Synthesis and Properties of Octet NiCr Alloy Lattices Obtained by the Pack Cementation Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructrue Characterization
3.2. Microhardness
3.3. Compression Curve and Mechanical Properties
3.4. Energy Absorption
3.5. Comparison with Other Porous Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ntintakis, I.; Stavroulakis, G.E. Infill Microstructures for Additive Manufacturing. Appl. Sci. 2022, 12, 7386. [Google Scholar] [CrossRef]
- Fleck, N.A.; Deshpande, V.S.; Ashby, M.F. Micro-architectured materials: Past, present and future. Proc. R. Soc. A. 2010, 466, 2495–2516. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Mines, R.; Ghosh, R.; Vaziri, A.; Ma, L.; Ohrndorf, A.; Christ, H.J.; Wu, L. Advanced Micro-Lattice Materials. Adv. Eng. Mater. 2015, 17, 1253–1264. [Google Scholar] [CrossRef]
- Zhang, K.; Qu, H.; Guan, H.; Zhang, J.; Zhang, X.; Xie, X.; Yan, L.; Wang, C. Design and Fabrication Technology of Metal Mirrors Based on Additive Manufacturing: A Review. Appl. Sci. 2021, 11, 10630. [Google Scholar] [CrossRef]
- Zhao, P.; Huang, D.; Zhang, Y.; Zhang, H.; Chen, W. Microstructure and Properties of Hollow Octet Nickel Lattice Materials. Materials 2022, 15, 8417. [Google Scholar] [CrossRef] [PubMed]
- Schaedler, T.A.; Jacobsen, A.J.; Torrents, A.; Sorensen, A.E.; Lian, J.; Greer, J.R.; Valdevit, L.; Carter, W.B. Ultralight metallic microlattices. Science 2011, 334, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Torrents, A.; Schaedler, T.A.; Jacobsen, A.J.; Carter, W.B.; Valdevit, L. Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater. 2012, 60, 3511–3523. [Google Scholar] [CrossRef]
- Rys, J.; Valdevit, L.; Schaedler, T.A.; Jacobsen, A.J.; William, B.C.; Julia, R.G. Fabrication and Deformation of Metallic Glass Micro-Lattices. Adv. Eng. Mater. 2014, 16, 889–896. [Google Scholar] [CrossRef]
- Zheng, X.; Lee, H.; Weisgraber, T.H.; Shusteff, M.; DeOtte, J.; Duoss, E.B.; Kuntz, J.D.; Biener, M.M.; Ge, Q.; Jackson, J.A.; et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014, 344, 1373–1377. [Google Scholar] [CrossRef] [Green Version]
- Heeman, C.; David, C.; Dunand, D.C. Mechanical properties of oxidation-resistant Ni–Cr foams. Mater. Sci. Eng. A. 2004, 384, 184–193. [Google Scholar]
- Pang, Q.; Xiu, Z.Y.; Wu, G.H.; Jiang, L.T.; Sun, D.L.; Hu, Z.L. Synthesis and properties of open-cell Ni–Cr–Fe–Al alloy foams by pack co-deposition process. J. Mater. Process. Technol. 2012, 212, 2219–2227. [Google Scholar] [CrossRef]
- Zhang, K.; Niu, Y.; Pan, T.J.; W, W.S. Corrosion behavior of NiCr alloys in HCl-containing oxidation atmosphere at 700–800 °C. T. Nonferr. Metal. Soc. 2004, 14, 543–549. [Google Scholar]
- Pang, Q.; Hu, Z.L.; Sun, D.L. The influence of Ce content and preparation temperature on the microstructure and oxidation behavior of Ce-modified Cr coating on openecell NieCreFe alloy foam. Vacuum 2019, 129, 86–98. [Google Scholar] [CrossRef]
- Yang, L.; Wu, X.D.; Weng, D. Study of oxidation-resistant NiCrAl-Al coatings codeposited by electrophoresis on nickel foams. Scr. Mater. 2022, 55, 107–110. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chen, Q.; Wang, Z.D.; Zhang, G.Q.; Ge, Y.J. Preparation of Cr hard coatings by ion beam assisted electron beam vapor deposition on Ni and Cu substrates. Surf. Coat. Technol. 2007, 201, 5190–5193. [Google Scholar] [CrossRef]
