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Abstract: To improve the radial suspension force of heteropolar hybrid magnetic bearing (HMB),
a novel AC six-pole heteropolar HMB is proposed. Firstly, the structure, magnetic circuit, and
suspension force generation principle are introduced and analyzed. Secondly, the equivalent magnetic
circuits are established. The mathematical models of magnetic resistances, air gap magnetic fluxes,
and levitation force are derived by node magnetomotive force (MMF) method. The main parameters
of prototype heteropolar HMB, such as outer and inner air-gap length, winding turns, and permanent
magnets, are designed. Then, the analysis model is established by MagNet 3D. The magnetic
circuit, air-gap flux density, suspension mechanism, force-current relationships, force-displacement
relationships, and force coupling characteristics are analyzed and calculated. Finally, the experimental
system was built to test the levitation force and levitation displacement waveforms. The research
results have shown that the proposed novel six-pole heteropolar HMB has a reasonable structure and
magnetic circuit. The design method is also proven to be correct. Furthermore, it is compared with
the traditional heteropolar six-pole HMB, the maximum suspension forces in the X and Y directions
are increased by 1.96 and 2.02 times, respectively.

Keywords: heteropolar hybrid magnetic bearing; suspension force; finite element analysis;
mathematical model; design

1. Introduction

In the past ten years, the development of modern industry has put forward the
requirements of higher speed and higher power for machines. However, high-speed
machines equipped with mechanical bearings have friction and wear, which limits further
improvements in speed and power [1,2]. Although air-bearing and liquid-bearing can
greatly reduce bearing friction, theoretically, higher power and speed can be obtained.
However, they need to be equipped with a special flow supply devices, which leads to the
large volume and complex structure of the high-speed motor system and the inevitable
problems of air and liquid leakage.

Thanks to magnetic bearings (MBs), in which electromagnetic force is generated to
suspend the rotor. Therefore, compared with mechanical bearing, air-bearing, and liquid-
bearing, MBs have the advantages of no friction and wear, no lubrication and sealing, long
life and maintenance free [3–5]. The high-speed rotor supported by MBs instead of other
bearings can easily obtain higher speed and higher power. In addition, compared with
bearingless motors such as bearingless permanent magnet motors [6] and bearingless flux-
switching permanent motors [7], the combined structure has obvious advantages in terms
of simple control and small coupling [8]. They have received extensive attention in the past
few decades throughout the world [9–11]. Scholars at home and abroad have developed
many kinds of MBs. According to the mechanism of the suspension force producing,
MBs can be divided into passive magnetic bearing (PMB) [12], active magnetic bearing
(AMB) [13], and hybrid magnetic bearing (HMB) [14]. In particular, the HMB adopts
high-performance permanent magnets to balance the rotor. If the rotor deviates from the
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balance position, the suspension windings need to be energized to pull the rotor back. Thus,
the HMB has a large suspension force density, small volume, and low power consumption.
Therefore, HMBs and their applications have become an international hotspot. In [15], an
HMB was used in a ring-type flywheel and provided several advantages, such as low energy
consumption, good heat dissipation, and linear magnetic force. Reference [16] proposed
an AC radial-axial HMB and applied it in a wind energy generation system with running
stability and excellent performance. In addition, according to the realized functions, the
HMBs are also divided into an axial single degree of freedom (DOF) HMB [17], radial
2-DOF HMB [18], and 3-DOF HMB [19]. Especially, the radial 2-DOF HMB can generate the
suspension forces to suspend the rotor in radial 2-DOF, which is often adopted as part of the
magnetic suspension motor. At present, radial 2-DOF HMBs mainly include radial three-
pole AC HMB, six-pole AC HMB, and four-pole DC HMB [20]. Compared with DC for
four-pole HMB and AC three-pole HMB, the AC six-pole HMB not only has the advantages
of a symmetrical structure but also can be driven by the three-phase inverter with small
volume, low cost and low power consumption [21–25]. Furthermore, according to the
bias magnetic circuit, radial HMBs can be divided into homopolar HMBs and heteropolar
HMBs [26,27]. In [28], a novel homopolar HMB was put forward to reduce the magnetic
field coupling, and the magnetic fields of X and Y channels decoupled well from each other.
However, the homopolar HMB has a long axial length because the permanent magnets are
usually located in the axial space, which limits the further increase of critical speed. The
permanent magnets of the heteropolar HMB are usually installed in the radial space, which
has the advantages of short axial length, high critical speed, and high suspension force
density [29,30]. Reference [31] proposed one novel heteropolar radial HMB with low rotor
core loss. The rotor core loss is just 22.53 W, which is only 41.6% of the conventional one.
However, the permanent magnets occupy the stator space, and the area of the magnetic
pole decreases, further reducing the levitation force.

