Investigation of the Influence of Sublayer Thickness on Pairing of Metallic MEMS Shutter Blades
Abstract
:1. Introduction
2. 3D MEMS Shutter Blades: Paired and Unpaired Geometries
3. Fabrication Technology
4. Experimental Results and Discussion
4.1. Freestanding Unpaired Shutter Blades
4.2. 3D Self-Assembled Paired Shutter Blades (Yin-Yang shapes)
5. Summary and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horiuchi, H.; Takagi, M.; Yano, K. Relaxation of supercoiled plasmid DNA by oxidative stresses in Escherichia coli. J. Bacteriol. 1984, 160, 1017–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Mahadevana, L. Growth, geometry, and mechanics of a blooming lily. Proc. Natl. Acad. Sci. USA 2011, 108, 5516–5521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugesan, Y.K.; Pasini, D.; Rey, A.D. Self-assembly mechanisms in plant cell wall components. J. Renew. Mater. 2015, 3, 56–72. [Google Scholar] [CrossRef] [Green Version]
- Harrington, M.J.; Razghandi, K.; Ditsch, F.; Guiducci, L.; Rueggeberg, M.; Dunlop, J.W.C.; Fratzl, P.; Neinhuis, C.; Burgert, I. Origami-like unfolding of hydro-actuated ice plant seed capsules. Nat. Commun. 2011, 2, 337. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Shyu, T.C.; Kotov, N.A. Origami and Kirigami Nanocomposites. ACS Nano 2017, 11, 7587–7599. [Google Scholar] [CrossRef] [PubMed]
- Chalapat, K.; Chekurov, N.; Jiang, H.; Li, J.; Parviz, B.; Paraoanu, G.S.; Chalapat, K.; Li, J.; Chekurov, N.; Jiang, H.; et al. Self-Organized Origami Structures via Ion-Induced Plastic Strain. Adv. Mater. 2013, 25, 91–95. [Google Scholar] [CrossRef]
- Prinz, V.Y.; Seleznev, V.A.; Gutakovsky, A.K.; Chehovskiy, A.V.; Preobrazhenskii, V.V.; Putyato, M.A.; Gavrilova, T.A. Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Phys. E Low-Dimens. Syst. Nanostruct. 2000, 6, 828–831. [Google Scholar] [CrossRef]
- Schmidt, O.G.; Eberl, K. Thin solid films roll up into nanotubes. Nature 2001, 410, 168. [Google Scholar] [CrossRef]
- Xu, B.; Lin, X.; Mei, Y. Versatile Rolling Origami to Fabricate Functional and Smart Materials. Cell Rep. Phys. Sci. 2020, 1, 100244. [Google Scholar] [CrossRef]
- Kim, C.H.; Hong, S. Study on the reliability of the mechanical shutter utilizing roll actuators. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 501–504. [Google Scholar] [CrossRef]
- Pizzi, M.; Koniachkine, V.; Nieri, M.; Sinesi, S.; Perlo, P. Electrostatically driven film light modulators for display applications. Microsyst. Technol. 2003, 10, 17–21. [Google Scholar] [CrossRef]
- Hillmer, H.H.; Iskhandar, M.S.Q.; Hasan, M.K.; Akhundzada, S.; Al-Qargholi, B.; Tatzel, A. MOEMS micromirror arrays in smart windows for daylight steering. J. Opt. Microsyst. 2021, 1, 014502. [Google Scholar] [CrossRef]
- Lamontagne, B.; Fong, N.R.; Song, I.-H.; Ma, P.; Barrios, P.J.; Poitras, D. Review of microshutters for switchable glass. J. Micro/Nanolithography MEMS MOEMS 2019, 18, 040901. [Google Scholar] [CrossRef]
- Ilias, S.; Picard, F.; Larouche, C.; Kruzelecky, R.; Jamroz, W.; Le Noc, L.; Topart, P. Programmable optical microshutter arrays for large aspect ratio microslits. In Proceedings of the Photonics North 2008, Montréal, QC, Canada, 2–4 June 2008; Volume 7099, p. 70992D. [Google Scholar] [CrossRef]
- Petruzzella, M.; Zobenica, Ž.; Cotrufo, M.; Zardetto, V.; Mameli, A.; Pagliano, F.; Koelling, S.; van Otten, F.W.M.; Roozeboom, F.; Kessels, W.M.M.; et al. Anti-stiction coating for mechanically tunable photonic crystal devices. Opt. Express 2018, 26, 3882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhundzada, S.; Yang, X.; Fiedler, J.; Käkel, E.; Al-Qargholi, B.; Buhmann, S.; Ehresmann, A.; Hillmer, H. A novel approach to construct self-assembled 3D MEMS arrays. Microsyst. Technol. 2022, 28, 2139–2148. [Google Scholar] [CrossRef]
- Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. 1948, 360, 793–795. [Google Scholar]
