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Abstract: Tea polyphenols are considered as an important indicator of tea quality. Rapid detection
of tea polyphenol content plays a valuable role for tea breeding and quality inspection during tea
production. In this work, a portable rapid non-destructive detection device of tea polyphenols
in fresh tea leaves was developed, which integrated the fusion technology of visible/short-wave
(400–1050 nm) and long-wave (1000–1650 nm) near-infrared spectroscopy (Vis/NIR). Experimental
results indicated that the spectra within the overlapping region (1000–1050 nm) were assembled by
applying the spectral data fusing method. Followed by spectral data preprocessing with the Savitzky–
Golay smoothing (SG) method, least squares support vector regression (LS–SVR) models were
established for detecting the tea polyphenol content of fresh tea leaves. Based on the fused Vis/NIR
spectra (dual-band), the correlation coefficient of calibration (RC), root mean square error of calibration
(RMSEC), correlation coefficient of prediction (RP), root mean square error of prediction (RMSEP),
and residual predictive deviation (RPD) reached 0.976, 0.679%, 0.893, 0.897%, and 2.230, respectively,
which were better than the visible/short-wave or long-wave near infrared spectral data (single-
band). The sensitive spectral wavebands of tea polyphenols extracted using the random frog (RF)
algorithm were distributed in 402–448 nm, 555–600 nm, 810–1042 nm, 1056–1103 nm, 1219–1323 nm,
1406–1416 nm, and 1499–1511 nm. This demonstrated that the prediction of tea polyphenol content
using fused spectral data combined with the LS–SVR model depended on various functional groups
such as auxochromes, chromogenic groups, and hydrogen-containing groups. The proposed device is
capable of non-destructive detection of tea polyphenol content in fresh tea leaves, which can provide
effective technical support for tea breeding and tea leaf quality control.

Keywords: fresh tea leaves; tea polyphenols; visible and near-infrared spectroscopy; dual-band;
non-destructive detection device

1. Introduction

Tea polyphenols are important indicators of tea quality, consisting mainly of catechins,
anthocyanins, flavonoids, flavonols, and phenolic acids [1,2], which possess health benefits
such as scavenging free radicals, strong antioxidant activity, preventing cardiovascular dis-
eases, and inhibiting cancer cell production [3–5]. The content of tea polyphenols is usually
determined by high performance liquid chromatography (HPLC), potentiometric analysis,
or spectrophotometry, which have high detection accuracy but have the disadvantages
of being time-consuming, high cost, and destruction of samples [6–9]. Therefore, a more
efficient detection method and portable detection device are urgently needed.
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Visible and near infrared (Vis/NIR) spectroscopy indicates the octave and ensemble
absorption characteristics of the vibrations of hydrogen-containing groups (e.g., C-H, n-H,
and O-H) in substances, and shows great promise for applications in the fields of tea quality,
aquatic products, and food testing [10–12]. The quantitative model was established by using
an XDS near-infrared spectrometer (400–2498 nm) to detect the content of tea polyphenols
and caffeine in green tea processing, and the sensitive wavebands were extracted by the
successive projections algorithm (SPA). The results showed that the prediction performance
of the multiple linear regression (MLR) model based on SPA for detecting the content of
tea polyphenols and caffeine was better, and the prediction coefficient of determination
(R2

p) of this model were all greater than 0.834 [13]. Wang et al. (2020) collected spectral and
image information of different tea varieties using a hyperspectral imaging spectrometer
(900–1700 nm) and combined it with chemometric methods to estimate phosphorus and
potassium contents within tea leaves. The results indicated that the predicted correlation
coefficient (RP) of MLR models based on the SPA to extract spectral data in sensitive
wavebands were all higher than 0.91 [14]. Chen et al. (2021) used the Vis/NIR spectrometer
(400–2498 nm) to collect spectral data of tea leaves during fermentation, with the modeling
determination coefficient of calibration (R2

c) of the modified partial least-squares regression
(MPLSR) developed for both total catechins and theanine contents greater than 0.94 [15].
The above results demonstrated the feasibility of applying spectroscopic techniques in tea
quality testing; however, the expensive spectroscopic instruments and the strict operating
environment limited their laboratory utilization.

