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Abstract: Several key challenges are faced during sentiment analysis. One major problem is determin-
ing the sentiment of complex sentences, paragraphs, and text documents. A paragraph with multiple
parts might have multiple sentiment values. Predicting the overall sentiment value for this paragraph
will not produce all the information necessary for businesses and brands. Therefore, a paragraph
with multiple sentences should be separated into simple sentences. With a simple sentence, it will be
effective to extract all the possible sentiments. Therefore, to split a paragraph, that paragraph must be
properly punctuated. Most social media texts are improperly punctuated, so separating the sentences
may be challenging. This study proposes a punctuation-restoration algorithm using the transformer
model approach. We evaluated different Bidirectional Encoder Representations from Transformers
(BERT) models for our transformer encoding, in addition to the neural network used for evaluation.
Based on our evaluation, the RobertaLarge with the bidirectional long short-term memory (LSTM)
provided the best accuracy of 97% and 90% for restoring the punctuation on Amazon and Telekom
data, respectively. Other evaluation criteria like precision, recall, and F1-score are also used.

Keywords: punctuation restoration; transformers models; Bidirectional Encoder Representations
from Transformers (BERT); long short-term memory (LSTM)

1. Introduction

Several businesses have recently encouraged their customers to provide reviews and
feedback on products and brands. Generally, this information is presented in the form
of text and sometimes audio data [1,2]. There is plenty of information present in these
data that are useful for brands to improve their businesses. The information from these
data can be extracted and analyzed using sentiment analysis. Sentiment analysis aims
to determine the sentiment of the text concerning the situation, in this case, brands or
products. The sentiment analysis outcome is a positive or negative polarity value or, in
some cases, neutral [3–5]. Several key challenges are faced during sentiment analysis [6].
One major problem is determining the sentiment of complex sentences, paragraphs, and
text documents. A sentence with multiple parts might have multiple sentiment values,
which means a combination of positive and negative statements. Predicting the overall
sentiment value for this paragraph will not produce all the information necessary for
businesses and brands. Therefore, a statement with multiple sentences should be separated
into single sentences. The most frequently used method for separating text with multiple
sentences is using sentence stoppers, such as periods, exclamation points, and question
marks. Due to the nature of data extracted from online sources often containing improper
punctuation, separating the sentences may be challenging. As a result, a more sophisticated
punctuation-restoration method is required to restore the punctuation before separating
paragraphs into simple sentences.

The statement in Table 1 is a properly punctuated sentence. The overall sentiment
of this review will be predicted to be positive using the sentiment-analysis technique.
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However, if we observe the review closely, we see that there is negative and neutral
information in the review. Therefore, this negative and neutral sentiment will be lost, and
the company cannot know all the comments or improve the brand based on customer
feedback.

Table 1. Example sentence before splitting using punctuation and sentiment-analysis information.

Text—Before Splitting Polarity

I use this every day on my commute. Great battery life. I like the built-in
dictionary. It is easy to transfer using pdf format through email or mobile
files. But no backlight which makes not readable at night.

Positive

On the other hand, when the text is separated using punctuation (Table 2), the state-
ment above is divided into five sentences. Sentiment analysis will be able to analyze each
sentence. The first sentence is considered neutral, the second to fourth are positive, and
the last sentence is negative. Hence, splitting paragraphs into simple sentences will give
more information. Therefore, the text has to be properly punctuated to split the paragraphs.
However, as previously mentioned, most social media text is not properly punctuated, as
shown in Table 3.

Table 2. Example sentence after splitting using punctuation and sentiment-analysis information.

Text—After Splitting Polarity

I use this every day on my commute.
Great battery life.
I like the built-in dictionary.
It is easy to transfer using pdf format through email or mobile files.
But no backlight which makes not readable at night.

Neutral
Positive
Positive
Positive
Negative

Table 3. Example sentence extracted from social media with no punctuation.

