
Citation: Shao, Y.; Cheng, Y.;

Gottipati, S.; Zeng-Treitler, Q.

Outcome Prediction for Patients with

Bipolar Disorder Using Prodromal

and Onset Data. Appl. Sci. 2023, 13,

1552. https://doi.org/10.3390/

app13031552

Academic Editors: Krzysztof

Ejsmont, Aamer Bilal Asghar,

Yong Wang and Rodolfo Haber

Received: 6 December 2022

Revised: 13 January 2023

Accepted: 18 January 2023

Published: 25 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Outcome Prediction for Patients with Bipolar Disorder Using
Prodromal and Onset Data †

Yijun Shao 1,2, Yan Cheng 1,2 , Srikanth Gottipati 1 and Qing Zeng-Treitler 1,2,*

1 Biomedical Informatics Center, George Washington University, Washington, DC 20037, USA
2 Washington DC VA Medical Center, Washington, DC 20422, USA
* Correspondence: zengq@gwu.edu; Tel.: +1-202-994-0477
† This paper is an extended version of our abstract published in the Conference Proceedings of American

Society for Clinical Pathology (ASCP) 2019 Annual Meeting: Innovations in Personalized Medicine from
Biomarkers to Patient-Centered Care, Phoenix, AZ, USA, 11–13 September 2019.

Abstract: Background: Predicting the outcomes of serious mental illnesses including bipolar disorder
(BD) is clinically beneficial, yet difficult. Objectives: This study aimed to predict hospitalization
and mortality for patients with incident BD using a deep neural network approach. Methods: We
randomly sampled 20,000 US Veterans with BD. Data on patients’ prior hospitalizations, diagnoses,
procedures, medications, note types, vital signs, lab results, and BD symptoms that occurred within
1 year before and at the onset of the incident BD were extracted as features. We then created novel
temporal images of patient clinical features both during the prodromal period and at the time of the
disease onset. Using each temporal image as a feature, we trained and tested deep neural network
learning models to predict the 1-year combined outcome of hospitalization and mortality. Results:
The models achieved accuracies of 0.766–0.949 and AUCs of 0.745–0.806 for the combined outcomes.
The AUC for predicting mortality was 0.814, while its highest and lowest values for predicting
different types of hospitalization were 90.4% and 70.1%, suggesting that some outcomes were more
difficult to predict than others. Conclusion: Deep learning using temporal graphics of clinical history
is a new and promising analytical approach for mental health outcome prediction.

Keywords: prediction; bipolar disorder; deep neural network; support vector machine

1. Introduction

Outcome prediction can facilitate physician and patient decision making as well as
disease management. In the management of serious mental illnesses, the accurate and early
identification of patients at high risk of mortality and other adverse event will enable a
targeted monitoring and interventions to improve prognosis. While many risk indices and
calculators have been developed for a wide range of diseases and conditions, the outcome
prediction of mental illness, especially, serious mental illnesses such as bipolar disorder,
remains very challenging [1,2].

A wide array of features has been used in predictive modeling in mental health,
ranging from early treatment response to genetics. The AUC of these predictive models,
however, rarely reached 80%, which some argued is the threshold of clinical utility [1].
For instance, with data from mood disorder patients with first lifetime episodes of major
depression, Tondo et al. used multivariate, logistic modeling and Bayesian methods to
predict a later diagnosis of unipolar versus bipolar depressive disorder. It reported correct
classification rates of 64–67% of cases and an AUC of 0.72 [3].

Challenges faced by outcome prediction in patients with mental illnesses include
inadequate sample size, heterogeneity of the patients sharing the same diagnosis, and
individual choices and disparities [1,4]. However, we can potentially overcome these
challenges with larger samples, more nuanced feature representations, and state-of-the-art
machine learning methods.
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The key research question in this study was how well (in terms of AUC and accuracy)
the adverse outcome (all-cause mortality and number of all-cause hospitalizations) of
bipolar disorder (BD) can be predicted after the initial diagnosis. All-cause mortality and
all-cause hospitalizations (especially, re-hospitalizations) are of great interest in clinical
research. The AUC of the predictive models in various patient populations is often in
the lower 70% range, only occasionally reaching 80% [5–8]. As regards mental health
populations, however, it was difficult for us to find any studies that predicted mortality and
hospitalization, even though a number of studies identified mental illness as the significant
risk factor for all-cause mortality and all-cause hospitalization [9–11].