Fortunately, several low-cost portable visible spectrometers and near-infrared spec-
trometers have been developed [16,17]. To overcome the shortage of information obtained
by a single spectrometer, Wang et al. (2018) presented a portable optical instrument inte-
grating a AvaSpec-2048 fiber optic spectrometer (200–1100 nm) with a AvaSpec-NIR256–2.5
TEC NIR spectrometer (1000–2500 nm). A “response correction” algorithm was then pro-
posed to fuse the two independent spectral regions into a dual-band region (400–2400 nm)
that continuously covers the Vis/short-wave and long-wave NIR spectra. The results
indicated that the detection accuracy of quality parameters, including protein, adipose,
and potential of hydrogen (PH), of pork based on the dual-band spectral region was better
than that of the single-band region (400–1100 nm or 1074–2400 nm), and the coefficients of
determination (R2) of the partial least squares regression (PLSR) models all reached above
0.90 [18]. O’Rourke et al. (2016) used Vis/NIR and X-ray fluorescence (XRF) coupled for
agronomic soil prediction, which improved the prediction accuracy with a relative improve-
ment in the root mean square error (RMSE) ranging from 4% to 44% [19]. Ryckewaert et al.
(2022) combined three micro-spectrometers: SCIO (740–1070 nm), NIRscan (901–1701 nm),
and NIRone (1750–2150 nm), and acquired the spectral information of the sequential and
orthogonalized partial least squares (SO-PLS) model to achieve a prediction of the total
sugar content of sugarcane with comparable performance to the commercial instrument
ASD (350–2500 nm) [20]. The above studies illustrated that obtaining spectra of samples
in a larger wavelength range by integrating spectrometers of different wavelength ranges
improves the detection accuracy and the cost effectiveness of the instrumentation.

In this respect, real-time detection of tea polyphenols in fresh tea leaves is crucial for
tea bush breeding and tea leaf quality monitoring. Herein, our study focused on fresh tea
leaves of different tea varieties and established a tea polyphenol detection model based
on the fusion of Vis/short-wave and long-wave NIR spectra by integrating spectrometers
of different wavelength ranges. Furthermore, the real-time quantitative detection of tea
polyphenol content in fresh tea leaves was performed. The specific objectives were to
(1) build a portable device incorporating two spectrometers and fuse the spectral data
acquired from two spectrometers into one spectrum, (2) develop prediction models for tea
polyphenol content based on the individual and combined spectral regions, and (3) extract
the sensitive wavelength of tea polyphenol content.
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2. Materials and Methods
2.1. Sample Preparation

Two types of tea bush varieties were selected for this study, namely Jin Guanyin and
Fuyun 6 (Camellia sinensis L.), which were planted in the experimental tea garden of the
Agricultural Product Quality Institute, Fujian Agriculture and Forestry University. On
August 20, 2021, samples containing one bud and four leaves were collected from the
shoot tips of tea bush, and 800 fresh tea leaves were obtained totally. The morphology
of the fresh leaves of the two tea varieties as shown in Figure 1. To sustain a complex
spectral acquisition environment similar to that of the tea garden, the collected fresh tea
leaves without any treatment were immediately placed in black sealed bags and labeled for
subsequent spectral data acquisition.

Appl. Sci. 2023, 13, 1739 3 of 15 
 

of different wavelength ranges. Furthermore, the real-time quantitative detection of tea 
polyphenol content in fresh tea leaves was performed. The specific objectives were to (1) 
build a portable device incorporating two spectrometers and fuse the spectral data ac-
quired from two spectrometers into one spectrum, (2) develop prediction models for tea 
polyphenol content based on the individual and combined spectral regions, and (3) extract 
the sensitive wavelength of tea polyphenol content. 

2. Materials and Methods 
2.1. Sample Preparation 

Two types of tea bush varieties were selected for this study, namely Jin Guanyin and 
Fuyun 6 (Camellia Sinensis L.), which were planted in the experimental tea garden of the 
Agricultural Product Quality Institute, Fujian Agriculture and Forestry University. On 
August 20, 2021, samples containing one bud and four leaves were collected from the 
shoot tips of tea bush, and 800 fresh tea leaves were obtained totally. The morphology of 
the fresh leaves of the two tea varieties as shown in Figure 1. To sustain a complex spectral 
acquisition environment similar to that of the tea garden, the collected fresh tea leaves 
without any treatment were immediately placed in black sealed bags and labeled for sub-
sequent spectral data acquisition. 

 
Figure 1. Fresh tea leaves of Jin Guanyin (a) and Fuyun 6 (b). 