Text Polarity

The shoe is responsive and that is good but it would be better to have
longer shoe laces. Positive

Table 3 shows an example review extracted from social media about a shoe. The review
contains no punctuation, and the sentiment polarity of the whole sentence is produced as
a Positive value. However, after reading the text, we see two sentiment polarities in the
sentence. Separating the statement into two sentences will give us a positive and a negative
statement, as shown in Table 4. Social media texts may contain improper punctuation
or no punctuation [7]. As a result, it is required to restore punctuation in the text before
condensing the paragraph into simple sentences.

Table 4. Possible punctuation placement to produce more sentiment information.

Text Polarity

The shoe is responsive and that is good.
But it would be better to have longer shoe laces.

Positive
Negative

Punctuation restoration in the text is a challenging natural language processing (NLP)
task that enables further text processing, text readability, machine translation effectiveness,
etc., requiring the introduction of punctuation marks in the right position into a text [8].
Punctuation marks are used to arrange grammatical structures and explain the meaning
of sentences in written language. Punctuation significantly impacts the readability and
understandability of text for both human and machine readers. Punctuation restoration has
been widely used in automatic-speech-recognition tasks [9]. When speech is transcribed
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into text, the information lacks proper punctuation, which makes it challenging to read.
Therefore, punctuation must be included to make the text created from the speech more
readable. This is one instance where punctuation restoration has been used.

Punctuation has been used to split paragraphs into single sentences with full stops,
exclamation marks, and question marks. At the same time, certain language conditions
must be comprehended. For example, decimal points between numbers do not represent
periods. In [6], the regular-expression (Regex) approach is used in sentence splitting.
Tomanek, in 2007, utilized conditional random fields (CRF) in splitting sentences and tokens
in a document with biomedical language text [10]. Manning et al., in 2014, developed a
natural-language tool kit using annotation, which can be utilized for sentence separation
and other natural-language processing tasks [11]. The annotators include conditional-
random-field taggers trained on various corpora and two rule-based systems to recognize
money and numbers. This library also provides means to add custom annotations to the
existing one to help improve the accuracy of the task. Another NLTK library, developed by
Loper & Bird [12], is a computational linguistic library designed to compute most natural-
language problems, including sentence splitting. All these methods of splitting sentences
require a well-punctuated document, but the main problem from social media reviews is
that they are not properly punctuated.

In this research, we apply punctuation restoration to the sentiment analysis process to
extract all the possible information from the sentences. A properly punctuated statement
is necessary to extract more variety of sentiment polarity, so a review statement must
be divided into simple sentences. Therefore, this paper focuses on creating a method
of restoring punctuation in review statements extracted from social media. We separate
the sentences by positioning full stops, exclamation marks, and question marks. This
enables us to classify each sentence and provide sentiment value. However, restoring
punctuation requires us to consider all the other punctuation, like commas, semicolons,
etc., in our model.

This study is organized as follows: Section 2 discusses the related work associated with
punctuation restoration. Section 3 is about the methodology employed in developing the
punctuation-restoration model. Section 4 focuses on the experimental result, and Section 5
concludes the paper.

2. Related Works

Several studies have been conducted on punctuation restoration on transcript text from
speech and speech-recognition systems [13–15], but there has been no previous research
on automatic punctuation restoration for social media data. Based on the survey by Păis,
there are seven approaches to capitalization and punctuation restoration, including the
rule-based approach, n-gram-based language models, capitalization as a discrimination
decision, hidden-event language models, the boosting approach, conditional-random-fields
probabilistic models, and neural-network architectures [16]. The two most frequently used
techniques among the capitalization-restoration models are conditional random fields and
neural network architectures.