One related study predicted a change in diagnosis from major depression to bipolar
disorder after antidepressant initiation. It reported a mean AUC of 76% (ranging from 0.73
to 0.80) [12]. A study predicted clinically relevant changes in bipolar disorder outside the
clinic walls based on pervasive technology interactions via smartphone typing dynamics.
The results showed a predictive accuracy of around 90% [13]. Busch et al. predicted
remission using clinical trial data in BP patients with an AUC of 80% at baseline and
of 75% at 1-year follow-up. The AUC was reduced to 67% at both baseline and 1-year
follow-up when routinely collected electronic data were used [14]. While machine learning
is increasingly used in clinical research [15], prediction models for bipolar, especially with
hospitalization and mortality as outcomes, have not been previously reported. This makes
our study novel and important.

In this study, we experimented with adverse outcome prediction in 20,000 BD patients,
using data collected during the 1-year prodromal period before the initial BD diagnosis
and during the first week after the diagnosis to predict 1-year post-diagnosis outcomes.
Different from the traditional predictive models, our study exhibits innovation in two ways:
(1) by using a temporal graph of nuanced features to represent clinical data during the
prodromal and onset periods and (2) by applying a deep neural network learning algorithm
to the temporal images, since deep learning has demonstrated superior performance over
traditional machine learning algorithms [16].

The data source for the study was the clinical data warehouse (CDW) of the US
Veteran Affairs (VA) health system. The VA has the “America’s largest integrated health
care system, providing care at 1298 health care facilities, including 171 medical centers
and 1113 outpatient sites of care of varying complexity, serving 9 million enrolled Veterans
each year” [17]. The CDW contains data domains for vital signs, pharmacy, laboratory, and
inpatient and outpatient diagnoses, procedures, and text notes.

2. Materials and Methods
2.1. Study Population

The study population was BD patients in the US VA health system, who were identified
using ICD codes (ICD9 codes: 296.4X, 296.5X, 296.6X, 296.7, 296.80, and 296.89; ICD10
codes: F31.X). A total of 207,838 patients were identified using the following criteria: (1) at
least two encounters with an ICD of BD; (2) first BD diagnosis after 2001; (3) being in the
VA healthcare system for ≥12 months before the first BD diagnosis; (4) being in the VA
healthcare system for ≥12 months after the first BD diagnosis.

2.2. Clinical Features

In this study, we used features including prior hospitalizations, diagnoses, procedures,
medications, note types, vital signs, lab results, and BD symptoms to build the prediction
models. Since the note types are often correlated with diagnosis, we did not include
note types in the potential variable list. We also leveraged existing terminologies and
instruments to group individual data items into groups or themes. The presence of a BD
symptom was determined by the presence of a keyword representing the symptom in the
notes. The keywords came from standardized psychiatric measurement scales that are
typically used in clinical trials. These include psychosis (PANSS), mania (YMRS, HAM-D),
depression (HAM-D), sleep (MADRS), drug-induced movement disorders (SAS, BARS,
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and AIMS), suicide risk (C-SSRS), and other such symptoms [18–25]. The keywords were
grouped by hand, and the groups were called “BD symptoms”. These features were
obtained from unstructured (text) data. All the potential features are defined in Table 1.

Table 1. Potential features included for outcome prediction, with their definition.

Features Definition Data Source

Hospitalization Started from the corresponding admission date and ended at the
corresponding discharge date

Admission/discharge data from the
hospitalization table

Diagnosis groups

Collapsed ICDs to the first-level categories (e.g., cardiovascular
system disorder, etc.). Mental disorder group included one
additional level of details (e.g., dementias, alcohol-induced
mental disorders, etc.) [26]

Primary and secondary diagnostic
ICD9 codes

CPT groups Grouped the CPT codes into seven categories (e.g., anesthesia,
surgery, etc.) [27] CPT codes

Vitals signs
Focused on five types of vital sign standardized values of each
vital sign into a score between 0 and 1, with 0 for normal value,
and 1 for the most extreme value

Vital sign data

Lab results

The top 10 most frequent lab analyses (e.g., carbon dioxide, etc.)
Standardized values of each lab testing into a score between 0 and 1,
with 0 meaning the population mean, and a higher score meaning
farther away from the population mean

Lab data

BD symptoms
Extracted keywords from the notes to identify BD symptoms. The
keywords came from a set of instruments [18–25]. The keywords
were grouped into BD symptoms.

Medical notes

2.3. Temporal Data Representation

The patient data were represented in a temporal image (matrix) with a time window
of 1 year before and 1 week after the initial BD diagnosis. In Figure 1, the x-axis represents
the time, measured in weeks. The y-axis represents the variable list. For vital signs and
lab tests, the pixel values were grey-scaled, representing the level of abnormality. For
all other features, the pixel values were binary, representing the absence/presence of the
corresponding clinical event or observation.
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2.4. Outcome Variables

We collected the all-cause mortality and number of all-cause hospitalizations within
1 year after the diagnosis. For the prediction models, we focused on the prediction of
multiple hospitalizations combined with mortality as the composite outcome, because death
is a competing risk for hospitalization. Therefore, the outcome variable was binary-valued,
with 1/0 representing the presence/absence of the adverse outcome. We experimented
with 4 different levels of “adverseness”: n+ hospitalizations combined with mortality, for
n = 1, 2, 3, 4. The corresponding binary outcomes were abbreviated as “0 vs. 1+/mort”,
“1− vs. 2+/mort”, “2− vs. 3+/mort” and “3− vs. 4+/mort”, respectively.