In this paper, to increase the levitation forces of heteropolar HMB, a novel AC six-pole
heteropolar HMB is proposed. It has the characteristics that the permanent magnets are
installed in the radial space, and the double air gaps are adopted. Firstly, the structure
and suspension mechanism are analyzed. Secondly, the equivalent magnetic circuits
are established. The mathematical models of suspension force are deduced by node
magnetomotive force method. Then, the design method of the main parameters is discussed.
The electromagnetic performances are calculated by MagNet 3D. The magnetic circuit,
suspension mechanism, mathematical models, and design method are proven to be correct.
Finally, the closed-loop control system is established. The rotor stable suspension is realized
by using STM 32H743 controller. The displacement waveforms in the stable suspension
state and anti-disturbance waveform are tested. Compared with the suspension force of
the traditional heteropolar HMB, the maximum suspension forces in the X and Y directions
are increased by 1.96 and 2.02 times, respectively.

2. Configuration and Suspension Principle

The proposed novel AC six-pole heteropolar HMB includes an inner stator core,
outer stator core, permanent magnets, control coils, and rotor. Figure 1 shows the three-
dimensional structure and magnetic circuit diagrams. Six magnetic poles denote as A, a,
B, b, C, and c, are evenly distributed on the outer stator. Three magnetic poles, a, b and c,
extend inward and are connected with cores X, Y and Z by six magnets to form a circular
inner stator core. The inner stator core is divided into six poles by six magnets. As a result,
there are an annular inner air gap and three outer air gaps. Ignoring the leakage flux, the
equivalent magnetic circuit can be obtained. The blue lines denote the control fluxes, and
the red lines describe the bias fluxes. It can be seen that one part of the bias fluxes generated
by the six magnets passes through the outer air gap, the other parts pass through the inner
air gap, and form two closed paths. The coils W1 and W4, W2 and W5, and W3 and W6
of poles A and b, B and c, and C and a are respectively connected in series as W1,4, W2,5,
and W3,6. Then, Y-type connection is conducted to get three-phase symmetrical control



Appl. Sci. 2023, 13, 1643 3 of 12

windings. One three-phase inverter is adopted to electrify the three-phase windings. It is
found that the control fluxes generated by coils W1, W3, and W5 need to pass through the
outer and inner air gaps. However, the control fluxes generated by coils W2, W4, and W6
only need to pass through the inner air gaps. Assuming that the rotor has the displacement
to the pole b, the three-phase symmetrical currents iw1,4 = −2iw2,5 = −2iw3,6 flow into
three-phase windings. As a result, the air gap flux density increases under poles A, a, and c
while decreasing under poles b, B, and C. Thus, the suspension force pointing to pole A
will pull the rotor back to the balance position.
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Figure 1. Structure and magnetic circuit of novel AC 6-pole heteropolar HMB, 1—external stator core,
2—control windings, 3—magnets, 4—internal stator core, 5—inner air gap, 6—shaft, 7—rotor core,
8—outer air gap, 9—stator magnetic poles, 10—bias fluxes, 11—control fluxes. (a) Three-dimensional
structure diagram; (b) Magnetic circuit diagram.

3. Mathematical Models

Only the air gap reluctances and the magnet reluctances are considered, and other
nonlinear factors are ignored. According to the magnetic circuit and the suspension mecha-
nism, the equivalent magnetic circuits are shown in Figure 2. φCR1~φCR6 represent control
fluxes of inner air gaps, while φPR1~φPR6 are bias fluxes of inner air gaps. φPRA~φPRC
represents bias fluxes of outer air gaps. In Figure 2, it is assumed that the magnetomotive
force (MMF) of the outer circle is 0. Fm and Rm are the MMF and reluctance of each magnet,
respectively. F1~F4 are the MMF of four nodes, as shown in Figure 2b.
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Based on the magnetic circuit Kirchhoff’s laws, the magnetic circuit equations are
derived by node magnetomotive force method.
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Reluctances of the inner and outer air gap can be expressed as

Ri = Rj =
gi

µ0Si
, j = 1, 2, 3, 4, 5, 6 (3)

Ro = RA = RB = RC =
go

µ0So
(4)

where µ0 is the permeability of vacuum, Si is the internal magnetic pole area, gi is the
average inner air-gap length, So is the outer magnetic pole area, and go is the outer air-
gap length.

