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Abstract: Recently, several plant pathogens have become more active due to temperature increases
arising from climate change, which has caused damage to various crops. If climate change continues,
it will likely be very difficult to maintain current crop production, and the problem of a shortage of
expert manpower is also deepening. Fortunately, research on various early diagnosis systems based
on deep learning is actively underway to solve these problems, but the problem of lack of diversity in
some hard-to-collect disease samples remains. This imbalanced data increases the bias of machine
learning models, causing overfitting problems. In this paper, we propose a data augmentation method
based on an image-to-image translation model to solve the bias problem by supplementing these
insufficient diseased leaf images. The proposed augmentation method performs translation between
healthy and diseased leaf images and utilizes attention mechanisms to create images that reflect more
evident disease textures. Through these improvements, we generated a more plausible diseased
leaf image compared to existing methods and conducted an experiment to verify whether this data
augmentation method could further improve the performance of a classification model for early
diagnosis of plants. In the experiment, the PlantVillage dataset was used, and the extended dataset
was built using the generated images and original images, and the performance of the classification
models was evaluated through the test set.

Keywords: plant disease recognition; data augmentation; imbalanced dataset; convolutional attention

1. Introduction

Recently, rapid climate change has had a great impact on the natural ecosystem and
human life, and specifically on crop productivity [1]. In particular, an increase in temper-
ature generally shortens the life cycles of plant pathogens while increasing their density,
which also increases the possibility of generating mutants with strong pathogenicity [2].
In addition, it causes problems such as crop diseases and pests, which were rare in the
past, or the expansion of the areas vulnerable to plant diseases that occur only in a limited
region. Currently, the decline in crop yields due to plant diseases is estimated at around
16% worldwide [3], but if climate change continues, it may become very difficult to main-
tain current crop productivity. Therefore, the problem of crop productivity reduction due to
climate change may intensify in the future, and there is also a growing lack of professional
manpower to help solve it.

Deep learning has made a breakthrough in the field of computer vision in recent
years, and there has been much research on how to use it for the early diagnosis of plant
diseases [4–9]. Deep learning is suitable for diagnosing visual disease symptoms in the
leaves and stems of plants because it is possible to extract and learn high-level features
from images. Using this deep learning method, Mohanty et al. [10] conducted a plant
image disease study based on a deep convolutional neural network model. The authors
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conducted an experiment to classify 26 disease images from 14 crop species using Google
LeNet and AlexNet models and reported an average accuracy of 99.3%. Ferentinos et al. [11]
also pointed out that models taken on datasets generated in controlled experimental envi-
ronments achieved 99.5% accuracy when tested with models AlexNet, AlexNetOWTBn,
GoogLeNet, OverFeat, and VGG, but did not perform the same in real-world environ-
ments. The accuracy dropped to 33% when using the learned model in the real world.
Hassan et al. [12] conducted a study on image-based plant disease recognition using the
Shallow VGG network. The Shallow VGG network is constructed using only a few layers
from a pre-trained VGG network and serves to perform feature extraction from input data.
The authors proposed to classify the features extracted through this through the Random
Forest and Xgboost models. As a result of the experiment, it was reported that the two
combined models proposed have better classification performance than the Vanilla VGG
Network model. Lee et al. [13] performed image-based plant leaf disease research based on
Recurrent Neural Network. The authors point out that CNN-based classification models
do not clearly capture disease areas, and to solve this problem, they proposed a network
combining Gated Recurrent Units (GRU) and Attention modules. They verified through
experiments that the proposed method can capture clear disease regions unlike CNN and
reported that classification performance was improved.

Although many vision-based plant disease recognition advanced studies using deep
learning are in progress, some diseases are not common in nature, making it difficult to
collect the same amount of data from healthy plant samples. Therefore, datasets for plant
disease diagnosis collected from natural environments often lack samples of these rare
disease classes, a problem known as imbalanced data in machine learning. When trained
from such imbalanced data, most supervised learning models suffer from the overfitting
problem, in which decision boundaries are biased toward major classes [14,15]. To solve this
problem, previous work has adopted a manual augmentation method using professional
manpower, but this is very inefficient and has high costs.