2.5. Deep Neural Network

In this study, we predicted the outcomes using a deep neural network (DNN) model.
DNN, an increasingly popular machine learning method, is sometimes superior to clas-
sic statical analyses in performance. Classic statistical analyses draw conclusions at the
population level; DNN models can predict the outcomes at the individual level. Classic
statistical models need to satisfy assumptions such as linear relationships between predic-
tors and outcomes, normality for residual errors, or independence among predictors; DNN
models do not rely on these assumptions. In addition, DNN techniques can be designed to
accommodate the temporal sequence of observations with irregular time intervals, which
is a common feature in clinical data. DNN has demonstrated the ability to model highly
nonlinear relationships without extensive feature engineering, learn from massive amounts
of data, and perform better than linear/logistic regression and traditional machine learning
methods in many tasks [16,28–31].

In this study, the network was implemented using a Python library called Theano [32]
together with a helper library called Lasagne [33]. The network had a total of 7 layers
(Figure 2). Starting from the input layer, the 2nd layer was a convolutional layer, followed by
a max pooling layer. The 4th layer was again a convolutional layer and again followed by a
max pooling layer. The 6th layer was a fully connected layer, followed by the output layer.
All the weights and biases involved in the layers were learned from the training data.
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The technical definition of each layer is as follows. The input layer took the temporal
images X =

(
xij

)
(1 ≤ i ≤ 84, 1 ≤ j ≤ 54) as inputs. The second layer was a convolutional

layer. It involved 10 filters W(k) =
(

w(k)
ij

)
(1 ≤ k ≤ 10, 1 ≤ i ≤ 84, 1 ≤ j ≤ 3), which

were all 84 × 3 matrices (in Figure 2, two filters, colored in yellow and red, respectively,
are displayed), as well as 10 biases bk. The entries of the 10 matrices were the weights of
this layer. The 10 filters were applied to the input layer through a time window of width 3,
which was sliding in the time direction (from left to right in Figure 2). Mathematically, the
output of the convolutional layer was a 10 × 52 matrix Y = (ykl) obtained by

ykl = f
(
∑ 84

i=1∑ 2
j=0xi,l+jw

(k)
i,3−j + bk

)
(1)
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where f is the rectified linear function (i.e., f (x) = max(0, x)). The third layer was a max
pooling layer. This layer had no weights, and all it did was take the maximum from a
sliding time window of length 3 for each row. Mathematically, the output of this max
pooling Z = (zkm) was computed as:

zkm = maxm≤l≤m+2ykl (2)

Therefore, the output Z was a 10 × 50 matrix. The fourth layer was another convo-
lutional layer. Its definition was similar to that of the second layer, except that it took the
output Z of the third layer as input. It also had 10 filters and 10 biases. The fifth layer was
another max pooling layer, whose definition was the same as that of the third layer. The
output of the fifth layer was a 10 × 46 matrix. The sixth layer was a full connection layer,
meaning that each entry of the input (from the fifth layer) and each entry of the output
were together associated with a weight and a bias. We set the output to be a vector P = (pi)
of dimension 15. Mathematically, if we denote the output of the fifth layer as Q = (qkl), the
output is

pi = f
(
∑ all k,lqklvkli + bkli

)
(3)

where ukli and bkli are the weights and biases, respectively, and f is the rectified linear
function. The last layer of the network was a full connection layer as well. The output O
was a scalar computed as

O = g
(
∑ 1≤i≤15 piui + bi

)
(4)

where ui and bi are the weights and biases, respectively, and g is the sigmoid function (i.e.,
g(x) = ex/(1 + ex)). The function g made the output O be between 0 and 1; hence, it was a
probability value.

2.6. Training and Testing of the DNN

The studied 20,000 patients were divided randomly into 3 sets: a training set (70%),
a validation set (10%), and a testing set (20%). The training set was used to build the
prediction model, during which all the parameters (i.e., the weights and biases) in the
network were updated, so that the prediction outputs approximated the true outcomes.
The parameters were initially set to be random values and were updated iteratively using a
common approach called mini-batch stochastic gradient descent. Specifically, the training
set was randomly divided into small groups of 100, with each group called a mini-batch.
The temporal data of each mini-batch (i.e., 100 temporal images) were supplied to the input
layer to compute 100 output probabilities, which were compared with the corresponding
100 binary outcomes to calculate a distance. The distance was calculated using a binary
cross-entropy metric. We then added L1 and L2 regularizations to the distance to make an
objective function. The purpose of the added L1 and L2 regularizations was to make the
parameters sparse and to prevent the parameters from being too large (in absolute value),
respectively. Then, the parameters were updated to reduce the objective function. One
pass over the training set is called an epoch. Since the training set had 14,000 patients, the
parameters would be updated 140 (=14,000/100) times within one epoch.