Most early attempts at punctuation restoration relied on lexical, acoustic, prosodic,
or a combination of these elements [17,18]. These approaches require several processes,
including reader sound interpretation and extensive knowledge of the language to represent
the rules. The major drawback is the requirement to represent and capture all the possible
variations and exceptions of the language. The models are evaluated based on the F1 score
and slot-error rate (SER). Jansche, who used an n-gram model, recorded that increasing
the data in the dataset improves the F1 score of the model. Stating that the data size is
proportional to the F1 score of the model. Miranda compared two streams of languages,
English and Portuguese, in terms of translation checking and comparison of their possible
split locations. The automatically transcribed speech is aligned with a manual reference
and compares two baseline speech and non-speech components. The model with baseline
probability showed an improved 2.4% in SER.
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The punctuation-restoration task is considered a sequential problem, and there are
statistical models that are known for solving sequential problems, like the hidden Markov
model (HMM) and conditional random fields (CRFs). A CRF is considered the most
suitable probabilistic method for segmenting and labelling sequential data. Conditional
random fields have been frequently employed to predict punctuation position in text
documents [8,19]. Lu compared a linear chain CRF (L-CRF) and factorial chain CRF
(F-CRF) for both English and Chinese language using the F1 score. The F-CRF outperforms
the L-CRF in both language cases, with a 1% increase for Chinese and a 4% increase
for English. Marco evaluated his CRF model on different datasets from four sources:
The Wall Street Journal, English Wikipedia, Competition Organizers, and Reuter RCV1. The
results were evaluated based on their F1 scores, with the best-performing dataset being
from The Wall Street Journal, recording a 62% F1 score. These models are based on the
idea that the probability of a punctuation mark at a given position in a sentence can be
determined based on the surrounding context. However, these models have limitations in
terms of making assumptions of independence between words. For example, in a sentence
where the first word determines the punctuation at the end of a sentence, these models
do not carry that level of detail attention and dependencies. In addition, these models
have difficulty dealing with the out-of-vocabulary word, which are words unknown to the
model during training.

Recently, deep-learning models like long short-term memory (LSTM) [20], gated recur-
rent units [9,21], convolutional neural network (CNN) [22,23], and pre-trained transformer
models [13,15] have been utilized for this task. These models have shown state-of-the-art
performance and demonstrated the ability to generalize on various forms of data. However,
the data used in these models are well-structured and have carefully annotated automatic
speech recognition datasets. Other forms of data, like social media, newspapers, etc., have
not been explored. In many other natural language processing tasks, the transformer model
demonstrated promising results compared to other deep-learning models employing re-
current or convolutional neural networks [24]. Research is ongoing in this area, which
has led to the development of transformer-based language models, e.g., BERT [25] and
RoBERTa [26], being created. Compared to other NLP tasks, these models have not been
thoroughly used to investigate punctuation-restoration problems. As a result, we aim
to investigate BERT architectures and fine-tune pre-trained models in combination with
the neural-network model, bidirectional LSTM, and gated recurrent unit (GRU). In this
paper, we utilize the approach from Tilk and Alumäe (2016) to encode the input text before
passing it into the neural network using directional LSTM and [21] transformer models
from [13,25].

3. Methodology

This section discusses the proposed methodology for the problem we are studying.
This includes the dataset to be used, the preprocessing algorithm, and the punctuation-
restoration architecture.

3.1. Dataset

The dataset used in this study is for Amazon products, consisting of over 34,000 customer
reviews with 22 columns available on Kaggle [27]. The dataset includes basic information
about products, ratings, and review text. Only one column out of the 22 columns of
the dataset, which is the text-reviews column, is used in this research. The text reviews
are extracted and concatenated together to form a document. The overall content of the
document is illustrated in Table 5. A total of 60% of the sentences in the document were
used to train the algorithm for punctuation restoration and 40% for testing.
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Table 5. Possible punctuation placement to produce more sentiment information.

Dataset Amazon Products Reviews Telekom Malaysia (TM) Reviews

Total Reviews 34,659 500
Total Words 990,326 13,317
COMMA 26,148 251
PERIOD 72,076 730
QUESTION 271 21
OTHERS 891,831 12,315

In addition to this dataset, we used data from Telekom Malaysia (TM) customer-care
reviews. The data contains 5000 customer reviews [28]. The performance of the model was
also evaluated using these two datasets.