In this paper, we propose a data augmentation method based on image-to-image
translation that can increase the sample diversity of diseased leaf datasets with insufficient
numbers. The proposed augmentation method performs translation between healthy and
diseased leaf images through the cycle-consistent generative adversarial networks (Cycle
GAN) [16]. However, vanilla CycleGAN shows poor plant leaf image translation results,
and we point out and improve on the following two problems: (1) poor reflection of the
evident texture of the target disease, and (2) poor preservation of the shape of the input leaf
image due to indiscriminate transformation in the background region. To solve this prob-
lem, we further utilize an Attention mechanism and a binary mask that explicitly indicates
the location of the leaves. The attention mechanism is a method of selectively focusing on
key information within given information and can greatly improve the expressive ability
of the proposed plant leaf translation model. In deep learning, attention mechanisms
originated in human perceptual systems as a method of selecting key information to focus
on [17,18]. Many studies combining attention mechanisms have been conducted, and it
has been demonstrated that the model can significantly improve the feature expression
ability [17–21]. We used the Convolutional Block Attention Module (CBAM) [22] to con-
struct a network that allows the generator to decide which features should be preferentially
selected to deceive the discriminator. CBAM is a lightweight attention module that can
learn attention maps corresponding to spaces and channels from a given feature map.
We use CBAM to configure the generator network as a Pre-Activation Residual Attention
Network and perform adaptive feature refinement during the training process. Also, we
train a background loss function that regulates the generator to not perform unnecessary
transformations on background regions. The background loss suppresses unnecessary
transformations between the input data and the transformed image through a binary mask
explicitly representing the background region of the input image. This assists the attention
module in quickly focusing on the leaf itself, excluding the background where it cannot
perform a transformation. Through these improvements, we generated a more plausi-
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ble diseased leaf image compared to existing methods and conducted an experiment to
verify whether this data augmentation method could further improve the performance
of a classification model for early diagnosis of plants. We conducted experiments using
apple, potato, and grape leaf data provided by the Plant Village [23] dataset and verified
whether the proposed method can solve the problems of images produced by vanilla
CycleGAN. We then compared the experimental results of various classification models to
verify whether the extended dataset from the images generated by the proposed method
can improve performance. Experimental results prove that the proposed augmentation
method can solve the problem of lack of diversity in some disease samples that are dif-
ficult to collect by generating usefully translated images and contributing to improving
classification performance.

The main contributions of this study are as follows:

• In this study, we focus on the overfitting problem caused by imbalanced data problems
created by some disease images that are rarely observed in natural environments and
propose a novel plant image augmentation method based on CycleGAN to solve
this problem.

• We point out two issues that vanilla CycleGAN needs to address for image augmen-
tation: (1) poor reflection of the evident texture of the target disease, and (2) poor
preservation of the shape of the input leaf image due to indiscriminate transformation
in the background region.

• To improve the poor image conversion results of CycleGAN, we utilized the attention
mechanism and binary mask, and solved the bias problem of classification models by
constructing an extended dataset.

• We have conducted extensive experiments to verify that the proposed method can
improve the overfitting problem due to imbalanced dataset.

2. Related Studies

Recently, various data augmentation studies on the early diagnosis of plants using
Generative Adversarial Networks (GAN) are being conducted. Most of them aim to correct
problems with existing models to verify that more realistic images can be generated or to
solve overfitting problems by replacing insufficient data.

Wu et al. [24] worked on recovering tomato disease data via DCGAN (Deep Convolu-
tional GAN) [25]. Their contribution demonstrates that samples generated via DCGAN
can improve the efficiency of classification models. However, it was confirmed that the
generated samples are not clear and are not likely images in reality. Also, there is a problem
of not being able to control the class of the image to be created.

Deng et al. [26] proposed an RHAC_GAN model that improves ACGAN (Auxiliary
Classifier GAN) to solve the problem of tomato disease data augmentation. RHAC_GAN
aims to solve the problem of lack of diversity among generated images by using hidden
variables obtained from the discriminator along with inputs from the generator. Regarding
the lack of diversity in the generated images, the authors explain that traditional ACGAN
generators have difficulty learning different information within a class. In addition, a
network was constructed by combining the Attention module and the Residual Block so
that the generated images reflected obvious disease features. Plant leaf images generated
by RHAC_GAN are sharper and more realistic compared to DCGAN and ACGAN.