- Lamoreaux, S.K. Demonstration of the casimir force in the 0.6 to 6μm range. Phys. Rev. Lett. 1997, 78, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Munday, J.N.; Capasso, F. Precision measurement of the Casimir-Lifshitz force in a fluid. Phys. Rev. A At. Mol. Opt. Phys. 2007, 75, 060102. [Google Scholar] [CrossRef]
- Capasso, F.; Munday, J.N.; Iannuzzi, D.; Chan, H.B. Casimir forces and quantum electrodynamical torques: Physics and nanomechanics. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 400–414. [Google Scholar] [CrossRef]
- Derjaguin, B.V.; Abrikosova, I.I.; Lifshitz, E.M. Direct Measurement of Molecular Attraction between Solids Separated by a Narrow Gap. Q. Rev. Chem. Soc. 1956, 10, 295–329. [Google Scholar] [CrossRef]
- Bressi, G.; Carugno, G.; Galvani, A.; Onofrio, R.; Ruoso, G.; Veronese, F. Experimental studies of macroscopic forces in the micrometre range. Class. Quantum Gravity 2001, 18, 3943–3961. [Google Scholar] [CrossRef]
- Bressi, G.; Carugno, G.; Onofrio, R.; Ruoso, G.; Onofrio, R.; Ruoso, G. Measurement of the Casimir Force between Parallel Metallic Surfaces. Phys. Rev. Lett. 2002, 88, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenneth, O.; Klich, I. Opposites attract: A theorem about the Casimir force. Phys. Rev. Lett. 2006, 97, 160401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, A.W.; Joannopoulos, J.D.; Johnson, S.G. Repulsive and attractive Casimir forces in a glide-symmetric geometry. Phys. Rev. A At. Mol. Opt. Phys. 2008, 77, 062107. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tang, L.; Ng, C.Y.; Messina, R.; Guizal, B.; Crosse, J.A.; Antezza, M.; Chan, C.T.; Chan, H.B. Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings. Nat. Commun. 2021, 12, 600. [Google Scholar] [CrossRef] [PubMed]
- Tabor, D.; Winterton, R.H.S. Erratum: Surface forces: Direct measurement of normal and retarded van der Waals forces ( Nature (1968) 219 (1120)). Nature 1968, 220, 940. [Google Scholar] [CrossRef] [Green Version]
- Ueltzhöffer, T.; Streubel, R.; Koch, I.; Holzinger, D.; Makarov, D.; Schmidt, O.G.; Ehresmann, A. Magnetically Patterned Rolled-Up Exchange Bias Tubes: A Paternoster for Superparamagnetic Beads. ACS Nano 2016, 10, 8491–8498. [Google Scholar] [CrossRef]
- Kästner, P.; Käkel, E.; Akhundzada, S.; Donatiello, R.; Hillmer, H. Development of self-assembled 3D MEMS Paired Shutter Arrays for studies on Casimir forces. In Proceedings of the Technical Digest MOC, Jena, Germany, 25–28 September 2022; Volime 1054, pp. 74–75. [Google Scholar]
- Becker, F.G.; Cleary, M.; Team, R.M.; Holtermann, H.; The, D.; Agenda, N.; Science, P.; Sk, S.K.; Hinnebusch, R.; Hinnebusch, A.R.; et al. Handbook of Silicon Based MEMS Materials and Technologies, 2nd ed.; Matthew Deans: Fayetteville, NC, USA, 2015; Volume 7, ISBN 9772081415. [Google Scholar]
- Thomas, G.B.; Finney, R.L. Calculus and Analytic Geometry, 9th ed.; Addsion Welsey: Boston, CA, USA, 1996; ISBN 0201531747. [Google Scholar]
- Mei, Y.; Huang, G.; Solovev, A.A.; Ureña, E.B.; Mönch, I.; Ding, F.; Reindl, T.; Fu, R.K.Y.; Chu, P.K.; Schmidt, O.G. Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers. Adv. Mater. 2008, 20, 4085–4090. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsaka, B.; Kästner, P.; Käkel, E.; Donatiello, R.; Hillmer, H. Investigation of the Influence of Sublayer Thickness on Pairing of Metallic MEMS Shutter Blades. Appl. Sci. 2023, 13, 1538. https://doi.org/10.3390/app13031538
Elsaka B, Kästner P, Käkel E, Donatiello R, Hillmer H. Investigation of the Influence of Sublayer Thickness on Pairing of Metallic MEMS Shutter Blades. Applied Sciences. 2023; 13(3):1538. https://doi.org/10.3390/app13031538
Chicago/Turabian StyleElsaka, Basma, Philipp Kästner, Eireen Käkel, Roland Donatiello, and Hartmut Hillmer. 2023. "Investigation of the Influence of Sublayer Thickness on Pairing of Metallic MEMS Shutter Blades" Applied Sciences 13, no. 3: 1538. https://doi.org/10.3390/app13031538
APA StyleElsaka, B., Kästner, P., Käkel, E., Donatiello, R., & Hillmer, H. (2023). Investigation of the Influence of Sublayer Thickness on Pairing of Metallic MEMS Shutter Blades. Applied Sciences, 13(3), 1538. https://doi.org/10.3390/app13031538