2.2. Build a Portable Device 
Solidworks 2016 software (Dassault Systèmes, Paris, France) was employed to design 

the integral structure of the device. The structure schematic and physical diagram of the 
portable nondestructive detecting device for tea polyphenols in fresh tea leaves is shown 
in Figure 2, where the spectrometer, plant probe, and Y-type optical fiber are the crucial 
components of the device. Spectrometer 1 (FieldSpec HandHeld 2, Analytical Spectral De-
vices Inc., Boulder, CO, USA) had a wavelength range of 325–1075 nm and a spectral res-
olution of 3 nm. Spectrometer 2 (SW2520, OtO Photonics Inc., Hsinchu City, Taiwan, 
China) had a wavelength range of 900–1700 nm and a spectral resolution of 15 nm. The 
plant probe (Analytical Spectral Devices Inc., Boulder, CO, USA) comes with a standard 
reference panel and tungsten-quartz halogen lamp. The Y-type fiber (SIH400 Y6+1 type 
fiber, Shenzhen Xinrui Photonics Technology Co., Ltd., Shenzhen, China) had a fiber core 
diameter of 400 um and a length of 1 m, allowing the transmission of a spectral range of 
400 to 2200 nm. To prevent damage to the lithium battery from over-discharge and to 
enable dual-mode switching of alternating current (AC) and direct current (DC) power 
supplies, polymer lithium batteries (Genaier 12 V/13000 MAH, Shenzhen Sentech Power 
Technology Co., Ltd., Shenzhen, China) with a DC uninterruptible power supply (UPS 12 
V/5 A, Shenzhen Xin Yuan Jia Industry Co., Ltd., Shenzhen, China) were employed. 
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2.2. Build a Portable Device

Solidworks 2016 software (Dassault Systèmes, Paris, France) was employed to design
the integral structure of the device. The structure schematic and physical diagram of the
portable nondestructive detecting device for tea polyphenols in fresh tea leaves is shown
in Figure 2, where the spectrometer, plant probe, and Y-type optical fiber are the crucial
components of the device. Spectrometer 1 (FieldSpec HandHeld 2, Analytical Spectral
Devices Inc., Boulder, CO, USA) had a wavelength range of 325–1075 nm and a spectral
resolution of 3 nm. Spectrometer 2 (SW2520, OtO Photonics Inc., Hsinchu City, Taiwan,
China) had a wavelength range of 900–1700 nm and a spectral resolution of 15 nm. The
plant probe (Analytical Spectral Devices Inc., Boulder, CO, USA) comes with a standard
reference panel and tungsten-quartz halogen lamp. The Y-type fiber (SIH400 Y6+1 type
fiber, Shenzhen Xinrui Photonics Technology Co., Ltd., Shenzhen, China) had a fiber core
diameter of 400 um and a length of 1 m, allowing the transmission of a spectral range
of 400 to 2200 nm. To prevent damage to the lithium battery from over-discharge and to
enable dual-mode switching of alternating current (AC) and direct current (DC) power
supplies, polymer lithium batteries (Genaier 12 V/13000 MAH, Shenzhen Sentech Power
Technology Co., Ltd., Shenzhen, China) with a DC uninterruptible power supply (UPS
12 V/5 A, Shenzhen Xin Yuan Jia Industry Co., Ltd., Shenzhen, China) were employed.



Appl. Sci. 2023, 13, 1739 4 of 14Appl. Sci. 2023, 13, 1739 4 of 15 
 

 
Figure 2. Portable non-destructive detecting device for tea polyphenols in fresh tea leaves: structure 
diagram (a), physical diagram (b), and internal diagram (c). 

2.3. Spectral Information Acquisition 
The portable non-destructive detecting device for tea polyphenols in fresh tea leaves 

was preheated for about 30 min before spectral data acquisition. Spectrometer 1 parame-
ters were set to acquire spectral information for 10, 20, and 10 times for fresh tea leaves, 
dark current (reflectance is nearly 0), and standard reference panels (reflectance is nearly 
1), respectively. The optimal integration time of spectrometer 2 was set to 40 ms, the 
smoothness was set to 3, and the number of scans was set to 10. The spectra of the dark 
current and standard reference panels were firstly acquired. Then, the front side of the 
fresh tea leaf was clamped by the plant probe for spectral information acquisition. The 
spectrum of the same fresh tea leaf was repeatedly acquired at three different positions 
and the average was calculated as the raw spectral reflectance of the fresh tea leaf sample. 

2.4. Determination of Tea Polyphenol Content 
The tea polyphenol content of fresh tea leaves was measured by referring to the Chi-

nese national standard GB/T 8313–2018 immediately after the spectral data were collected. 
Slightly modified, the specific steps were as follows: the fresh tea leaves were placed in 
the oven (DL-6 CH, Quanzhou Deli Agroforestrial Machinery Co., Ltd., Quanzhou, China) 
at 120 °C for 6 min for fixation, followed by drying at 90 °C to a constant weight. Tea 
samples from 10 drying tea leaves of the same tea variety was taken as one sample; it was 
put into a frozen grinding machine (JXCL-3 K, Shanghai Jingxin Industrial Development 
Co., Ltd., Shanghai, China) to grind for 3 min and uniformly sieved through an 80 mesh 
sieve to obtain tea powder. Tea powder (0.2000–0.2005 g) was taken in a 10 mL centrifuge 
tube, and 5 mL of 70% methanol was added after heating in an electric-heated thermo-
static water bath (HWS26, Shanghai Yiheng Technology Instrument Co.,Ltd., Shanghai, 
China). Then, the samples were extracted inside a constant temperature water bath at 70°C 
for 10 min with shaking at 5 min intervals. After centrifugation at 6886× g for 5 min in a 
refrigerated ultracentrifuge (Centrifuge 5430 R, Eppendorf Corporate, Hamburg, Ger-
many), the supernatant was transferred to a 10 mL volumetric flask and the extraction 
was repeated for the precipitated tea powder residue. Finally, the supernatant from the 
two times extracts were combined into a 10 mL volumetric flask, followed by aspirating 
the preheated 70% methanol using a dropper to dilute the volume to the mark, which was 
then shaken evenly. 