Cap et al. [27] proposed a LeafGAN model that solved CycleGAN’s problem of
changing unwanted content such as background when transforming plant leaf images.
Their contribution is to propose an LFLSeg module that can segment leaf regions relatively
simply and use it to control the transformation of background regions. The author proposed
a background loss function to control the transformation of the background area by the
generator and used only the input from which the background was removed as the input
of the discriminator so that the discriminator for the background area did not react. The
experiment was conducted based on actual data collected in the natural environment, and
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it was reported that classification performance was partially improved when learning was
performed with a dataset augmented by the proposed model.

Xu et al. [28] proposed a Style-Consistent Image Translation (SCIT) model that aims
at converting to the target domain while preserving information about the parts related
to styles independent of labels in the translation process of plant images. To this end, we
proposed a style loss calculated through a pre-trained vgg19 network. The authors verified
through experiments that the amount of change to the target domain can be adjusted
according to the change in the coefficient value of style loss.

3. Materials and Methods
3.1. Data Augmentation Method for Plant Leaf Disease Recognition

The plant data augmentation method proposed in this study was studied by borrowing
the structure of CycleGAN, as shown in Figure 1, and the main suggestion is to improve the
expression ability of the model using the Pre-Activation Residual Attention Block (PaRAB)
and Binary Mask. These improvements allow the proposed model to generate visually
plausible plant leaf data. The proposed method solves the bias problem of early diagnosis
models of plants by contributing to increasing the diversity of samples by making diseased
samples with insufficient numbers from normal plant leaves.
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The entire training process of the proposed method and each loss function can be
confirmed in Figure 1. The red line represents the elements needed to calculate each loss
function, and the black line represents the elements used as inputs for each model. Basically,
two generators G : X → Y and F : Y → X are utilized, where X and Y are the domains
to be transformed, X means a healthy leaf class, and Y means a disease-affected leaf class
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to be transformed. Consequently, the two generators are converted to domains that are
opposite to each other. In addition, the discriminators competing with the generators DY
and DX are required for training, where DY distinguishes the fake leaf image G(x) from
the real leaf image y ∈ Y, and DX distinguishes the fake leaf image F(y) from the real leaf
image x ∈ X. G, DY, and F, DX, which correspond to each other as a pair, proceed with
adversarial learning and perform transformation between both domains.

In addition, we utilize the binary mask Mx and My required to regulate the generator
from converting to unnecessary areas. The binary mask explicitly denotes leaf areas, Mx
points to healthy leaf areas, and My points to disease-infected leaf areas. The leaf mask is
obtained using a pre-trained Mask R-CNN [29] model, and for time efficiency, all mask
data used for learning were extracted before training. the binary mask data is used by
the generator to learn the background loss function and is also passed along as input to
the discriminator as additional information about the leaf region. Since this method is
used only as an input of a discriminator that is not actually used during the test process,
it is reasonable because there is no need to have mask data when making a new sample
by the generator during the test process. Additionally, giving additional information
to discriminators is already well known to further enhance the model’s expressiveness
in previous studies such as CGAN and ACGAN. This allows the generator to create
new samples that preserve the shape of the input leaves well and assists the attention
module within PaRAB to quickly focus on the leaf region, excluding backgrounds where
transformation cannot be performed.

3.2. Pre-Activation Residual Attention Block

In the initial training stage, the generator of CycleGAN attempts to transform the
entire image region evenly and indiscriminately and learns to deceive the discriminator.
This also includes background areas that are unnecessary for transformation. Moreover,
CycleGAN lacks an attention mechanism, so the generator cannot discern the features that
should be considered more important in the translation between the two domains. Due to
these problems, the generator requires an exceptionally long learning time to accurately
reflect the texture of the target domain.