After one epoch ends, the training could be continued on another epoch. However,
the training must be stopped at some point because the overfitting effect would appear
if training continued without stopping. A common approach to prevent overfitting is to
use a validation set. In this study, we used the validation set to determine after how many
epochs the training should stop. After each epoch of training, we applied the trained model
to the pre-set validation set to calculate the performance of the prediction. We chose AUC
to measure the performance. Initially, the AUC on the validation set usually showed an
increasing trend from one epoch to the next. After some epochs of training, the increasing
trend stopped, and a decreasing trend would appear. Note that an increasing trend does
not mean the value is always increasing. Occasionally, the value would decrease slightly
during one or more epochs but would increase again after that and reach a higher level than
before, and that is still counted as an increasing trend. To find when the decreasing trend



Appl. Sci. 2023, 13, 1552 6 of 11

started, we looked for the number of epochs such that the AUC at that point was higher
than all the AUCs before and also higher than 10 consecutive AUCs afterward. Then, we
selected the model corresponding to the AUC value and thus found the final model, which
was then applied to the testing set to report the performance in terms of AUC and accuracy.

2.7. Support Vector Machine

For comparison, we also trained a support vector machine (SVM) model with a linear
kernel for the prediction of the outcomes. The model was implemented using a Python
machine-learning library called Scikit-Learn [34]. We used non-temporal features, which
were the same as in the temporal images but aggregated over time by taking maximum
values along the rows. The training and testing of the SVM model used the same training,
validation, and testing set as for the DNN model. The SVM model had only one hyper-
parameter “C”. We adjusted the C-value using the validation set for optimal AUC. Then,
we tested the model on the testing set.

3. Results

We identified a total of 346,511 patients with at least two encounters with a BD diagno-
sis. After we applied the inclusion/exclusion criteria, 207,838 patients remained. Among
these patients, 20,000 were randomly selected for the analysis. The baseline characteristics
of the randomly selected 20,000 BD patients are described in Table 2. The mean age of the
patients was 48.8 (SD 13.5) years. Most of the patients were male, who accounted for 84.2%
of them; about 73.4% were Whites, followed by Blacks (17.2%), unknown (7.5%), and others
(2.0%); 5.4% were Hispanics.

Table 2. Baseline characteristics of the randomly selected 20,000 BD patients.

Demographics Mean/N STD/%

Age (Years) 48.8 13.5
Male 16,842 84.2%

Race White 14,673 73.4%
Race Black 3434 17.2%

Race Others 395 2.0%
Race Unknown 1498 7.5%

Ethnicity Hispanics 1072 5.4%
Ethnicity Non-Hispanics 17,896 89.5%

Ethnicity Unknown 1032 5.2%

The outcome hospitalizations of the cohort had various types as indicated by the
admission ICD codes. The distributions of the hospitalization types among the outcome
hospitalizations and the patients are summarized in Table 3. To provide a nuanced analysis
of the DNN performance, the hospitalizations were first divided into two larger groups, i.e.,
mental and non-mental, and then divided into smaller groups. The smaller groups were
the same as the diagnosis groups listed in Table 1. Here, we only list the smaller groups
which had 100 or more associated patients. The result showed that 64% of the outcome
hospitalizations were caused by mental disorders, and 69% of the hospitalized patients had
such a hospitalization as an outcome.

Table 3. Number of hospitalizations and patients by hospitalization type.

Hospitalization Type Number of
Hospitalizations Number of Patients

All-cause 10,961 5276
Mental 7035 (64%) 3659 (69%)
Episodic mood disorders (296) 2321 (21.2%) 1613 (14.7%)
Alcohol dependence syndrome (303) 1156 (10.5%) 737 (6.7%)
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Table 3. Cont.