- Smorygo, O.; Mikutski, V.; Leonov, A.; Marukovich, A.; Vialiuha, Y. Nickel foams with oxidation resistant coatings formed by combustion synthesis. Scr. Mater. 2008, 58, 910–913. [Google Scholar] [CrossRef]
- Chyrkin, A.; Schulze, S.; Piron-Abellan, J.; Bleck, W.; Singheiser, L.; Quadakkers, W.J. Oxidation Limited Lifetime of Ni-Base Metal Foams in the Temperature Range 700–900 °C. Adv. Eng. Mater. 2010, 12, 873–883. [Google Scholar] [CrossRef]
- Hodge, A.M.; Dunand, D.C. Synthesis of nickel–aluminide foams by pack-aluminization of nickel foams. Intermetallics 2001, 9, 581–589. [Google Scholar] [CrossRef]
- Hodge, A.M.; Dunand, D.C. Measurement and modeling of creep in open-cell NiAl foams. Metall. Mater. Trans. A. 2003, 34, 2353–2363. [Google Scholar] [CrossRef]
- Heeman, C.; David, C.; Dunand, D.C. Synthesis, structure, and mechanical properties of Ni–Al and Ni–Cr–Al superalloy foams. Acta Mater. 2004, 52, 1283–1295. [Google Scholar]
- Pang, Q.; Wu, G.H.; Xiu, Z.Y.; Chen, G.Q.; Sun, D.L. Synthesis and mechanical properties of open-cell Ni–Fe–Cr foams. Mater. Sci. Eng. A 2012, 534, 699–706. [Google Scholar] [CrossRef]
- Pang, Q.; Wu, G.H.; Sun, D.L.; Xiu, Z.Y.; Jiang, L.T. A dual-layer Ce–Cr/Al oxidation resistant coating for 3D open–cell nickel based foams by a two-step pack cementation. Mater. Sci. Eng. A 2013, 568, 228–238. [Google Scholar] [CrossRef]
- Pang, Q.; Wu, G.H.; Xiu, Z.Y.; Jiang, L.T.; Sun, D.L. Microstructure, oxidation resistance and high-temperature strength of a new class of 3D open-cell nickel-based foams. Mater. Charact. 2012, 70, 125–136. [Google Scholar] [CrossRef]
- Martin, J.H.; Ashby, D.S.; Schaedler, T.A. Thin-walled high temperature alloy structures fabricated from additively manufactured polymer templates. Mater. Des. 2017, 120, 291–297. [Google Scholar] [CrossRef]
- Erdeniz, D.; Schaedler, T.A.; Dunand, D.C. Deposition-based synthesis of nickel-based superalloy microlattices. Scr. Mater. 2017, 138, 28–31. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Ashby, M.F.; Fleck, N.A. Foam topology binding versus stretching dominated architectures. Acta Mater. 2001, 49, 1035–1040. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A.; Ashby, M.F. Effective properties of the Octet-truss lattice material. J. Mech. Phys. Solids 2001, 49, 1747–1769. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.C.; Chen, D.; Ye, J.C.; Fang, N.; Rodriguez, N.; Weisgraber, T.; et al. Multiscale metallic metamaterials. Nat. Mater. 2016, 15, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Dong, T.S.; Fu, B.G.; Li, G.L.; Liu, Q. Study of the Microstructure and Properties of Cold Sprayed NiCr Coating. J. Mater. Eng. Perform. 2021, 30, 9067–9077. [Google Scholar] [CrossRef]
- Bullough, R.; Newman, R.C. The kinetics of migration of point defects to dislocations. Rep. Prog. Phys. 1970, 33, 101–148. [Google Scholar] [CrossRef]
- Bryukhanov, I.A. Dynamics of edge dislocation in Cu–Ni solid solution alloys at atomic scale. Int. J. Plast. 2020, 135, 102834. [Google Scholar] [CrossRef]