Figure 2. Portable non-destructive detecting device for tea polyphenols in fresh tea leaves: structure
diagram (a), physical diagram (b), and internal diagram (c).

2.3. Spectral Information Acquisition

The portable non-destructive detecting device for tea polyphenols in fresh tea leaves
was preheated for about 30 min before spectral data acquisition. Spectrometer 1 parameters
were set to acquire spectral information for 10, 20, and 10 times for fresh tea leaves,
dark current (reflectance is nearly 0), and standard reference panels (reflectance is nearly
1), respectively. The optimal integration time of spectrometer 2 was set to 40 ms, the
smoothness was set to 3, and the number of scans was set to 10. The spectra of the dark
current and standard reference panels were firstly acquired. Then, the front side of the
fresh tea leaf was clamped by the plant probe for spectral information acquisition. The
spectrum of the same fresh tea leaf was repeatedly acquired at three different positions and
the average was calculated as the raw spectral reflectance of the fresh tea leaf sample.

2.4. Determination of Tea Polyphenol Content

The tea polyphenol content of fresh tea leaves was measured by referring to the
Chinese national standard GB/T 8313–2018 immediately after the spectral data were
collected. Slightly modified, the specific steps were as follows: the fresh tea leaves were
placed in the oven (DL-6 CH, Quanzhou Deli Agroforestrial Machinery Co., Ltd., Quanzhou,
China) at 120 ◦C for 6 min for fixation, followed by drying at 90 ◦C to a constant weight. Tea
samples from 10 drying tea leaves of the same tea variety was taken as one sample; it was
put into a frozen grinding machine (JXCL-3 K, Shanghai Jingxin Industrial Development
Co., Ltd., Shanghai, China) to grind for 3 min and uniformly sieved through an 80 mesh
sieve to obtain tea powder. Tea powder (0.2000–0.2005 g) was taken in a 10 mL centrifuge
tube, and 5 mL of 70% methanol was added after heating in an electric-heated thermostatic
water bath (HWS26, Shanghai Yiheng Technology Instrument Co., Ltd., Shanghai, China).
Then, the samples were extracted inside a constant temperature water bath at 70 ◦C for
10 min with shaking at 5 min intervals. After centrifugation at 6886× g for 5 min in a
refrigerated ultracentrifuge (Centrifuge 5430 R, Eppendorf Corporate, Hamburg, Germany),
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the supernatant was transferred to a 10 mL volumetric flask and the extraction was repeated
for the precipitated tea powder residue. Finally, the supernatant from the two times extracts
were combined into a 10 mL volumetric flask, followed by aspirating the preheated 70%
methanol using a dropper to dilute the volume to the mark, which was then shaken evenly.

After sample pretreatment, 1 mL of tea sample and 5 mL of 10% Folin-Ciocalteu’s
phenol reagent were taken into a 20 mL test tube and incubated for 6 min. Then, 4 mL
of 7.5% sodium carbonate was added and kept at room temperature under light-proof
conditions for 30 min. Finally, in a 96-well microtiter plate, the absorbance value of 200 µL
of the test solution was measured at 765 nm with the Tecan microplate reader (Infinite
M200 Pro, Grödig, Austria), and the tea polyphenol content was calculated according
to the standard curve established by the gallic acid standard (Beijing Solarbio Science &
Technology Co., Ltd., Beijing, China). Each sample was performed in triplicate. After
the measured value with the largest relative error to the remaining two chemical values
was eliminated, the average of the remaining two values was recorded as the measured
chemical value of the sample. Tea polyphenol content of fresh tea leaves were calculated
by Equation (1) as follows:

TP =
1000 × X

(86.334 × m)× (1 − 0.01 × w)
(1)

where TP is the tea polyphenols content (%) of the sample; X is the absorbance of the sample;
m is the powder weight (g) of the sample; w is the dry matter content (%) of the sample.

2.5. Data Analysis Methods
2.5.1. Analysis of Variance

Analysis of variance (ANOVA) is a statistical test used to determine if more than
two population means are equal. The principal reason for the application of an ANOVA is
to analyze group means differences. The ANOVA includes one-way ANOVA and multi-
way ANOVA, in which the one-way ANOVA considers whether the effect of a single factor
on the index is significant or not [21].