To solve this problem, we adopt CBAM and propose a Pre-activation Residual At-
tention Block (PaRAB), which allows adaptive feature refinement for the given feature
responses by explicitly modeling the interdependence including the channel and spatial.
As shown in Figure 2, PaRAB is configured by deploying an attention module before
combining the output of the pre-activation residual and the low-level features delivered
via skip connection. We construct a generator network through PaRAB and train the learn-
able parameters of the attention module using an adversarial loss function. This allows
the generator to selectively emphasize features that are advantageous for deceiving the
discriminator while suppressing less important ones. As a result, the generator can create
an image that clearly shows the texture of the target domain.
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As shown in Figure 3, the two sub-modules within the PaRAB are calculated sequen-
tially, and the attention process takes the feature map F ∈ RC×H×W as an input to generate
a channel attention map Mc ∈ RC×1×1 and a spatial attention map Ms ∈ R1×H×W , which
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are used by multiplying them sequentially with each given input. The attention module
is placed after the second instance normalization layer. These attention processes are
as follows:

F′ = MC(F) ⊗ F
F′′ = MS(F′) ⊗ F′

(1)
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The channel attention module integrates the information of a given input feature F to
generate an attention map Mc that models the interdependence between channels. These
calculations are performed through average pooling and max pooling operations, and
they generate channel descriptions Fc

avg ∈ RC×1×1 and Fc
max ∈ RC×1×1. The calculated

two-channel descriptions pass through the shared network with a bottleneck compressed
by a reduction ratio r, and then add up to finally obtain the channel attention map Mc
through the sigmoid function. These channel attention processes are as follows:

Mc(F) = σ
(

MLP
(

Pavg(F)
)
+ MLP(Pmax(F))

)
(2)

The spatial attention module integrates the information of a given input feature F to
generate an attention map Ms that models the interdependence between spatial. These
calculations are performed through average pooling and max pooling operations, and they
generate spatial descriptions Fs

avg ∈ R1×H×W and Fs
max ∈ R1×H×W . Then, by integrating

the two spatial descriptions, the model finally obtains the spatial attention map Ms using
the sigmoid activation function after a 7 × 7 convolution. These spatial attention processes
are as follows:

Ms(F) = σ
(

f 7×7([Pavg(F); Pmax(F)
]
)
)

(3)

Since the two sub-modules proceed sequentially, the execution order can be changed
arbitrarily. The authors report that, in general, using the channel attention module first
showed better performance, and in this case, the input of the spatial attention module, used
later, corresponds to F′ ∈ RC×H×W .

3.3. Network Archtecture

The generator network receives a real image as a single input, consisting of three down-
sampling layers, an up-sampling layer, and six bottleneck layers. The down-sampling layer
and the up-sampling layer used 3 × 3 convolutional filters, the stride value was 2 and the
padding value was 1. The bottleneck layer was composed of the Pre-Activation Residual
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Attention Block introduced in Section 3.2. The entire network referred to the structure of
Pre-activation ResNet [30], and Instance normalization (IN) [31] and Leaky ReLU were
applied to all hidden layers. Table 1 shows the shape of the input image and the detailed
generator network configuration. Also, unlike using tanh activation in the generator’s
output layer in general, using linear activation helped to obtain clearer results.

Table 1. Related parameter and Output shape of Generator.

Layer Activation Normalization Output Shape

Image - - (256 × 256 × 3)
Conv 7 × 7 - - (256 × 256 × 64)

Down-sample Leaky ReLU Instance Normalization (128 × 128 × 128)
Down-sample Leaky ReLU Instance Normalization (64 × 64 × 256)
Down-sample Leaky ReLU Instance Normalization (32 × 32 × 512)

PaRAB × 6 Leaky ReLU Instance Normalization (32 × 32 × 512)
Up-sample Leaky ReLU Instance Normalization (64 × 64 × 256)
Up-sample Leaky ReLU Instance Normalization (128 × 128 × 128)
Up-sample Leaky ReLU Instance Normalization (256 × 256 × 64)
Conv 1 × 1 Linear - (256 × 256 × 3)

Since the discriminator receives the results of the channel-wise concatenation oper-
ation from the input image and the corresponding mask, unlike the generator, the input
channel is 6. We utilized Spectral Normalization techniques to stabilize discriminator train-
ing. This method, proposed in SNGAN [32], is a simple and efficient weight normalization
method, which prevents the gradient of the discriminator from exploding by making the
Lipschitz constant bounded. This is very important because generator network learning
relies entirely on feedback from discriminators. Therefore, spectral normalization (SN) was
applied to all layers, and the activation function was Leaky ReLU. The down-sampling
layer used a 4 × 4 filter, the stride value was 2 and the padding value was 1. For other
layers, use the stride value of 1. The overall structure of the model follows the configuration
of the discriminator in PatchGAN [33]. We have confirmed that the best results are not to
use feature normalization techniques such as Instance Normalization and Batch Normal-
ization. Table 2 shows the shape of the input image used and the detailed discriminator
network configuration.