Hospitalization Type Number of
Hospitalizations Number of Patients

Adjustment reaction (309) 664 (6.1%) 514 (4.7%)
Schizophrenic disorders (295) 811 (7.4%) 450 (4.1%)
Drug dependence (304) 504 (4.6%) 398 (3.6%)
Drug-induced mental disorders (292) 368 (3.4%) 271 (2.5%)
Alcohol-induced mental disorders (291) 308 (2.8%) 225 (2.1%)
Depressive disorder not elsewhere classified (311) 254 (2.3%) 221 (2%)
Nondependent abuse of drug (305) 234 (2.1%) 200 (1.8%)
Other nonorganic psychoses (298) 126 (1.1%) 104 (0.9%)
Anxiety dissociative and somatoform disorders (300) 117 (1.1%) 101 (0.9%)
Non-mental 3604 (33%) 2158 (41%)
Symptoms signs and ill-defined conditions (780–799) 518 (4.7%) 434 (4%)
Diseases of the circulatory system (390–459) 547 (5%) 401 (3.7%)
Diseases of the digestive system (520–579) 408 (3.7%) 321 (2.9%)
Supplementary classification of factors influencing health status and
contact with health services (v01–v91) 352 (3.2%) 301 (2.7%)

Injury and poisoning (800–999) 341 (3.1%) 291 (2.7%)
Diseases of the respiratory system (460–519) 338 (3.1%) 267 (2.4%)
Diseases of the musculoskeletal system and connective tissue (710–739) 186 (1.7%) 165 (1.5%)
Diseases of the genitourinary system (580–629) 170 (1.6%) 143 (1.3%)
Endocrine nutritional and metabolic diseases and immunity
disorders (240–279) 191 (1.7%) 130 (1.2%)

Diseases of the nervous system and sense organs (320–389) 140 (1.3%) 121 (1.1%)
Neoplasms (140–239) 150 (1.4%) 120 (1.1%)

We trained the DNN models and SVM models for the prediction of the four levels of
adverse outcomes. The performance of the models on the testing set is reported in Table 4.
In particular, the AUCs of the models are plotted in Figure 3 for direct comparison.

Table 4. Performance of the predictive models on the testing set.

Outcome DNN AUC DNN Accuracy SVM AUC SVM Accuracy

0 vs. 1+/mort 0.750 0.767 0.740 0.757
1− vs. 2+/mort 0.776 0.867 0.770 0.861
2− vs. 3+/mort 0.794 0.921 0.780 0.920
3− vs. 4+/mort 0.806 0.946 0.796 0.949
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It was also interesting to ask how the models performed in predicting hospitalizations
only vs. mortality, as well as how the models (for predicting “1- vs. 2+/mort”) performed
in predicting different hospitalization types. The results showed that the prediction of
mortality was better than that of hospitalizations only (AUC 0.814 vs. 0.774), and the pre-
diction of non-mental illnesses was better than that of mental illnesses (Table 5). However,
on the finer-grained level (smaller group), the prediction of hospitalizations caused by
alcohol-induced mental disorders was the best among all.

Table 5. Performance comparison across different hospitalization types.

Hospitalization Type AUC

All-cause 0.776
Mental 0.779
Episodic mood disorders (296) 0.765
Alcohol dependence syndrome (303) 0.812
Adjustment reaction (309) 0.762
Schizophrenic disorders (295) 0.865
Drug dependence (304) 0.824
Drug-induced mental disorders (292) 0.821
Alcohol-induced mental disorders (291) 0.904
Depressive disorder not elsewhere classified (311) 0.811
Nondependent abuse of drug (305) 0.834
Other nonorganic psychoses (298) 0.711
Anxiety dissociative and somatoform disorders (300) 0.701
Non-mental 0.826
Symptoms signs and ill-defined conditions (780–799) 0.832
Diseases of the circulatory system (390–459) 0.841
Diseases of the digestive system (520–579) 0.855
Supplementary classification of factors influencing health status and
contact with health services (v01–v91) 0.837

Injury and poisoning (800–999) 0.814
Diseases of the respiratory system (460–519) 0.852
Diseases of the musculoskeletal system and connective tissue (710–739) 0.822
Diseases of the genitourinary system (580–629) 0.854
Endocrine nutritional and metabolic diseases and immunity
disorders (240–279) 0.902

Diseases of the nervous system and sense organs (320–389) 0.745
Neoplasms (140–239) 0.772

4. Discussion

Prior predictive modeling efforts in the psychiatric domain had difficulty achieving
an AUC or accuracy of 80%. Using an image representation of clinical data during the
prodromal and onset period and a deep neural network, we were able to achieve accuracies
of 0.766–0.949 and AUC of 0.745–0.815. In comparison, using the same features without
temporal representation and a traditional machine learning algorithm, lower accuracies
(0.757–0.949) and AUC (0.740–0.796) were obtained. This demonstrated the feasibility of
predicting the outcomes of serious mental illnesses.

The ability to predict a patient outcome at the time of the initial BD diagnosis has
several implications. Patients who are predicted to have poor outcomes can be closely
monitored and considered for additional interventions by clinicians. The predictive results
may be shared with the patients to allow for a shared decision making. The prediction
of poor outcomes may also be used to motivate the patients to adhere to the prescribed
treatments, since treatment adherence is a frequent problem in BD patients.