2.5.2. Data Preprocessing

To improve model performance, Monte Carlo cross validation (MCCV) was performed
to eliminate outliers in the sample dataset of this study [22]. The raw spectral noise was
filtered using Savitzky–Golay smoothing (SG) method [23,24]. The first order polynomial
was used to fit the spectral data within the filtered window of 3 to decay the effect of
random noise present in the spectral data on the effective information of the sample.

2.5.3. Selection of Sensitive Wavebands

In this study, the sensitive spectral wavebands of tea polyphenols in fresh tea leaves
were analyzed using the random frog (RF) algorithm. The principle of RF algorithm for
selecting sensitive wavebands is to calculate the probability that each waveband is selected
for tea polyphenol content prediction. The higher the probability of the waveband is
selected, the more important it is for the indication of tea polyphenol content [25,26].

2.5.4. Spectral Data Fusing Method

Differences in the performance of the two spectrometers resulted in different spec-
tral reflectance acquired in the spectral overlap region (1000–1050 nm). Therefore, it is
necessary to splice the two wavebands in the overlapping region to make a contiguous
curve. First, the spectra with low signal-to-noise ratio at the edges were truncated, and
the spectral data of FieldSpec HandHeld 2 and SW2520 in the range of 400–1050 nm and
1000–1650 nm were preserved, respectively. The spectral reflectance of the two spectrom-
eters at 51 overlapping wavelengths was subsequently calculated by the interpolation
algorithm [27]. Finally, the two datasets were stitched together by averaging method, this
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is a low-level data fusion of visible/short-wave and long-wave NIR spectral data. The
formula for calculating the spectral reflectance after fusing as Equations (2) and (3) [28]:

e =
1
n

z

∑
i=1

R1,i − 1
n

z

∑
i=1

R2,i (2)

Ri =
1
2
(R1,i + R2,i + e) (3)

where e represents the difference between the averages of the two datasets of spectral
reflectance in the overlap region; z is the number of 51 wavelengths obtained after interpo-
lation of the overlap region; n represents the total number of samples; R1,i is the spectral
reflectance at the ith wavelength acquired by FieldSpec HandHeld 2; R2,i is the spectral
reflectance at the ith wavelength acquired by SW2520; Ri is the spectral reflectance at the ith

wavelength after data fusion.

2.5.5. Establishment of the Regression Model

The sample set was divided into a calibration set and a prediction set using the
Kennard–Stone (KS) algorithm in a ratio of 2:1 [29]. Least squares support vector regression
(LS–SVR) is a renovation combined the least square method (LS) and the traditional support
vector regression (SVR). LS–SVR employs a least squares linear system as the loss function,
which reduces the complexity of the model operations while retaining the advantages of
the SVR model [30,31]. LS–SVR uses radial basis function (RBF) as the kernel function
and a grid search (GS) algorithm to find the optimal of model regularization parameters
gamma (γ) as well as radial basis function sig2 (σ2) bandwidth. The LS was used to
calculate the regression coefficients and deviations value, and the final prediction model
was obtained [32,33].

After the regression model was established, the predictive performance of the model
was evaluated by correlation coefficient (R), root mean square error (RMSE), and residual
predictive deviation (RPD). Generally, the larger the R and RPD, the smaller the RMSE, and the
closer the R to 1 (RMSE to 0), indicating the better predictive performance of the model [34,35].
These model performance indexes were defined using Equations (4)–(6) as follows:

R =
∑n

i=1

(
yi,c − yi,c

)(
yi,p − yi,p

)
√

∑n
i=1

(
yi,c − yi,c

)2
√

∑n
i=1

(
yi,p − yi,p

)2
(4)

RMSE =

√
∑n

i=1
(
yi,c − yi,p

)2

n − 1
(5)

RPD =
SDv

SEP
=

1√
1 − R2

(6)

where yi,c, yi,p are the actual measured chemical values and model predicted chemical
values of the ith sample, respectively; yi,c, yi,p are the average of the actual measured
chemical values and the average of the model predicted chemical values of the samples,
respectively; SDv, SEP are the standard deviation of sample content and the predicted
standard deviation of the prediction set, respectively; n is the number of samples.

The above spectral data processing method were performed using Matlab 2016 a
(The MathWorks, Natick, MA, USA). The Unscrambler X10.1 (CAMO, Process, AS, Oslo,
Norway) was also used for spectral pretreatments. The data was illustrated by graphs
using Origin 2017 C (OriginLab, Northampton, MA, USA).