The bias fluxes of inner air gaps can be expressed as

φPR1 = F2−F1
R1

φPR2 = F1
R2

φPR3 = F3−F1
R1

φPR4 = F1
R4

φPR5 = F4−F1
R1

φPR6 = F1
R6

(5)

The control fluxes of inner air gaps can be written as

φCR1 = No iA
R1+RA

φCR2 = Ni iC
R2

φCR3 = No iB
R3+RB

φCR4 = Ni iA
R4

φCR5 = No iC
R5+RC

φCR6 = Ni iB
R6

(6)

where No represents the turn numbers of coils W1, W3, and W5, and Ni represents the turn
number of coils W2, W4, and W6.

The magnetic attraction force of poles a-C, A-b, and c-B to the rotor can be given
as follows. 

FaC =
(φPR2+φCR2)

2−(φPR5−φCR5)
2

2µ0Si

FAb =
(φPR1+φCR1)

2−(φPR4−φCR4)
2

2µ0Si

FcB =
(φPR6+φCR6)

2−(φPR3−φCR3)
2

2µ0Si

(7)
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According to the equivalent magnetic circuit, then the maximum suspension forces in
radial 2-DOF can be deduced as F+xmax = F−xmax = 3B2

s Si
2µ0

F+ymax = F−ymax =
√

3B2
s Si

2µ0

(8)

where Bs is the saturated flux density. B0 is bias flux density. F+xmax, F–xmax, F+ymax, F–ymax
are the maximum suspension force in +X, −X, +Y, and −Y directions.

Form Equation (8), it is concluded that the maximum suspension force in the positive
X and negative X directions are equal, the suspension force in the negative Y and positive Y
directions is equal, and the maximum suspension force in the X direction is greater than
that in the Y direction.

4. Parameter Design

In order to avoid magnetic saturation, the inner air gap bias flux is half of the saturation
flux, that is φPRj = φPCj = φP0 = φs/2 (j = 1, 2, 3, 4, 5, 6). Thus, the saturation flux density
Bs = 1.2 T, and inner air gap bias flux density Bi = 0.6 T. According to (1)~(5), the relationship
between the inner and outer air gap parameters is obtained as follows.

gi
Si
· So

go
=

1
4

(9)

According to equivalent control magnetic circuit, the relationships of the turn numbers
of No and Ni can be described by

Ni = No(
So

So +
goSi

gi

) (10)

Substituting Equation (9) into Equation (10), it is assumed that the So = Si, the relation-
ships between Ni and No is given by

No : Ni = 5 : 1 (11)

The turn numbers of suspension winding can be calculated by the following formula.

Nii =
Bsgi
4µ0

(12)

As it is known that the demagnetization curve of NdFeB magnets is almost linear, the
magnetomotive force Fm and flux φm for operating point can be expressed as{

Fm = Fc/2
φm = φr

Fc
· (Fc − Fm)

(13)

where Fc and φr are the coercive magnetomotive force and residual magnetic flux of PM,
respectively. φm is the external magnetic circuit flux of PM.

When the rotor is in the no-load state, the following equations can be obtained.{
B0 = µ0Fm

2g0

φm = B0Si
(14)

Combining (7), (13), and (14), the height and area of PM can be obtained as{
Hpm = Fc

Hc
= 4B0gi

µ0 Hc

Apm = φr
Br

= 2B0Si
Br

(15)
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where Hpm is the length of the permanent magnet, Hc is the coercivity of the permanent
magnet, Apm is the sectional area of the permanent magnet, and Br is the residual magnetic
flux density of the permanent magnet.

Therefore, as long as the required maximum suspension force is given, the main
parameters of the proposed HMB can be designed according to the above design scheme.
In this paper, an HMB with a suspension force of no less than 300 N is designed. Firstly,
considering the processing accuracy, suspension winding current, and power consumption,
the inner air gap length gi = 0.5 mm is selected. Thus, from Equation (10), the outer air gap
length go = 2 mm. In order to make full use of the iron cores, improve the suspension force
density, and then reduce the volume of HMB, the air gap saturation flux density Bs = 1.2 T
is selected. Therefore, the inner air gap flux density B0 generated by magnets is 0.6 T, and
the inner air gap flux density generated by the suspension currents to obtain the maximum
suspension force is also 0.6 T. Thus, from Equation (13), the ampere turns of inner control
winding is 238.8 AT. Therefore, the ampere turns 240 AT are required, and the ampere turns
of outer control winding is 1200 AT. From Equation (8), the pole area Si = 302 mm2.