Table 2. Related parameter and Output shape of Discriminator.

Layer Activation Normalization Output Shape

Image ⊕Mask - - (256 × 256 × 6)
Down-sample Leaky ReLU Spectral Normalization (128 × 128 × 64)
Down-sample Leaky ReLU Spectral Normalization (64 × 64 × 128)
Down-sample Leaky ReLU Spectral Normalization (32 × 32 × 256)

Conv 4 × 4 Leaky ReLU Spectral Normalization (31 × 31 × 512)
Conv 1 × 1 Linear Spectral Normalization (30 × 30 × 1)

3.4. Loss Function

Image mapping functions G and F perform adversarial learning with discriminators
DX and DY. The adversarial loss function used is the least squares loss function, and the
objective function is as follows:

Ladv(G, DY) = Ey∼pdata(y)

[(
DY
(
y⊕my

)
− 1
)2
]
+Ex∼pdata(x)

[
(DY(G(x)⊕mx)

2
]

Ladv(F, DX) = Ey∼pdata(y)

[
(DX(x⊕mx)− 1)2

]
+Ex∼pdata(x)

[
(DX

(
F(y)⊕my

)2
] (4)

where ⊕ denotes a concatenation channel-wise operation that is calculated using a given
real image and corresponding mask data. Since the test phase does not use the discriminator,
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the mask can serve as an additional input. We confirmed that the discriminator learns more
stably when provided with such additional information. In addition, the cycle-consistency
loss and identity loss used for training are as follows:

Lcycle = Ex∼pdata(x) [|F(G(x))− x|1] +Ey∼pdata(y) [|G(F(y))− y|1] (5)

Lidt = Ey∼pdata(y) [|G(y)− y|1] +Ex∼pdata(x) [|F(x)− x|1] (6)

The purpose of the cycle-consistency loss is to limit transformations that do not reflect
the characteristics of the input data. Therefore, it minimizes the difference when restoring
fake images G(x) and F(y), generated from input images to the original domain. The
identity loss helps preserve the color and tint of each domain. The background loss helps
to prevent the transformation of the background regions between the mapped image and
the input image, and is as follows:

Lbg = Ex∼pdata(x)

[∣∣∣mb
x ⊗ (G(x)− x)

∣∣∣
1

]
+Ey∼pdata(y)

[∣∣∣mb
y ⊗ (F(y)− y)

∣∣∣
1

]
(7)

where ⊗ denotes an element-wise product operation calculated using a given real image
and corresponding background mask data. Basically, the mask mx represents the leaf
region, so mb

x = 1−mx is calculated and used for the background loss function.
Finally, the loss function for training the proposed model consists of a combination of

the four loss functions described above, where λ is a coefficient for adjusting the balance of
each loss, and the final loss function is as follows:

L = Ladv + λcycleLcycle + λidtLidt + λbgLbg (8)

4. Results and Discussion

In this chapter, we conduct performance evaluation experiments to verify the validity
of the proposed model. We verify the improved image quality with the proposed method,
and then validate the classification performance with a dataset containing augmented plant
leaf images.

4.1. Plant Village Dataset

The Plant Village dataset provides healthy and unhealthy leaf images for 14 crops,
and there are various studies using it. An experiment was conducted using apple, potato,
and grape leaf data among 14 crops, and the sample images are shown in Figures 4–6.
As shown in Tables 3–5, the dataset configuration for the experiments of the proposed
generative models basically extracted and used 500 data for each class. The minor class,
which lacked the number of data, was randomly extracted whenever the learning data pair
was configured. Since the proposed model performs only conversions for two domains, an
experiment was conducted by constructing a pair of health and disease classes individually
to learn a single model.
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Table 3. Configuring the Apple dataset used to train the proposed model.