Hospitalization and mortality, combined or as separate outcomes, are clinically very
important. Few prior studies reported bipolar outcome prediction [12–14]; however, they
did not use hospitalization and mortality as outcomes. This prevented us from performing a
direct comparison in terms of accuracy or AUC. There is evidence that predicting outcomes
using routinely collected clinical data, as we used in this study, is challenging [14].



Appl. Sci. 2023, 13, 1552 9 of 11

Machine learning generally benefits from a large sample size. The fact that the sample
size in our experiment was 20,000 helped to boost the predictive performance. From the VA
database, we could pull in several times more BD patients. This suggests that the predictive
accuracy and AUC could increase. We will use a larger sample size (e.g., n = 100,000) in a
future study.

Features and learning algorithms are also important factors for predictive modeling.
The features include both clinical features (e.g., diagnoses) and temporal features. Given
the prior literature, we included several types of coded data features (i.e., hospitalization,
diagnosis, procedures, vitals, and lab results). We did not conduct variable selection but
did group the numerous diagnoses and procedures based on existing terminologies. We
also only included a small number of common lab tests. One of the advantages of deep
learning is it does not require elaborate feature engineering, which is why we skipped
the temporal feature extraction. At the same time, the prevalence of individual ICD or
CPT codes tends to be very low, and thousands of ICD and CPT codes exist. If we do not
aggregate diagnoses and procedures, the temporal image will be very large and mostly
blank, which is not suitable for either any human inspection or deep learning. For example,
for the same reason, given a large number of words, word2vec is often used for a reduction
in dimensionality before applying a deep learning algorithm to a text.

One limitation of the dataset we used is that it included predominantly male patients.
Another is that we did not have the lifelong record of each patient. While we did require a
minimum of 1 year of history, the incident bipolar diagnoses in our dataset may not be the
true onset of the disease.

This study represents a first step in applying deep learning and temporal images to
mental health risk prediction with promising results. There are many alternatives that we
have yet to explore. For example, the choice of a 1-year prodromal period is somewhat
arbitrary, and we could examine 2-year and 3-year prodromal periods in the future. We
focused on the 1-year outcome in this study. The prediction of longer term (e.g., 3-, 5-,
10-year) outcomes would be of interest in future studies.

There are several ways to represent temporal information. We only aggregated the
data by week. In some prior research, data closer to an event (in our case, the event would
be the BD diagnosis) could be shown with finer granularity (e.g., day or hour), and data
further from an event could be shown with coarse granularity (e.g., week or month).

5. Conclusions

Applying deep learning and temporal graphics is a promising approach to predicting
adverse health outcomes of BD patients. Depending on the number and type of hospital-
ization as outcomes, the best accuracies and AUCs reached over 90%. However, single
hospitalizations in a year and hospitalizations due to other nonorganic psychoses and
anxiety dissociative and somatoform disorders were harder to predict.

Author Contributions: Q.Z.-T. conceived the study design and supervised the findings of this
work; Y.S. developed methods to create temporal images and apply deep neural network learning
algorithms and drafted the manuscript; Y.C. created the cohort and prepared the data; S.G. offered
advice on the study design and commented on the analysis. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (IRB) of Washington DC Veterans Affairs
(#1595522 approved on 18 December 2018).

Informed Consent Statement: Patient consent was waived because it was not practicable to obtain
consent from the large numbers of patients for a retrospective study on the existing databases.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the US Department of Veteran Affairs for providing data for this study.



Appl. Sci. 2023, 13, 1552 10 of 11

Conflicts of Interest: Gottipati, S is currently an employee of Cerevel Therapeutics. The other authors
have no conflicts of interest to declare.

References
1. McMahon, F.J. Prediction of treatment outcomes in psychiatry—Where do we stand? Dialog. Clin. Neurosci. 2014, 16, 455–464.

[CrossRef] [PubMed]
2. Treuer, T.; Tohen, M. Predicting the course and outcome of bipolar disorder: A review. Eur. Psychiatry 2010, 25, 328–333. [CrossRef]
3. Tondo, L.; Visioli, C.; Preti, A.; Baldessarini, R.J. Bipolar disorders following initial depression: Modeling predictive clinical

factors. J. Affect. Disord. 2014, 167, 44–49. [CrossRef] [PubMed]
4. Evans, T.S.; Berkman, N.; Brown, C.; Gaynes, B.; Weber, R.P. Disparities within Serious Mental Illness; Agency for Healthcare

