by minimizing the cross-entropy loss in Equation (1). Once the selected samples
have been annotated and incorporated to the labeled training data, the modified classifier
is then used to generate the new state matrix S# depending on Equation (2).

Reward. We recommend that the actor emphasize more on those samples that are
very likely to be misidentified by the classifier in terms of improving the classifier’s per-
formance. To do this, we devise a novel incentive mechanism based mostly on the an-
notator’s true labels. We define k̂i as the predicted label received from the classifier, i.e.,
k̂i = maxjPr

(
ys

i = k̂i
∣∣xs

i ; θd

)
for the sample selection xs

i and ki as the true label gained from
the annotator.

The reward is as follows:

r(S, a) =
1
ns

ns

∑
i=1

Pr
(

ys
i = k̂i|xs

i ; θd

)
− Pr(ys

i = ki|xs
i ; θd) (3)

If a sample xs
i is correctly classified, then ki = k̂i, and

Pr
(

ys
i = k̂i|xs

i ; θd

)
− Pr(ys

i = ki|xs
i ; θd).

A big reward, on the other hand, suggests that the selected samples have been er-
roneously categorized. This suggests that the classifier should pay more attention to the
samples with incorrect predictions. As a result, the actor-network is incentivized to choose
these image samples.

Reinforcement learning in state S tries to maximize the anticipated future reward,
which would be represented like a Q-value function. The Q-value function is being used to
assess the state-action pair (S, a), analogous to Q-learning in conventional reinforcement
learning, and is described by the Bellman equation as

Q(S, a; θc) = E
[
γQ

(
S′, π

(
S′; θa

)
; θc

)
+ r(S, a)

]
(4)

To estimate the Q-value function, we use a critic network with parameter θc. By
considering the following problem, we want to establish a greedy policy for actors via
deep Q-Learning.

max
θa

(Q(S, a); θc)

We describe the estimated Q-value function

Q̂ (S, a; θc) = γQ
(
γQ

(
S′, π

(
S′; θa

)
; θc

)
+ r(S, a)

)
(5)

to solve the following problem to train the critic network.

max
θc

(
Q̂(S, a; θc)−Q(S, a; θc)

)2

Target Networks for Training: To stabilize the critic networks and training of an actor,
we use a separate targeted system to compute Q̂(S, a; θc) as described in equation (4). The
function Q̂(S, a; θc) is dependent on the proposed state S’, the actor to output action (S′; θa),
and the critic to assess (S′, π(S′; θa)) in Equation (5).
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To calculate Q̂(S, a; θc), we use a separate target actor network specified by θa′ and a
separate target criticism network parameterized by θc′ . As a consequence, Equation (5) is
rewritten as:

min
θc

(
γQ′

(
S′, π′

(
S′; θa′

)
; θc′

)
+ r(S, a)−Q(S, a; θc

)
)2 (6)

Here, π′(·; θa′ ) expresses the target policy assessed by target actor, and Q′(·; θc′ )
represents the target critic’s function. The Deep deterministic policy gradient (DDPG)
algorithm can be used to resolve this issue. The critic and the target actor are updated at
the end of each era.

The critic and the target actor are updated at the end of each epoch given as:

θa′ := λθa + (1− λ)θa′ , θc′ := λθc + (1− λ)θc′ (7)

A trade-off element is represented by λ ∈ (0, 1). Samples (S, a, S’, r) are placed in a
replay buffer to train the critic and actor inside the mini-batch case. As a result, one can
choose data from the replay buffer evenly to update the critic and actor networks. The
Algorithm 1 describes our recommended approach.

Algorithm 1. DRLA (Deep learning Reinforcement Learning for Active learning)

Input: Training Data With Labels and testing data without labels
Output: Efficient Classified Dementia Stages
1. Initialize training dataset (Xl, Yl)
2. Train Xg-Boost Classifier and obtain f(x, θ)
3. Determine the State S by Preprocessing of images based on Equation (2)
4. Pick unlabeled training Sample ns unlabeled training Sample

{
xs

i
}ns

i=1
In accordance with the actor (training phase) a = (S; θa) is updated
5. To get

{
xs

i , ys
i
}ns

i=1 , annonate
{

xs
i
}ns

i=1
6. Using (Xl, Yl) = (Xl, Yl) U

{
xs

i , ys
t
}ns

i=1 update the classifier Parameters θn,
7. Compute the State S′ using Equation (2) and the reward r using Equation (3)
8. Save all instances Xl < −

(
S, a, S′, r

)
9. Train by Xg-Boost
10. Complete analysis of performance metrics

4. Experimental Results and Discussion

This section demonstrates the experimental results of the proposed approach. We
have performed the DRL-XGBOOST experiments on the datasets. The proposed method
assesses results using accuracy, precision, recall, and F1-Score. To carry out the procedure,
Windows 10 is installed, along with an NVIDIA GeForce graphics card, a CPU running at
2.70 GHz, and 32 GB of RAM. PyTorch and Keras API is used in Tensor Flow to implement
DRL-XGBOOST.