3.2. Preprocessing

Both datasets were preprocessed using the method described by [14]. Four labels were
used to classify this data: COMMA, PERIOD, QUESTION, and O, which stand for others.
The comma “,” is represented by the COMMA class. The punctuation “.” is represented
by the PERIOD class. The punctuation “?” is represented by the QUESTION class. The
last class, O, denotes a scenario in which there is no punctuation. Other punctuations like
exclamation marks and semicolons are classified under PERIOD. Colons and dashes are
classified as COMMA.

For example,

“But no backlight which makes not readable at night.”

Step 1: The text data was first tokenized, and the punctuation position was detected
by getting each token’s last character.

This text was tokenized to form a list of words like

[‘But’, ‘no’, ‘backlight’, ‘which’, ‘makes’, ‘not’, ‘readable’, ‘at’, ‘night.’].

Step 2: The punctuation was removed and replaced with a label name for tokens
containing punctuation.

[But O no O backlight O which O makes O not O readable O at O night PERIOD].

The punctuation was determined by taking each token and taking the last character. If
the last character was punctuation, then the punctuation was removed and replaced with
its label equivalent, either PERIOD, COMMA, or QUESTION. If no punctuation was found,
the label was represented as O. The first eight tokens in this sample have no punctuation,
while the last token, “night,” has a period as its last character. The period is removed, and
the label PERIOD is attached. The other first eight tokens have the label O attached. This
process was repeated for all the text in the dataset, and the results were combined to train
the punctuation model.

3.3. Transformer Model

Transformer models are generally divided into the encoder and the decoder [29]. The
encoder takes the English word simultaneously and generates embeddings for every word.
These embeddings are vectors that encapsulate the meaning of these words, and words with
similar meanings would have closer numbers in their vector representation. The decoders
take the embedding vectors as input and generate corresponding output depending on
the task.

This paper concentrates on the transformer encoder used to encode our input text.
Figure 1 illustrates a simple encoder as described in [29]. The input embeddings are text
converted into vector representation with added positional vectors. The multiheaded
attention layer applied self-attention, which associates each word in the input with the
other text words. This used a key/query/value concept from information-retrieval systems.
The result was added, normalized, and fed into a feed-forward network, which produced
encoded information about the input text. The result was added and normalized to form
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the output. Stacking multiple simple transformer encoders produced Bidirectional Encoder
Representation from Transformers, called BERT. The pre-trained model used is available in
Hugging Face’s transformer library.
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3.4. Architecture

The proposed system architecture comprised two models, which used a bidirectional
LSTM layer and the other a GRU layer. Every other part of the architecture was the same
for both models. Figure 2 illustrates a sample training cycle of a text containing fourteen
words and the punctuation after each word, if any, present. The transformer model was
used to create embeddings for each text, which was represented with T1, T2, . . . , T14. The
different transformer models were used in different experiments. The result was fed into
the single bidirectional layer of either LSTM or GRU. The result from this layer was passed
into a fully connected linear layer, y1, y2, . . . , y14, and the output layer produced one class
for each word, which was one of the four classes (PERIOD, COMMA, QUESTION, O).

Step 1: The dataset was passed to the pre-trained transfer model as input and labels.
Output was a vector representation of the input text.

Step 2: Vector representation of the text was passed to the neural network layer
(LSTM/GRU). The output was fed into a linear, fully connected neural network layer and
finally to a SoftMax output layer with four neurons representing each class.

In this paper, we also evaluate different BERT transformer models. The principle of
transfer learning has been used in many NLP tasks, as discussed in the literature review.
The model is trained for different NLP applications that can be fine-tuned to perform other
NLP tasks. We briefly discuss some of the models used in this study.
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3.4.1. BERT [25]

BERT is a bidirectional transformer for training over plenty of unlabeled data to
learn about language representation, which can be fine-tuned for other specific natural-
language processing tasks. BERT uses a masked-language model (MLM) and next-structure
prediction (NSP) to train the model over many Google data. The data comprises about
3.3 billion words. The BERT model has two versions, which are the base and large models.