Class Train Support Ratio

Healthy 500 1645 30.4%
Black rot 500 621 80.5%

Scab 500 630 79.4%
Rust 275 275 100%
Total 1775 3171 55.9%

Table 4. Configuring the Grape dataset used to train the proposed model.

Class Train Support Ratio

Healthy 423 423 100%
Black rot 500 1180 42.4%

Esca 500 1383 36.2%
Blight 500 1076 46.5%
Total 1923 4062 47.3%

Table 5. Configuring the Potato dataset used to train the proposed model.

Class Train Support Ratio

Healthy 152 152 100%
Early Blight 500 1000 50%
Late Blight 500 1000 50%

Total 1152 2152 53.5%

As shown in Tables 6–8, a fixed number of samples were used for testing from the
original data for the dataset composition for the experiment of classification models. This
is to construct a correct test set because there are very few classes. Therefore, in the case
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of the apple and grape dataset, 200 samples were configured as a test set, and in the case
of the potato dataset, 100 samples were configured as a test set. Afterward, the dataset
composition for learning combines data not used for testing and augmented data and uses
them for model learning. In the case of the apple and grape datasets, 500 samples were
basically used for learning, and 400 samples were used for learning for the potato datasets.

Table 6. Configuring the Apple dataset used to train classification models.

Class Train/Aug Test Support

Healthy 300/200 200 1645
Black rot 300/200 200 621

Scab 300/200 200 630
Rust 75/425 200 275
Total 2000 800 3171

Table 7. Configuring the Grape dataset used to train classification models.

Class Train/Aug Test Support

Healthy 223/227 200 423
Black rot 300/200 200 1180

Esca 300/200 200 1383
Blight 300/200 200 1076
Total 2000 800 4062

Table 8. Configuring the Potato dataset used to train classification models.

Class Train/Aug Test Support

Healthy 52/348 100 152
Early Blight 300/100 100 1000
Late Blight 300/100 100 1000

Total 1200 300 2152

4.2. Experiment Setup

The training parameters for learning the proposed model are shown in Table 9, and
the results of the proposed model and the CycleGAN model are evaluated through FID
(Frechet Inception Distance) [34]. In addition, through the image, it is verified whether the
conversion problem for the background area and the clear disease texture are reflected.

Table 9. Parameters used in training.

Parameter Value

Total Iteration 100,000
β1, β2 (Adam) 0.5/0.999

Learning Rate for G, D 0.0002
λcycle 10
λidt 5
λbg 10

r (Reduction ratio) 16

An experiment is conducted to verify whether the plant leaf images generated from
the proposed method can further improve the performance of a classification model for
early diagnosis of plants. The models used to evaluate classification performance are
ResNet-18 [35], DenseNet-161 [36], MobileNet-v2 [37], and EfficientNet-b0 [38], and the
experiment was conducted through fine-tuning from the pre-learned weights of the Ima-
geNet [39] dataset. Precision, recall, and F1 Score were used to evaluate the performance of
classification models.
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4.3. Results

In the result of the apple leaf in Figure 7, the black rot disease image generated through
CycleGAN does not preserve the shape of the original leaf image well by performing the
translation on some background areas. On the other hand, the results generated through
the proposed method reflect more distinct disease characteristics for both Rust and Black
rot classes. In addition, the generated results well preserve the shape of the original real
leaf image, so the validity of the proposed method can be confirmed. Even in the grape leaf
results in Figure 7, the diseased leaf images generated through CycleGAN do not preserve
the shape of the input image in common and reflect the poor texture. The cause of these
problems is that the generator performs training to deceive the discriminator by evenly
and indiscriminately trying to transform the entire training image area. In contrast, the
translation results of the proposed method show that explicitly regulating transformation
only in the leaf region requiring transformation can create visually valid plant leaf data. The
result of potato leaf transformation in Figure 7 also shows that the transformation through
the proposed method produces much more stable and realistic results. The result of potato
leaf transformation in Figure 7 also shows that the transformation through the proposed
method produces much more stable and realistic results. In addition, the generator can
select the features necessary for conversion and unnecessary features well by partially
performing conversion only on the necessary areas in the original image and preserving
the color of the original image in some areas.
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Figure 7. Comparison of disease-infected leaf image results generated by the proposed method
and CycleGAN.