5. Analyses

According to the above analysis, the main parameters are designed and given in
Table 1.

Table 1. Parameters Of Model.

Parameter Value

Radial inner air gap length 0.5 mm
Radial outer air gap length 2 mm

Outer diameter of rotor 50 mm
Outer diameter of stator 106 mm

Number of outer winding turns 240
Number of inner winding turns 60
Axial length of magnetic pole 45 mm

Outer diameter of PM 68 mm
Inner diameter of PM 50.5 mm

Area of inner magnetic pole 302 mm2

Air gap bias flux 0.6 T

According to Table 1, the analysis model is established by MagNet 3D. The stator and
rotor core is made of silicon steel, and the high-performance NdFeB is used to provide bias
magnetic fluxes. To prove the bias magnetic circuit, only the magnets are excited, and the
windings are not energized. The bias flux cloud diagram and the magnetic line diagram
are obtained as shown in Figure 3a,b. It can be concluded that the bias fluxes pass through
the internal and external air gaps respectively which proves the correctness of the bias
magnetic circuit design. Furthermore, the flux density waveform of internal air gaps is
obtained in Figure 3c. The air gap flux densities under magnetic poles X, Y, Z, a, b, and c
are all equal to 0.6T, and the design meets the requirements.

To verify the design of the control magnetic circuits, the control fluxes to generate the
maximum suspension forces F−xmax and F−ymax in the −X and −Y directions are simulated.
According to the suspension mechanism and design parameters, to generate the maximum
levitation force F−xmax, the currents iW1,4= −4 A, iW2,5 = iW3,6 = 2 A are necessary. The
control flux distribution is shown in Figure 4a. Then, the control currents iW1,4= 0 A,
iW2,5 = iW3,6 = −4 A are electrified to obtain F−ymax in the −Y direction. The control flux
distribution is shown in Figure 4b. It can be seen from the two figures that the control
fluxes are symmetrically distributed, which is the same as the suspension mechanism.
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F−xmax; (b) The flux cloud diagram generating negative F−ymax.

To further verify the suspension mechanism, the control currents under the conditions
of Figure 4 are excited together with the magnets. That is, the bias fluxes are superimposed
with the control fluxes. The resultant flux distributions under the conditions of generating
the maximum suspension forces in the −X and −Y directions are shown in Figure 5,
respectively. It can be seen that the control flux breaks the balance of the air gap bias
flux, resulting in the increase of the internal air gap flux in the −X and −Y directions,
while the internal air gap flux in the opposite direction decreases. Therefore, according
to the generation mechanism of Maxwell force, it can be concluded that in these two
cases, the suspension force pointing to the −X and −Y directions does occur on the rotor.
Furthermore, it can be found that the air gap flux density in the −X and −Y directions
basically reaches the maximum value of 1.2 T, while the air gap flux density in the opposite
directions is about 0 T. It is further proved that in these two ways, the maximum suspension
forces in the −X and −Y directions is indeed produced.
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In order to further analyze the air gap flux density in detail, the air gap control flux
density and air gap resultant flux density waveforms are given, as shown in Figure 6. In
Figure 6a, curve 1 represents the air gap control flux waveform corresponding to Figure 4a.
and curve 2 represents the air gap resultant flux waveform corresponding to Figure 5a. It
can be seen that the air gap control flux density at poles b, Z, c, X, a, and Y is 0.6 T, 0.28 T,
0.28T, 0.6 T, 0.28 T, and 0.28 T, respectively. The flux, as shown in curve 1, is added with
the bias flux shown in Figure 3c, which will produce a suspension force pointing in the
−X direction. It can be seen from curve 2 that the air gap resultant flux densities of poles
b, Z, c, X, a, and Y are 1.2 T, 0.9 T, 0.32 T, 0 T, 0.32 T and 0.9 T, respectively. In this case, a
suspension force pointing in the −X direction is indeed generated. Similarly, the air gap
control flux and resultant flux to generate the suspension force in the −Y direction are
calculated, and the waveforms are shown in curve 3 and curve 4 of Figure 6b.
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Figure 6. Waveform of the flux density. (a) The waveform of the air gap control flux density and
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Figure 7 shows force-current relationships using the parametric analysis method. The
currents iw1,4 =−2iw2,5 =−2iw3,6 =I are electrified to the three-phase windings, and I is
changing from 0 A to 5 A. The calculation results are shown in Figure 7a. the force Fx is
generated, and the force-current relationships are basically linear. When the current is
4A, flux saturation occurs. In this case, the levitation force Fx is 520 N, and the force Fy
is always 0 N. In Figure 7b, the currents iw1,4 = 0 A, iw2,5 = iw3,6 = I are electrified to the
three-phase windings, and I is changing from 0 A to 5 A. It is clear that the force Fy is
generated, and when the current is 4 A, saturation has occurred. In this case, the suspension
force Fy is 297 N. However, the force Fx is always 0 N. Under the unsaturated condition,
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the maximum suspension forces calculated by the finite element method basically coincide
with the values calculated according to the Equation (8).
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The influences of rotor displacements on force-current relationships are calculated,
and the results are shown in Figure 8. From Figure 8a, we calculate the curve of Fy/Iy
when displacements X are −0.2 mm, −0.1 mm, 0 mm, 0.2 mm, and −0.2 mm, respectively.
It can be seen that the curve of Fy/Iy is linear when the rotor has the displacements in
the X direction. In other words, the suspension force in the Y direction is not affected by
the displacement in the X direction. A similar conclusion can be obtained by analyzing
Figure 8b. The air gap length of the HMB designed in this paper is 0.6 mm. In fact, the
allowable displacement of the magnetic suspension system is less than one-tenth of the air
gap length. Therefore, when the rotor displacement is small, it can be considered that the
suspension forces in X and Y directions are uncoupled.
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Figure 8. Influence of rotor displacement on force-current relationship. (a) The relationships of
Fy/I when the displacement x is −0.2 mm, −0.1 mm, 0.1 mm, and 0.2 mm, respectively; (b) The
relationships of Fx/I when the displacement y is−0.2 mm,−0.1 mm, 0.1 mm and 0.2 mm, respectively.