4.1. Metrics Evaluation

The accuracy, precision, recall, and F1-score of the model are considered as follows [35–37]:

• Accuracy: It is the most important statistic for determining how effective the model is
at forecasting true negative and positive outcomes. Equation (8) is used to calculate
the accuracy.

Accuracy =

(
TP + TN

TP + TN + FP + FN

)
(8)

TP (true positives): Here, the model suggests that the image will be normal.
TN (true negatives): Here, the model assumes an aberrant image and the actual label
confirms the prediction.
FP (false positives): In this, the model suggests a typical image, but the actual label
is abnormal.
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FN (false negatives): Here, the model forecasts an aberrant image but the actual label
is normal.

• Precision (PR), also called positive predictive value, is a value that belongs to [0, 1]. If
the precision is equal to 1, the model is considered satisfactory. Precision is calculated
using Equation (9).

PR =

(
TP

TP + FP

)
(9)

The recall (REC), also known as sensitivity, measures the classifier’s ability to find all
positive samples. Equation (10) is used to compute the recall.

REC =

(
TP

TP + FN

)
(10)

According to Equation (11), the F1-score expresses the harmonic mean of precision and
recall, which indicates how precision memory are matched.

F1− Score =
(

2× PR× REC
PR + REC

)
(11)

Figure 2 is a graph that depicts the training and validation curves for the proposed
accuracy and AUC of DRL-XGBOOST. Owing to the overfitting and class imbalance issues,
the training accuracy of the model is around 95%, whereas the validation accuracy is 94%.
On the other hand, the model has the training AUC of approximately 98% and validation
accuracy of 90%, as depicted in the above figures.

Figure 3 is a graph that depicts the training and validation curves for the proposed
DRL accuracy and AUC. Owing to the overfitting and class imbalance problem, the model’s
training accuracy is around 28%, and its validation accuracy is 26%. On the other hand, the
model has the training AUC of approximately 56% and a validation accuracy of approxi-
mately 55%, as depicted in the above figures.

Figure 4 depicts the confusion matrix (contingency table) that is utilized to differentiate
the phases of dementia and predict AD. The confusion matrix displays the expected class
alongside the classes of the four distinct groups of varying degrees of dementia. The
confusion matrix depicts the training performance of the model. The computation is
conducted for (i) 639 ND (Non-Demented) images, (ii) 635 VMD (Very Mild Demented)
images, (iii) 662 MD (Mild Demented) images, and (iv) 624 MOD (Moderate Demented)
images. The confusion matrix is utilized to generate the class metrics presented in Table 3,
which are derived from the individual class metrics.

Table 3. Performance analysis with different approaches.

Approach Accuracy Precision Recall F1-Score

Reinforcement
Learning (RL) 83.23 82.13 81.23 81.23

Deep
Reinforcement
Learning (DRL)

84.34 83.45 82.12 80.23

DRL-XGBOOST 90.23 92.34 95.45 96.12

Table 3 displays the performance analysis of three different techniques, namely RL,
DRL, and DRL-XGBOOST, based on their accuracy, precision, recall, and F1-score. DRL-
XGBOOST with an accuracy of 90.23%, 92.34% of precision, 95.45% of recall, and 96.12% of
F1-score outperforms the remaining two approaches. Figure 5 depicts the comparison of
RL with the proposed approach graphically.
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The performance indices of each class, including the ND, VMD, MD, and MOD classes,
are presented in Table 4 according to their precision, recall, F1-score, and support. where
MOD yields the highest precision value, followed by MD, VMD, and ND, respectively.
Whereas the maximum recall value was found for ND, followed by VMD, MD, and MOD,
respectively. By contrast, MOD has the highest F1-score and Support value compared to
the other classes.

Table 4. Performance indices of individual classes.