Appl. Sci. 2023, 13, 1739 7 of 14

3. Results and Discussion
3.1. Statistical Analysis of Tea Polyphenol Content

Figure 3 displays the tea polyphenol content of fresh tea leaves of two tea bush varieties.
The tea polyphenol content of Jin Guanyin varieties and Fuyun 6 are 21.83 ± 2.78% and
20.08 ± 2.65%, respectively. The results of the one-way ANOVA revealed that the tea
polyphenol content of the two varieties is significantly different (p = 0.0052 < 0.05). The tea
polyphenol content of fresh tea leaves from different tea bush varieties were obtained in a
series of concentration gradients, which facilitated the subsequent development of a robust
quantitative model.
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3.2. Analysis of Spectral Reflectance

Figure 4 shows the average reflectance spectra ± standard deviation of fresh tea
leaves of different varieties, where Figure 4a presents Vis/short-wave NIR spectra of
samples collected by FieldSpec HandHeld 2 spectrometer, and Figure 4b presents the
reflectance curves of long-wave NIR spectra of samples collected by SW2520 spectrometer.
An obvious strong reflectance peak near 550 nm is shown, corresponding to low absorption
of green light by green plant leaves; a deep absorption peak is observed near 480 nm and
675 nm, which is attributed to strong chlorophyll absorption within the green leaves; a
large variation in spectral reflectance can be seen in the range of 700–775 nm, but a small
variation is seen between samples [34,36]; the absorption peaks in the range of 960–980 nm
correspond to the second overtone of the vibrations of the free O-H group in phenols [37].
A gentle absorption peak near 1200 nm is assigned to C-H group vibrations; an absorption
peak at 1465 nm is mainly associated with the vibration of phenolic O-H group [13]; the
reflection peak appears at 1650 nm occurs in response to the C-H group vibration [38]. It
demonstrated that both Vis/short-wave and long-wave NIR spectral ranges contain valid
spectral information of tea polyphenol content. Therefore, it is necessary to splice the
two waveband regions to characterize the content of tea polyphenols.
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NIR spectra (1000–1650 nm).

3.3. Outlier Screening and Sample Set Division

The MCCV method was used to eliminate abnormal samples related to the sample
spectra and tea polyphenol content in this study. The number of cycles was 1000, and
the threshold was set to three times the sample mean (MEAN) and standard deviation
(STD). The MEAN-STD distribution is depicted in Figure 5. The samples were screened
for MEAN greater than 3.069 or STD greater than 2.728 for tea polyphenol content in
the range of 400–1050 nm waveband, obtaining sample numbers 17 and 70 as abnormal
samples (Figure 5a); the samples were screened for MEAN greater than 4.067 or STD greater
than 4.260 in the range of 1000–1650 nm waveband, and sample numbers 17 and 73 were
anomalous (Figure 5b); the samples were screened for MEAN greater than 3.153 or STD
greater than 2.919 in the 400–1650 nm waveband, and three samples were recognized as
abnormal samples (Figure 5c).

Figure 5. MEAN-STD distribution of the predicted residuals of tea polyphenol content in differ-
ent waveband ranges. (a) Vis/short-wave NIR spectra (400–1050 nm), (b) long-wave NIR spectra
(1000–1650 nm), and (c) Vis/short-wave and long-wave NIR spectra (400–1650 nm). Different colors
represent the predicted residuals of tea polyphenol content in different waveband ranges.
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The KS algorithm was employed to divide the sample set after eliminating the abnor-
mal samples, and the data within the sample set were analyzed (Table 1). In all waveband
ranges, the MEAN, coefficient of variation (CV), and STD of the whole set of samples
were between the calibration set and the prediction set, indicating that the tea polyphenol
content of fresh tea leaves had strong variability in this study. This might be caused by the
wide range collection of tea leaf positions (the first leaf position to the fourth leaf position
of new shoot), resulting in high heterogeneity among tea polyphenols content of fresh tea
leaf samples [8,39]. The skewness of all data set is greater than 0, which indicates that the
data set do not conform to the normal and right skewed distribution. Kurtosis for both
the whole set and the calibration set are less than 0, indicating that the tails of the data
set are finer than the normal distribution and have fewer extreme data; the kurtosis of
the prediction set is greater than 0, indicating that the tails of the data set are thicker than
the normal distribution and the extreme data have a wider distribution. The range of tea
polyphenol content in the calibration set covered the range in the prediction set, and the
tea polyphenol content in different sample sets were evenly distributed with relatively
similar MEAN and STD. Therefore, the sample set division is reasonable and suitable for
establishing a robust model.

Table 1. Statistical characteristics of tea polyphenol content of the calibration and prediction sets in
different waveband ranges.