Quantitative evaluation of images generated by GANs is a very difficult problem. Ini-
tially, to evaluate the quality of the generated image, it was verified whether it follows the
distribution of the training image well through Average Log-likelihood, but this is an indi-
cator that is far from visual validity. Moreover, the generated images are high-dimensional
data, making direct comparison difficult. To solve this problem, the proposed Frechet Incep-
tion Distance (FID) score calculates the Wasserstein-2 distance between two distributions
through the average vector and covariance matrix of the feature vectors of the real image
and the generated image. Therefore, the lower the better, and 0 corresponds to the highest
score. Tables 10–12 are the results of evaluating the samples generated through these FID
scores, and the samples generated through the proposed method as a whole are low. In
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addition, the Black rot class in grape leaves showed the largest difference at 13.53 compared
to the previous results.

Table 10. Comparison of generated Apple leaf image FID scores.

Class CycleGAN Our Diff

Black rot 48.78 43.63 5.15
Scab 61.54 58.39 3.15
Rust 68.53 62.18 6.35

Table 11. Comparison of generated Grape leaf image FID scores.

Class CycleGAN Our Diff

Black rot 39.36 25.83 13.53
Esca 44.59 38.63 5.960

Blight 59.29 52.98 6.310

Table 12. Comparison of generated Potato leaf image FID scores.

Class CycleGAN Our Diff

Early Blight 68.10 58.70 9.4
Late Blight 70.37 63.30 7.07

Table 13 shows the performance of the classification models according to each aug-
mented technique for the apple leaf data. Overall, models trained with augmented data
through the proposed method and CycleGAN show better results than models trained
with imbalanced data. This indicates that augmented disease images can improve actual
generalization performance. In the overall experiment, each model generally showed
excellent F1 scores when trained over augmented datasets via the proposed method, and
the best results using EfficientNet and our method achieved 0.9995 F1 scores.

Table 13. Comparison of test results of Apple leaf classification models.

Model Augmentation Precision Recall F1 Score

ResNet 18

Imbalance 0.9768 0.9743 0.9755

CycleGAN 0.9791 0.9762 0.9774

Proposed 0.9793 0.9787 0.9790

DenseNet 161

Imbalance 0.9879 0.9859 0.9867

CycleGAN 0.9912 0.9899 0.9905

Proposed 0.9903 0.9926 0.9914

Imbalance 0.9855 0.9852 0.9853

MobileNet v2 CycleGAN 0.9868 0.9845 0.9856

Proposed 0.9882 0.9888 0.9885

Imbalance 0.9969 0.9968 0.9968

EfficientNet b0 CycleGAN 0.9996 0.9985 0.9991

Proposed 0.9998 0.9992 0.9995

Tables 14 and 15 show the performance of the classification models according to each
augmentation technique for the grape and potato leaf data. Unlike the experiments in
Table 13, the two datasets used for the experiments in Tables 14 and 15 lack samples from
health classes. Although the results of learning augmented datasets via CycleGAN in some
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classification models were excellent, the best were those utilizing EfficientNet and our
method, which achieved F1 scores of 0.9994 and 0.999, respectively. We have experimentally
confirmed that training a model on an augmented dataset usually solves the overfitting
problem and improves overall performance. In addition, we confirmed that EfficientNet
showed excellent performance even on imbalanced datasets and achieved the best results
in all experiments when used with the proposed method in this paper.

Table 14. Comparison of test results of Grape leaf classification models.

Model Augmentation Precision Recall F1 Score

ResNet 18

Imbalance 0.9768 0.9743 0.9755

CycleGAN 0.9791 0.9762 0.9774

Proposed 0.9793 0.9787 0.9790

DenseNet 161

Imbalance 0.9879 0.9859 0.9867

CycleGAN 0.9912 0.9899 0.9905

Proposed 0.9903 0.9926 0.9914

Imbalance 0.9855 0.9852 0.9853

MobileNet v2 CycleGAN 0.9868 0.9845 0.9856

Proposed 0.9882 0.9888 0.9885

Imbalance 0.9969 0.9968 0.9968

EfficientNet b0 CycleGAN 0.9996 0.9985 0.9991

Proposed 0.9998 0.9992 0.9995

Table 15. Comparison of test results of Potato leaf classification models.