Class Precision Recall F1-Score Support

ND 90.12 91.23 82.34 356

VMD 92.34 89.34 85.67 379

MD 95.34 86.12 90.23 356

MOD 96.23 85.23 94.34 380
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Figure 6 depicts a class-by-class comparison of DRL-XGBOOST performance in terms
of precision, recall, and F1-score, as shown in Table 3.

Table 5 displays the precision and accuracy of available methods. DRL-XGBOOST
outperforms the competition with an accuracy of 90.23% and a precision of 92.34% followed
by the Siamese network [37], VGG16 [12], Logistic regression with Lasso [38], RF, and
SVM [39].

Table 5. Accuracy and precision of existing approaches.

Existing Approach Accuracy Precision Recall F-Score

RF, SVM [37] 73.23 72.12 65.56 70.12

Logistic regression with Lasso
[38] 71.23 70.23 76.34 78.12

VGG16 [12] 82.13 85.34 84.34 80.12

Siamese network [39] 86.12 80.12 85.23 82.12

DRL-Xgboost 90.23 92.34 95.45 96.12
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Table 6 compares OASIS datasets using three distinct techniques, namely RL, DRL, and
DRL-XGBOOST. DRL-XGBOOST has the highest accuracy compared to other approaches
(91.23%), followed by DRL (85.12%) and RL (84.23%). Similarly, DRL-XGBOOST has
the highest precision (91.23%), followed by DRL (85%) and RL (80.12%). Similarly, DRL-
XGBOOST (94.56%) has the highest recall value, followed by RL (81.34%) and DRL (80.22%).
Consequently, DRL-XGBOOST (95%) has the highest F-score value, followed by RL (82%)
and DRL (81.23%).

Table 6. OASIS dataset comparison.

Approach Accuracy Precision Recall F-Score

Reinforcement
Learning (RL) 84.23 80.12 81.34 82

Deep
Reinforcement
Learning (DRL)

85.12 85 80.23 81.23

DRL-XGBOOST 91.23 92.3 94.56 95

Table 7 above compares ADNI datasets using three distinct techniques, namely RL,
DRL, and DRL-XGBOOST. DRL-XGBOOST has the highest accuracy compared to other
approaches (93.23%), followed by DRL (84%) and RL (83.12%). Similarly, DRL-XGBOOST
has the highest precision (94.5%), followed by DRL (83%) and RL (82.13%). Similarly,
DRL-XGBOOST (96.34%) has the highest recall value, followed by RL (80.2%) and DRL
(80%). Consequently, DRL-XGBOOST (92.12%) has the highest F-score value, followed by
DRL (82.12%) and DRL (81%).

Table 7. ADNI dataset comparison.

Approach Accuracy Precision Recall F-Score

Reinforcement
Learning (RL) 83.12 82.13 80.2 81

Deep
Reinforcement
Learning (DRL)

84 83 80 82.12

DRL-XGBOOST 93.23 94.5 96.34 92.12

4.2. Observations about the Experiment

• Using the actor-network and the critics-network, we apply deep reinforcement learn-
ing to tackle the concerns of class imbalance in the proposed method. Both networks
improve the learning design.

• Figure 6 depicts the proposed approach’s confusion matrix, which includes all four
classes of dementia severity degrees and helps to eliminate false positives.

• In Table 3, a comparison is made between the proposed approach and some existing
forms of deep reinforcement learning. The proposed method greatly improves all
performance indicators considered.

• Thanks to deep reinforcement learning the proposed approach improves the iteration-
based picture sample actor and critics approach and enhances performance measures.

• In the proposed approach, training is updated based on the test, and active learning
continues throughout the testing phase.

• The proposed method improved accuracy by 6–7%, precision by 9–10%, recall by
13–14%, and the F1-score by 9–10% in a typical experiment. The improvement is due
to reinforcement learning layer-wise feature mapping by an activation function and
Xg-Boosting learning to optimize features.
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5. Conclusions

Deep Reinforcement Architecture (DRA) is utilized in this study to classify dementia.
The model used to classify dementia stages is trained and evaluated in terms of data
obtained from Kaggle. The dataset’s most important problem is its class imbalance. This
issue is resolved via the XgBoost Deep Reinforcement method. We were able to achieve an
overall accuracy of 90.23% with a 96% F1-Score by comparing our new model to the current
models. A comparison between machine learning and deep learning approaches is shown
in Table 4. The proposed technique increases performance measures because features are
repeatedly learned and taught through an active learning process.
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