3.4.2. XLNET [30]

XLNet is an improved version of BERT that introduces permutation language mod-
eling, where all tokens are predicted randomly. This helps improve the model to learn
bidirectional relationships and better handle dependencies and relations between words.
The XLNet comprises two versions (base and large), just like in the case of BERT.

3.4.3. RoBERTa [26]

RoBERTa is also known as the robust optimized BERT approach. As the name implies,
this is an improvement in BERT training data, which trains with 1000% more data. A
dynamic-masking method is used for the token, just like the masked-language model used
in BERT. RoBERTa is a BERT without the next-structure-prediction model (NSP). Like BERT,
the RoBERTa comprises two versions (base and large).

3.4.4. DistillBERT [31]

The DistillBERT is an approximate version of BERT. The DistillBERT uses a distillation
technique to filter training parameters by using only half of the parameters. It is 60% faster
than the normal BERT and retains 97% of the language capabilities of the BERT model. The
main idea is that the output can be approximated using a smaller network when trained by
a large neural network.

3.4.5. AlBERT [32]

AlBERT is also known as A Lite BERT. The architecture of AlBERT is similar to BERT,
but the input-level embedding and hidden-level embedding are separated, which allows
them to have different sizes. The reduction in the hidden-level embedding reduces the
training parameter by 80%.
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3.5. Training

In addition to the pre-trained model, two different layers were used in two different
training models. A bidirectional LSTM and a fully connected layer were used in one, and
the GRU and a fully connected linear layer were used in the second. These layers were
placed on top of the pre-trained network. The dimension of the embedding network was
used as the input for the BiLSTM and the GRU layer. The output of the LSTM layer was
concatenated at each time step and fed to a fully connected layer that contained the output
neuron, which specifies the punctuation to be chosen. This process was replicated for the
GRU model as well. During training, the maximum length of the word sequence used
was 250, and each sequence had a start token and an end token. We used a batch size
of 5, and the sequences were shuffled before each epoch. The learning rate chosen was
1 × 10−6 (0.000001). All the parameters followed the same methods as used in [13], which
was proven to have the best performance based on accuracy, with the only changes made
in the batch size. Other training parameters were kept at default. The model’s performance
was measured on accuracy, precision, F1 score, and recall. We tested the model using
a review statement from the Amazon reviews dataset. Figure 3b shows the statement
without any punctuation. We used the model to restore punctuation to the reviews, as
shown in Figure 3b, and compared it with manually assigned punctuations. Based on the
comparison, most punctuation was correctly predicted, achieving 95% accuracy.
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4. Experimental Result

Table 6 summarizes the experimental results for each neural network and the transfer
model used. These findings are based on the XLNET, BERT, AlBERT, RoBERTa, DistillBERT
base, and large variants of the models. The GRU+RoBERTaLARGE model achieved the
highest training accuracy of 96%.

Table 6. Training experiment result (Amazon reviews).