- Wang, M.X.; Zhu, H.; Yang, G.J.; Liu, K.; Li, J.F.; Kong, L.T. Solid-solution strengthening effects in binary Ni-based alloys evaluated by high-throughput calculations. Mater. Des. 2021, 198, 109359. [Google Scholar] [CrossRef]
- Wang, Y.J.; Feng, C.X.; Zhang, Z.J.; Qian, D.; Song, Z.X. Compressive Property of Additively-Manufactured Micro-Architectures with X-Type Lattice Unit Cell. Materials 2022, 15, 3815. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.G.; He, M.Y.; Deshpande, V.S.; Hutchinson, J.W.; Jacobsen, A.J.; Carter, W.B. Concepts for enhanced energy absorption using hollow micro-lattices. Int. J. Impact Eng. 2010, 37, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Mohsenizadeh, M.; Gasbarri, F.; Munther, M.; Beheshti, A.; Davami, K. Additively-manufactured lightweight Metamaterials for energy absorption. Mater. Des. 2018, 139, 521–530. [Google Scholar] [CrossRef]
- Liu, Y.; Schaedler, T.A.; Jacobsen, A.J.; Chen, X. Quasi-static energy absorption of hollow microlattice structures. Compos. Part B Eng. 2014, 67, 39–49. [Google Scholar] [CrossRef]
- Surjadi, J.U.; Feng, X.; Fan, R.; Lin, W.T.; Li, X.C.; Lu, Y. Hollow medium-entropy alloy nanolattices with ultrahigh energy absorption and resilience. NPG Asia Mater. 2021, 13, 1–7. [Google Scholar] [CrossRef]
- Tobias, A.; Schaedler, T.A.; Ro, C.J.; Sorensen, A.E.; Eckel, S.Z.; Yang, S.S.; Carter, W.B.; Jacobsen, A.J. Designing metallic microlattices for energy absorber applications. Adv. Eng. Mater. 2014, 16, 276–283. [Google Scholar]
- Salari, S.L.; Schaedler, T.A.; Valdevit, L. Energy dissipation mechanisms in hollow metallic microlattices. J. Mater. Res 2014, 29, 1755–1770. [Google Scholar] [CrossRef] [Green Version]
- Liontas, R.; Greer, J.R. 3D nano-architected metallic glass: Size effect suppresses catastrophic failure. Acta Mater. 2017, 133, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Mieszala, M.; Hasegawa, M.; Guillonneau, G.; Bauer, J.; Raghavan, R.; Frantz, C.; Kraft, O.; Mischler, S.; Michler, J.; Philippe, L. Micromechanics of amorphous metal/polymer hybrid structures with 3D cellular architectures: Size effects, buckling behavior, and energy absorption capability. Small 2017, 213, 1602514. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Hengsbach, S.; Tesari, I.; Schwaigera, R.; Kraftet, O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA 2014, 111, 2453–2458. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Huang, D.; Zhang, H.; Chen, W.; Zhang, Y. Synthesis and Properties of Octet NiCr Alloy Lattices Obtained by the Pack Cementation Process. Appl. Sci. 2023, 13, 1684. https://doi.org/10.3390/app13031684
Zhao P, Huang D, Zhang H, Chen W, Zhang Y. Synthesis and Properties of Octet NiCr Alloy Lattices Obtained by the Pack Cementation Process. Applied Sciences. 2023; 13(3):1684. https://doi.org/10.3390/app13031684
Chicago/Turabian StyleZhao, Peng, Deqing Huang, Hongmei Zhang, Weiwei Chen, and Yongfu Zhang. 2023. "Synthesis and Properties of Octet NiCr Alloy Lattices Obtained by the Pack Cementation Process" Applied Sciences 13, no. 3: 1684. https://doi.org/10.3390/app13031684
APA StyleZhao, P., Huang, D., Zhang, H., Chen, W., & Zhang, Y. (2023). Synthesis and Properties of Octet NiCr Alloy Lattices Obtained by the Pack Cementation Process. Applied Sciences, 13(3), 1684. https://doi.org/10.3390/app13031684