Research and Quality (US): Rockville, MD, USA, 2016.
5. Jamei, M.; Nisnevich, A.; Wetchler, E.; Sudat, S.; Liu, E. Predicting all-cause risk of 30-day hospital readmission using artificial

neural networks. PLoS ONE 2017, 12, e0181173. [CrossRef] [PubMed]
6. Lassale, C.; Gunter, M.J.; Romaguera, D.; Peelen, L.M.; Van Der Schouw, Y.T.; Beulens, J.W.J.; Freisling, H.; Muller, D.C.; Ferrari, P.;

Huybrechts, I.; et al. Diet Quality Scores and Prediction of All-Cause, Cardiovascular and Cancer Mortality in a Pan-European
Cohort Study. PLoS ONE 2016, 11, e0159025. [CrossRef] [PubMed]

7. Upshaw, J.N.; Konstam, M.A.; van Klaveren, D.; Noubary, F.; Huggins, G.S.; Kent, D.M. Multistate Model to Predict Heart Failure
Hospitalizations and All-Cause Mortality in Outpatients With Heart Failure With Reduced Ejection Fraction. Circ. Hear. Fail.
2016, 9, e003146. [CrossRef]

8. Wan, E.Y.F.; Fong, D.Y.T.; Fung, C.S.C.; Yu, Y.T.E.; Chin, W.Y.; Chan, A.K.C.; Lam, C.L.K. Prediction of five-year all-cause mortality
in Chinese patients with type 2 diabetes mellitus—A population-based retrospective cohort study. J. Diabetes Its Complicat. 2017,
31, 939–944. [CrossRef] [PubMed]

9. Kane, K.D.; Yochim, B.P.; Lichtenberg, P.A. Depressive symptoms and cognitive impairment predict all-cause mortality in
long-term care residents. Psychol. Aging 2010, 25, 446–452. [CrossRef]

10. Keyes, C.L.M.; Simoes, E.J. To Flourish or Not: Positive Mental Health and All-Cause Mortality. Am. J. Public Health 2012, 102,
2164–2172. [CrossRef]

11. Kripalani, S.; Theobald, C.N.; Anctil, B.; Vasilevskis, E.E. Reducing Hospital Readmission Rates: Current Strategies and Future
Directions. Annu. Rev. Med. 2014, 65, 471–485. [CrossRef]

12. Pradier, M.F.; Hughes, M.C.; Jr, T.H.M.; Barroilhet, S.A.; Doshi-Velez, F.; Perlis, R.H. Predicting change in diagnosis from major
depression to bipolar disorder after antidepressant initiation. Neuropsychopharmacology 2020, 46, 455–461. [CrossRef] [PubMed]

13. Bennett, C.C.; Ross, M.K.; Baek, E.; Kim, D.; Leow, A.D. Predicting clinically relevant changes in bipolar disorder outside the
clinic walls based on pervasive technology interactions via smartphone typing dynamics. Pervasive Mob. Comput. 2022, 83, 101598.
[CrossRef]

14. Busch, A.B.; Neelon, B.; Zelevinsky, K.; He, Y.; Normand, S.-L.T. Accurately Predicting Bipolar Disorder Mood Outcomes.
Med. Care 2012, 50, 311–319. [CrossRef] [PubMed]

15. Thieme, A.; Belgrave, D.; Doherty, G. Machine Learning in Mental Health: A Systematic Review of the HCI Literature to Support
the Development of Effective and Implementable ML Systems. ACM Trans. Comput.-Hum. Interact. 2020, 27, 34. [CrossRef]

16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
17. The U.S. Department of Veterans Affairs. Available online: https://www.va.gov/health/ (accessed on 11 January 2023).
18. Barnes, T.R.E. A Rating Scale for Drug-Induced Akathisia. Br. J. Psychiatry 1989, 154, 672–676. [CrossRef]
19. Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [CrossRef]
20. Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr. Bull. 1987,

13, 261–276. [CrossRef]
21. Montgomery, S.A.; Smeyatsky, N.; de Ruiter, M.; Montgomery, D.B. Profiles of antidepressant activity with the Montgomery-

Asberg depression rating scale. Acta Psychiatr. Scand. 1985, 72, 38–42. [CrossRef]
22. Posner, K.; Brent, D.; Lucas, C.; Gould, M.; Stanley, B.; Brown, G.; Fisher, P.; Zelazny, J.; Burke, A.; Oquendo, M.; et al. Columbia-

Suicide Severity Rating Scale (C-SSRS). Available online: https://cssrs.columbia.edu/wp-content/upAloads/C-SSRS_Pediatric-
SLC_11.14.16.pdf (accessed on 17 January 2023).