Model
Comma Period Question Others Training AccP R F1 P R F1 P R F1 P R F1

LSTM+BERTBASE 0.65 0.14 0.23 0.63 0.53 0.58 0.64 0.31 0.41 0.91 0.99 0.95 0.90
LSTM+BERTLARGE 0.47 0.27 0.34 0.75 0.20 0.32 0.55 0.23 0.33 0.91 0.99 0.95 0.89
LSTM+XLNetBASE 0.48 0.26 0.34 0.85 0.17 0.28 0.56 0.21 0.31 0.90 0.99 0.94 0.88
LSTM+XLNetLARGE 0.46 0.38 0.42 0.86 0.20 0.33 0.54 0.29 0.34 0.92 0.99 0.96 0.89
LSTM+AlBERTBASE 0.60 0.15 0.24 0.62 0.53 0.57 0.62 0.31 0.42 0.92 0.99 0.96 0.89
LSTM+RoBERTaBASE 0.41 0.28 0.33 0.85 0.06 0.11 0.44 0.17 0.25 0.90 0.99 0.95 0.88
LSTM+RoBERTaLARGE 0.77 0.70 0.73 0.83 0.86 0.84 0.80 0.78 0.79 0.98 0.99 0.98 0.95
LSTM+ DistilBERTBASE 0.45 0.05 0.09 0.72 0.05 0.09 0.53 0.04 0.08 0.87 0.99 0.92 0.86
GRU+ BERTBASE 0.42 0.23 0.30 0.62 0.16 0.25 0.49 0.19 0.27 0.91 0.99 0.95 0.89
GRU+ BERTLARGE 0.46 0.17 0.25 0.75 0.19 0.31 0.58 0.18 0.27 0.90 0.99 0.95 0.89
GRU+ XLNetBASE 0.45 0.33 0.38 0.85 0.16 0.27 0.52 0.24 0.33 0.91 0.99 0.95 0.89
GRU+ XLNetLARGE 0.42 0.41 0.42 0.89 0.06 0.11 0.45 0.24 0.31 0.92 0.99 0.96 0.89
GRU+AlBERTBASE 0.62 0.32 0.42 0.71 0.57 0.66 0.67 0.42 0.52 0.93 0.99 0.96 0.91
GRU+AlBERTLARGE 0.47 0.23 0.04 0.60 0.31 0.41 0.59 0.15 0.24 0.87 0.99 0.94 0.88
GRU+RoBERTaBASE 0.45 0.36 0.40 0.78 0.14 0.23 0.50 0.25 0.33 0.92 0.99 0.95 0.89
GRU+RoBERTaLARGE 0.77 0.71 0.74 0.83 0.87 0.85 0.79 0.78 0.79 0.98 0.99 0.98 0.96
GRU+DistilBERTBASE 0.41 0.18 0.25 0.66 0.10 0.17 0.47 0.17 0.21 0.90 0.99 0.94 0.87

The training lasted 48 h on a Core i7 CPU 3.60GHz with 16GB RAM for the LSTM+
RoBERTaLARGE. Other models trained with lesser time compared to this. The GRU
trained faster than the LSTM, but the LSTM showed slightly better accuracy during testing.
This is associated with the LSTM model’s learning method, allowing it to learn more
information than the GRU model. The result was analyzed using the recall, precision, and
F1-score metrics.

Tables 7 and 8 show the outcomes of testing the model using the Amazon reviews and
TM message-reviews datasets, respectively. Table 7 demonstrates that while the scores from
all the models are relatively close, the RoBERTa model stands out among the others. This is
similar to the result in Table 8. This result shows that the amount of training data used in the
pre-training of the RoBERTa model impacts the model’s performance. As a result, the model
has a stronger grasp of the English language’s context. The only significant downside is the
length of time required for model training. The training took around three times as long as
the other models in our study. In addition, the nature of the English language plays a vital
role in the recall value of the classes. The number of times punctuation appears at the end
of a word is extremely low compared to the number of times it does not. Therefore, we can
see the recall values of the classes COMMA, PERIOD, and QUESTION are low compared
to the OTHERS class in all the models.

Table 9 summarizes the best model based on the results of the Amazon reviews testing.
Figure 4 compares the best-proposed model to those described in other studies. For comparison,
the same transcribed dataset utilized in other models was employed in testing our model. All
other models were trained using annotated transcribed text, whereas we used social media data
to train our model. The result indicates that the training data utilized in our model effectively
produced the desired outcome during testing and was comparable to that employed by other
researchers. Using our model, we achieved much better results in the COMMA class. As a result,
our algorithm is significantly better at predicting comma location in a text. When predicting
the classes COMMA and QUESTION, LSTM+RoBERTaLARGE has greater precision, recall,
and F1 score than the other classes, with values of 0.98, 0.98, and 0.98, respectively. Precision,
recall, and F1 score have 0.86, 0.93, and 0.88, respectively, in the QUESTION class. LSTM +
RoBERTaLARGE [13] did better to predict the PERIOD class, with precision, recall, and F1 score
values of 0.88, 0.92, and 0.91, respectively, compared to LSTM+RoBERTaLARGE, which had
precision, recall, and F1 score values of 0.76, 0.74, and 0.75, respectively.
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Table 7. Test experimental results (Amazon reviews).