Model Augmentation Precision Recall F1 Score

ResNet 18

Imbalance 0.9768 0.9743 0.9755

CycleGAN 0.9791 0.9762 0.9774

Proposed 0.9793 0.9787 0.9790

DenseNet 161

Imbalance 0.9879 0.9859 0.9867

CycleGAN 0.9912 0.9899 0.9905

Proposed 0.9903 0.9926 0.9914

Imbalance 0.9855 0.9852 0.9853

MobileNet v2 CycleGAN 0.9868 0.9845 0.9856

Proposed 0.9882 0.9888 0.9885

Imbalance 0.9969 0.9968 0.9968

EfficientNet b0 CycleGAN 0.9996 0.9985 0.9991

Proposed 0.9998 0.9992 0.9995

Figure 8 shows the result of the two-dimensional visualization of feature vectors
extracted from EfficientNet, which learned an augmented apple leaf dataset through the
proposed augmentation method, through the t-distributed static neighbor embedding
(t-SNE) technique. We find that the distribution of feature vectors extracted from the
augmented 425 Rust samples and the real 75 Rust samples overlap, meaning that the
generated image reflects the clear disease features of the real image class. Accordingly, the
learned classification model may well extract features distinguished from other classes
from the generated image.
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5. Discussion

Data generation research through GAN is actively being conducted in various domains.
However, it is very difficult to train GAN models well, and usually requires large amounts
of data for successful results. In this study, we focused on improving the expressiveness
of the model through a concentration mechanism, not a method to increase the amount
of data. Through this method, by fixing the number of data required for learning and
partially modifying the model, it was possible to generate a clearer image than the result
of the existing CycleGAN. The advantage of the proposed method is that it preserves
the shape of the input image very well. These results show very clear transformation
results compared to the results of GAN-based plant leaf augmentation techniques proposed
by Wu et al. [24] and the Conditional GAN-based plant leaf augmentation techniques
proposed by Abbas et al. [40]. However, our proposed method has a limitation in that it
can only be augmented by the number of healthy leaf images as a 1:1 mapping function.
To address these issues, there is room for improvement by conducting research through
additional models such as StyleGAN [41] and StarGANv2 [42]. Also, some diseases
can significantly damage the shape of healthy input leaves. Since the proposed method
regulates maintaining the original input shape, it does not reflect these disease shapes.
Therefore, it is necessary to proceed with future research on the generative model that
considers the morphological transformation of diseased leaves. In addition to the disease
texture, future research can be conducted through the UGATIT [43] model when considering
additional transformations related to morphology. The UGATIT model is a model that can
perform translation considering the shape of the target domain.

6. Conclusions

Recently, weather changes caused by climate change have had a great impact on crop
productivity. If climate change continues as it is now, it is expected to be very difficult
to maintain current crop production. To address this, deep learning-based plant early
diagnosis studies are actively underway, but some rare disease samples have the problem
of increasing the bias of learning models because they are difficult to collect.

Therefore, in this study, we study a data augmentation technique based on the Cycle-
consistent Generative Adversarial Network to increase the diversity of rare disease samples
by solving the above problem. The main content of the study is to address the problem
of imbalances in plant disease data by generating diseased leaf images to be converted
from healthy plant leaf images that are commonly collectible. We also propose a Pre-
activation Residual Attention Block to improve the representation ability of the model,
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which allows the generator to select features that should be considered more important
during domain transformation. Furthermore, by learning the background loss function, the
unnecessary transformation between the input leaf image and the fake leaf image generated
from it was suppressed. Experiments were conducted to verify whether the plant leaf
image generated from the proposed method could further improve the performance of the
classification model for early diagnosis of plants, and Precision, Recall, and F1 Score were
evaluated by indicators. The models used in the experiment were ResNet-18, DenseNet-
161, MobileNet-v2, and EfficientNet-b0, all of which were fine-tuned using pre-trained
weights. Experimental results confirmed that for all three plant leaves, the highest F1
score was achieved when the EfficientNet and the proposed data augmentation method
were used together. In addition, improved FID scores and classification performance were
achieved compared to CycleGAN as a whole. Through this, it was confirmed that the data
augmentation method proposed in this study improves the generalization performance of
various classification models.
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