Waveband
Range Data Set Samples Max/% Min/% Mean/% STD/% CV/% Kurtosis Skewness

Single-band
(400–1050 nm)

Whole set 78 28.26 16.61 20.95 2.82 13.46 −0.46 0.62
Calibration set 52 28.26 16.61 21.27 3.11 14.62 −0.91 0.40
Prediction set 26 24.59 16.78 20.34 2.00 9.83 0.74 0.92

Single-band
(1000–1650 nm)

Whole set 78 28.26 16.61 20.89 2.76 13.21 −0.47 0.59
Calibration set 52 28.26 16.61 21.36 2.99 13.99 −0.91 0.32
Prediction set 26 24.81 16.78 19.96 1.92 9.61 1.09 0.88

Dual-band
(400–1650 nm)

Whole set 77 28.26 16.61 20.93 2.82 13.47 −0.42 0.62
Calibration set 51 28.26 16.61 21.39 3.07 14.35 −0.84 0.35
Prediction set 26 25.61 16.92 20.04 1.95 9.73 0.42 0.90

Note: Max and Min represent maximum and minimum of tea polyphenol content of samples, respectively. STD
and CV are the standard deviation and coefficient of variation, respectively. Kurtosis measures the flatness of the
data distribution. Skewness is a measure of the direction and degree of skewness of the statistical data distribution.
Single-band (400–1050 nm) is Vis/short-wave NIR spectra. Single-band (1000–1650 nm) is long-wave NIR spectra.
Dual-band (400–1650 nm) represent Vis/short-wave and long-wave NIR spectra.

3.4. Construction and Evaluation of Models

Before establishing the model, the raw spectra of two single-band and fused dual-band
underwent SG smoothing pretreatment. Comparison of the spectral curves (Figure 6a)
before and after spectral data fusion (Figure 6b) reveals that the latter better retains the
raw curve variation trend and shape. Moreover, the spectral curves after fusion in the
overlapping wavebands (1050–1100 nm) are smoothly connected and smoothly vary at the
nodes. The reflectance at the same waveband is distinct depending on the variations in
the response of different instruments, while the average splicing prevents the sudden and
drastic changes in the spectra caused by the joining of spectral data.

The LS–SVR model was established using the spectral reflectance after SG smoothing
pretreatment and the tea polyphenol content determined by standard chemical methods as
the independent and dependent variables, respectively. To verify the model performance
before and after data fusion, the spectral data of single-band and dual-band were used for
modeling. As listed in Table 2, the modeling performance using single-band (400–1050 nm)
spectral data is better than that of the model established from single-band (1000–1650 nm)
spectral data, which might be relevant to the high signal-to-noise ratio and resolution of the
FieldSpec HandHeld 2 spectrometer. Crucially, the absorption peaks of catechins, the main
components of tea polyphenols, are mainly distributed in 450–780 nm, hence, the modeling



Appl. Sci. 2023, 13, 1739 10 of 14

is more effective using single band (400–1050 nm) data [34,40]. The modeling performance
using dual-band (400–1650 nm) spectral data is superior to that of the model established
from single-band (1000–1650 nm) spectral data, with a larger Rp and smaller RMSE and RPD.
The dual-band (400–1650 nm) model is slightly better than the single-band (400–1050 nm)
model, which may be due to the more comprehensive coverage of the octave and ensemble
absorption properties of hydrogen-containing groups in the dual-band spectra [28,41,42].
Therefore, the SG-LS-SVR model based on the dual-band spectral was applied to detect
the tea polyphenol content of fresh tea leaves with the best model prediction performance,
which the validation set was RP of 0.893, RMSEP of 0.897% and RPD of 2.230, indicating
that the device was capable of collecting visible/short-wave and long-wave NIR spectral
data simultaneously with a satisfactory result. This was in accordance with the conclusion
of [18,20,43] that modeling based on dual-band spectral data was better than single-band.
Figure 7a,b show the correlation plots of the SG-LS-SVR detection of tea polyphenol content
and the comparison between the predicted and measured values of the prediction set
samples, respectively.
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Figure 6. SG smoothing pretreatment spectral of dual-band. (a) Spectral curve before data fusion,
and (b) spectral curve after data fusion. Different colors denote the raw spectral reflectance curves of
different samples. There were 40 samples of each tea variety, with a total number of 80 samples, i.e.,
80 samples and 80 spectral curves.

Table 2. Predictive performances of the LS–SVR model for tea polyphenol content detection in
different waveband ranges.

Waveband Range Parameters Rc RMSEC/% Rp RMSEP/% RPD

Single-band
(400–1050 nm)

5593.054
0.957 0.912 0.875 1.155 2.06729,796.119

Single-band
(1000–1650 nm)

1377.945
0.964 0.929 0.802 1.156 1.67629,311.147

Dual-band
(400–1650 nm)

1893.681
0.976 0.679 0.893 0.897 2.23025,494.311

Note: Parameters are the kernel width γ and the regularization parameter δ2. Rc and Rp represent the correlation
coefficient of calibration and prediction set, respectively. RMSEC and RMSEP represent the root mean square
error of calibration and prediction set, respectively. RPD is residual predictive deviation.
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Figure 7. LS–SVR modeling performances of predicting tea polyphenol content based on dual-band
spectral data. (a) Correlation analysis of a scatter plot. The hollow square and circle markers denote
the calibration set and prediction set, respectively. The black line is the regression for the whole set.
(b) Comparison of predicted and measured values of tea polyphenol content. The solid square and
circle markers represent the measured value and predicted value, respectively.