Model
Comma Period Question Others Testing Acc
P R F1 P R F1 P R F1 P R F1

LSTM+BERTBASE 0.63 0.13 0.22 0.61 0.48 0.54 0.61 0.30 0.40 0.92 0.99 0.96 0.90
LSTM+BERTLARGE 0.48 0.27 0.35 0.73 0.20 0.32 0.56 0.23 0.33 0.91 0.99 0.95 0.89
LSTM+XLNetBASE 0.44 0.21 0.29 0.83 0.17 0.19 0.55 0.20 0.28 0.91 0.99 0.95 0.89
LSTM+XLNetLARGE 0.45 0.40 0.41 0.84 0.29 0.32 0.54 0.28 0.37 0.93 0.99 0.96 0.90
LSTM+AlBERTBASE 0.60 0.17 0.26 0.60 0.48 0.53 0.60 0.31 0.41 0.92 0.99 0.96 0.90
LSTM+RoBERTaBASE 0.41 0.27 0.33 0.84 0.07 0.12 0.45 0.16 0.24 0.91 0.99 0.95 0.89
LSTM+RoBERTaLARGE 0.77 0.75 0.76 0.86 0.91 0.88 0.81 0.83 0.82 0.99 0.99 0.99 0.97
LSTM+ DistilBERTBASE 0.42 0.04 0.07 0.62 0.07 0.12 0.53 0.05 0.09 0.87 0.99 0.94 0.87
GRU+ BERTBASE 0.43 0.24 0.30 0.62 0.16 0.25 0.49 0.19 0.27 0.91 0.99 0.95 0.89
GRU+ BERTLARGE 0.46 0.17 0.25 0.75 0.19 0.31 0.58 0.18 0.27 0.90 0.99 0.95 0.90
GRU+ XLNetBASE 0.46 0.33 0.39 0.80 0.16 0.26 0.53 0.24 0.33 0.92 0.99 0.96 0.90
GRU+ XLNetLARGE 0.42 0.42 0.42 0.92 0.07 0.14 0.45 0.21 0.31 0.93 0.99 0.96 0.90
GRU+AlBERTBASE 0.57 0.34 0.42 0.72 0.54 0.62 0.66 0.43 0.51 0.94 0.99 0.97 0.91
GRU+AlBERTLARGE 0.48 0.03 0.05 0.59 0.30 0.40 0.58 0.16 0.25 0.89 0.99 0.94 0.89
GRU+RoBERTaBASE 0.48 0.36 0.41 0.75 0.16 0.27 0.54 0.25 0.35 0.92 0.99 0.96 0.89
GRU+RoBERTaLARGE 0.76 0.76 0.76 0.87 0.91 0.88 0.82 0.84 0.83 0.99 0.99 0.99 0.95
GRU+DistilBERTBASE 0.41 0.19 0.25 0.66 0.10 0.17 0.47 0.14 0.21 0.90 0.99 0.95 0.88

Table 8. Test experimental results (TM reviews).