23. Simpson, G.M.; Angus, J.W. A rating scale for extrapyramidal side effects. Acta Psychiatr. Scand. 1970, 45, 11–19. [CrossRef]
24. Guy, W. Abnormal Involuntary Movement Scale (117-AIMS). In ECDEU Assessment Manual for Psychopharmacology; National

Institute of Mental Health: Rockville, MD, USA, 1976; pp. 534–537.
25. Young, R.C.; Biggs, J.T.; Ziegler, V.E.; Meyer, D.A. A Rating Scale for Mania: Reliability, Validity and Sensitivity. Br. J. Psychiatry

1978, 133, 429–435. [CrossRef] [PubMed]
26. International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). Centers for Disease Control and

Prevention: National Center for Health Statistics. Available online: https://www.cdc.gov/nchs/icd/icd9cm (accessed on
1 December 2022).

27. CPT®Overview and Code Approval. American Medical Association. Available online: https://www.ama-assn.org/practice-
management/cpt (accessed on 1 December 2022).

http://doi.org/10.31887/DCNS.2014.16.4/fmcmahon
http://www.ncbi.nlm.nih.gov/pubmed/25733951
http://doi.org/10.1016/j.eurpsy.2009.11.012
http://doi.org/10.1016/j.jad.2014.05.043
http://www.ncbi.nlm.nih.gov/pubmed/25082113
http://doi.org/10.1371/journal.pone.0181173
http://www.ncbi.nlm.nih.gov/pubmed/28708848
http://doi.org/10.1371/journal.pone.0159025
http://www.ncbi.nlm.nih.gov/pubmed/27409582
http://doi.org/10.1161/CIRCHEARTFAILURE.116.003146
http://doi.org/10.1016/j.jdiacomp.2017.01.017
http://www.ncbi.nlm.nih.gov/pubmed/28238555
http://doi.org/10.1037/a0019032
http://doi.org/10.2105/AJPH.2012.300918
http://doi.org/10.1146/annurev-med-022613-090415
http://doi.org/10.1038/s41386-020-00838-x
http://www.ncbi.nlm.nih.gov/pubmed/32927464
http://doi.org/10.1016/j.pmcj.2022.101598
http://doi.org/10.1097/MLR.0b013e3182422aec
http://www.ncbi.nlm.nih.gov/pubmed/22210540
http://doi.org/10.1145/3398069
http://doi.org/10.1038/nature14539
https://www.va.gov/health/
http://doi.org/10.1192/bjp.154.5.672
http://doi.org/10.1136/jnnp.23.1.56
http://doi.org/10.1093/schbul/13.2.261
http://doi.org/10.1111/j.1600-0447.1985.tb08073.x
https://cssrs.columbia.edu/wp-content/upAloads/C-SSRS_Pediatric-SLC_11.14.16.pdf
https://cssrs.columbia.edu/wp-content/upAloads/C-SSRS_Pediatric-SLC_11.14.16.pdf
http://doi.org/10.1111/j.1600-0447.1970.tb02066.x
http://doi.org/10.1192/bjp.133.5.429
http://www.ncbi.nlm.nih.gov/pubmed/728692
https://www.cdc.gov/nchs/icd/icd9cm
https://www.ama-assn.org/practice-management/cpt
https://www.ama-assn.org/practice-management/cpt


Appl. Sci. 2023, 13, 1552 11 of 11

28. Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges.
Brief. Bioinform. 2017, 19, 1236–1246. [CrossRef] [PubMed]

29. Belle, A.; Thiagarajan, R.; Soroushmehr, S.M.; Navidi, F.; Beard, D.A.; Najarian, K. Big Data Analytics in Healthcare.
Biomed. Res. Int. 2015, 2015, 370194. [CrossRef] [PubMed]

30. Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview.
Korean J. Radiol. 2017, 18, 570–584. [CrossRef]

31. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515.
[CrossRef]

32. Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; Bengio, Y. Theano: A
CPU and GPU Math Compiler in Python. In Proceedings of the 9th Python in Science Conference (SCIPY 2010), Austin, RX, USA,
28 June–3 July 2010.

33. Zenodo. Lasagne: First Release. Available online: https://zenodo.org/record/27878#.Y-DRX3YzZPY (accessed on
17 January 2023).

34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn Res. 2011, 12, 2825–2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1093/bib/bbx044
http://www.ncbi.nlm.nih.gov/pubmed/28481991
http://doi.org/10.1155/2015/370194
http://www.ncbi.nlm.nih.gov/pubmed/26229957
http://doi.org/10.3348/kjr.2017.18.4.570
http://doi.org/10.1148/rg.2017160130
https://zenodo.org/record/27878#.Y-DRX3YzZPY

	Introduction 
	Materials and Methods 
	Study Population 
	Clinical Features 
	Temporal Data Representation 
	Outcome Variables 
	Deep Neural Network 
	Training and Testing of the DNN 
	Support Vector Machine 

	Results 
	Discussion 
	Conclusions 
	References