3.5. Sensitive Waveband Analysis

The RF algorithm was used to analyze the relative importance of each wavelength
to investigate the intrinsic mechanism of the machine learning model to predict the tea
polyphenol content of fresh tea leaves. The number of iterations was set to 1000, the
probability threshold was chosen to be 15%, the processing method was chosen to be
“center”, and the first 62 wavebands with higher probability were finally taken as sensitive
wavebands (Figure 8a). From (Figure 8b), the sensitive wavebands of tea polyphenol
content of fresh tea leaves are mainly distributed in 402–448 nm, 555–600 nm, 810–1042 nm,
1056–1103 nm, 1219–1323 nm, 1406–1416 nm, and 1499–1511 nm.
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A total of 12 sensitive wavelengths (402, 406, 416, 417, 420, 424, 448, 555, 562, 563, 600,
and 705 nm) are located in the visible spectral region (400–780 nm), which correspond to
the absorption properties of the auxochromes (e.g., -OH, -NH, and -SH) and chromophores
(e.g., carboxyl, ester group, aromatic systems) within the fresh tea leaves [44–46]. There
are 20 sensitive wavelengths (810, 821 856, 865, 884, 885, 894, 895, 910, 914, 934, 983, 990,
993, 995, 1020, 1027, 1034, 1040, and 1042 nm) in the short-wave NIR spectral region
(781–1050 nm), which mainly attribute to the second and third overtones of the O-H group
or C-H group vibrations of phenols [47,48]. There are 30 sensitive wavebands (1056, 1074,
1103, 1219, 1220, 1221, 1222, 1225, 1228, 1229, 1254, 1285, 1286, 1294, 1317, 1318, 1320,
1321, 1323, 1406, 1411, 1412, 1414, 1416, 1499, 1501, 1502, 1505, 1508, and 1511 nm) in the
long-wave NIR spectral region (1051–1650 nm), depending on the O-H or methyl C-H
group in the phenolic. Among them, 1020, 1027, 1034, 1040, 1042, 1056, 1074, and 1103 nm
correspond to the second overtones of the O-H group [49]; 1219, 1220, 1221, and 1222 nm
relate to the second overtones and combination of the C-H group stretching vibration of
-CH2 [50]; 1225, 1228, 1229, 1254, 1285, 1286, 1294, 1317, 1318, 1320, 1321, and 1323 nm are
the second overtones and combination of C-H group stretching vibrations [51,52]; 1406,
1411, 1412, 1414, and 1416 nm are associated with the first overtones of free O-H group
vibrations; 1499, 1501, 1502, 1505, 1508, and 1511 nm reflect the first overtones of the N-H
group stretching vibrations [8]. This demonstrated that the prediction of tea polyphenol
content of fresh tea leaves using dual-band spectral data combined with LS–SVR model
depends on close correlation between phenolic compounds and auxochromes, chromogenic
groups, and hydrogen-containing groups (e.g., -OH, -NH, and -CH) [34].

4. Conclusions

In this study, a portable nondestructive detection device based on Vis/short-wave
NIR spectroscopy coupled with long-wave NIR spectroscopy was designed to detect tea
polyphenols in fresh tea leaves of summer tea bush varieties (Jin Guanyin and Fuyun 6).
This device consists of a spectrometer, Y-type optical fiber, plant probe, lithium polymer
battery, DC uninterruptible power supply, voltage conversion module, and aluminum
alloy housing. The overlapping regions in two independent spectral wavebands were
fused together using the interpolation and mean method, which can collect dual-band
spectral data (400–1650 nm) of Vis/short-wave and long-wave NIR of fresh tea leaves
simultaneously. The SG-LS-SVR model based on the dual-band spectra achieved the
best performance in quantifying tea polyphenol content in fresh tea leaves (Rc = 0.976,
RMSEC = 0.679%, Rp = 0.893, RMSEP = 0.897%, and RPD = 2.230). To summarize, the
proposed device and method provide effective technical support for the breeding of good
tea varieties and online detection of fresh tea leaves quality. For future research, further
analysis of other key components of fresh tea leaves, such as caffeine, theanine and catechin
monomers (EGCG, ECG, EGC, EC, GA, GCG, CG, GC, and C), can be done to improve the
universality of the detection model. Meanwhile, the data fusion methods in the dual-band
can also be attempted by the regional feature weighted fusion method, linear fitting method,
and direct translation method, etc.
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