Model
Comma Period Question Others Testing Acc
P R F1 P R F1 P R F1 P R F1

LSTM+BERTBASE 0.36 0.07 0.12 0.59 0.54 0.56 0.57 0.44 0.59 0.95 0.97 0.96 0.92
LSTM+BERTLARGE 0.36 0.07 0.12 0.59 0.54 0.56 0.57 0.44 0.59 0.95 0.97 0.96 0.93
LSTM+XLNetBASE 0.34 015 0.21 0.62 0.63 0.63 0.60 0.53 0.56 0.95 0.97 0.96 0.93
LSTM+XLNetLARGE 0.34 015 0.21 0.50 0.62 0.63 0.57 0.55 0.56 0.95 0.94 0.96 0.92
LSTM+AlBERTBASE 0.04 0.12 0.06 0.45 0.42 0.43 0.29 0.35 0.32 0.95 0.93 0.94 0.88
LSTM+RoBERTaBASE 0.21 0.14 0.17 0.65 0.48 0.55 0.57 0.40 0.47 095 0.97 0.96 0.93
LSTM+RoBERTaLARGE 0.13 0.40 0.20 0.46 0.80 0.59 0.35 0.70 0.46 0.99 0.90 0.94 0.91
LSTM+DistilBERTBASE 0.29 0.04 0.07 0.62 0.41 0.49 0.60 0.33 0.43 0.94 0.98 0.96 0.93
GRU+ BERTBASE 0.27 0.16 0.20 0.60 0.55 0.58 0.56 0.46 0.51 0.95 0.97 0.96 0.93
GRU+ BERTLARGE 0.27 0.12 0.17 0.61 0.57 0.59 0.58 0.48 0.52 0.95 0.97 0.96 0.93
GRU+ XLNetBASE 0.39 0.13 0.20 0.63 0.65 0.64 0.62 0.54 0.57 0.96 0.97 0.96 0.93
GRU+ XLNetLARGE 0.34 015 0.21 0.50 0.62 0.63 0.57 0.55 0.56 0.95 0.94 0.96 0.92
GRU+AlBERTBASE 0.07 0.12 0.09 0.58 0.33 0.42 0.37 0.28 0.32 0.94 0.96 0.95 0.90
GRU+AlBERTLARGE 0.08 0.02 0.03 0.46 0.11 0.18 0.40 0.09 0.15 0.92 0.99 0.95 0.91
GRU+RoBERTaBASE 0.28 0.17 0.21 0.63 0.57 0.60 0.60 0.48 0.52 0.95 0.97 0.96 0.93
GRU+RoBERTaLARGE 0.15 0.42 0.20 0.46 0.80 0.59 0.45 0.70 0.56 0.99 0.95 0.95 0.90
GRU+DistilBERTBASE 0.27 0.11 0.16 0.61 0.47 0.53 0.57 0.39 0.47 0.95 0.97 0.96 0.93

Table 9. Test evaluations based on models.

Evaulation Criteria Comma Period Question Others

Precision LSTM+RoBERTaLARGE GRU+RoBERTaLARGE GRU+RoBERTaLARGE LSTM+RoBERTaLARGE
Recall LSTM+RoBERTaLARGE LSTM+RoBERTaLARGE GRU+RoBERTaLARGE LSTM+RoBERTaLARGE
F1 LSTM+RoBERTaLARGE LSTM+RoBERTaLARGE GRU+RoBERTaLARGE LSTM+RoBERTaLARGE
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5. Conclusions

The main aim of this research is to create a punctuation-restoration model using a
transformer model. The transformer models evaluated in this study were BERT-based
models, which have been used in many NLP problems. To the best of our knowledge, no
research has been conducted to restore punctuation on social media. This study explores
and evaluates the performance of different BERT transformer models using LSTM and GRU
with a linear neural-network layer to restore punctuation of texts. Among all the models in
this study, the LSTM+RoBERTaLARGE model produced the highest scores compared to
other models for Amazon and TM review datasets. In the future, the dataset imbalance that
resulted in high recall values for some classes and lower values for others (comma, period,
question) will be investigated. Smoothening methods or any other method that can achieve
a better result could be implemented in the future to mitigate this problem. In addition,
the punctuation-restoration model will be integrated as one of the pre-processing tasks in
sentiment analysis in order to simplify sentences and extract more insight from the text,
in addition to other NLP processes, such as automatic speech recognition (ASR), machine
translation, and text-to-speech (TTS) systems. They can also be applied to text-editing tools,
such as grammar checkers and digital assistants, like chat bots, for clarity and coherence of
generated responses. Also, this method can be applied to other languages, for example,
the Malay language, which does not have many NLP resources, as most natural-language
resources are currently intended for English. However, multilingual transformer models
are available, which can be used for other languages, such as Malay. Therefore, the creation
of this model for other languages is feasible.
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