Finally, we build a prototype according to the design parameters. The STM 32H743
microcomputer and the PID control algorithm are used to realize the stable suspension
of the rotor. The control system is shown in Figure 9. First, the current and displacement
sensors detect the three-phase currents and radial displacements, respectively. The signals
are input to the STM 32H743 microcontroller through the interface circuit for A/D sam-
pling. In STM 32H743, the control algorithm is implemented, and the control signals are
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output to three-phase inverter to control winding currents. The magnetic bearing rotor is
stably suspended.
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Figure 9. Control system diagram.

Under the no-load condition, the stable suspension displacement waveforms of the
rotor are tested, as shown in Figure 10. It can be seen that the proposed HMB can realize
the stable suspension of the rotor. Furthermore, the suspension force under the currents
of iw1,4 = −2 iw2,5 = −2 iw3,6= 4 A is 526 N, while the suspension force under the currents
of iw1,4 = 0 A, iw2,5 = iw3,6 = 4 A is 294 N, which are consistent with the design results.
However, the maximum suspension forces of the heteropolar HMB with the same air gap
and stator inner diameter designed in an earlier stage is F+ymax = 150 N, F+xmax = 260 N.
The suspension forces are increased by 1.96 times and 2.02 times, respectively. In the stable
suspension state, an instantaneous disturbing force in the Y direction is applied to the
rotor. The displacement waveform, in this case, is shown in Figure 11. It can be seen that
the displacement in the Y direction can quickly again achieve stable suspension after the
disturbing force disappears. The control system can respond quickly to the change in
rotor displacement.
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6. Conclusions

In this paper, a novel AC six-pole HMB is proposed and designed. The conclusions
are as follows:

(1) The structure and magnetic circuit of the six-pole HMB studied in this paper are
reasonable, and the mathematical models are correct.

(2) The relationship between the suspension force and the current is linear under the
condition that the suspension force is not saturated.

(3) When the rotor displacement is small, the levitation forces in X and Y directions
are not coupled.

(4) The suspension forces under the currents of iw1,4 = −2 iw2,5 = −2 iw3,6 = 4 A and
iw1,4 = 0 A, iw2,5 = iw3,6 = 4 A are calculated and tested. The finite element results are 297 N
and 520 N, respectively. Under the same conditions, the experimentally measured values
are 294 N and 526 N, respectively.

(5) Compared with the traditional six-pole heteropolar HMB with the same air gap
and stator inner diameter, the suspension forces of the proposed heteropolar HMB are
increased by 1.96 times and 2.02 times, respectively.

The theory and experiment have shown that the proposed HMB has good electromag-
netic performance. However, the experimental results were obtained in static suspension.
Therefore, the focus of the following research is to use this HMB to support the motor rotor
and test its suspension performance in the high-speed rotating state.
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