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Abstract: Urine cytology, which is based on the examination of cellular images obtained from urine,
is widely used for the diagnosis of bladder cancer. However, the diagnosis is sometimes difficult
in highly heterogeneous carcinomas exhibiting weak cellular atypia. In this study, we propose a
new deep learning method that utilizes image information from another organ for the automated
classification of urinary cells. We first extracted 3137 images from 291 lung cytology specimens
obtained from lung biopsies and trained a classification process for benign and malignant cells using
VGG-16, a convolutional neural network (CNN). Subsequently, 1380 images were extracted from
123 urine cytology specimens and used to fine-tune the CNN that was pre-trained with lung cells.
To confirm the effectiveness of the proposed method, we introduced three different CNN training
methods and compared their classification performances. The evaluation results showed that the
classification accuracy of the fine-tuned CNN based on the proposed method was 98.8% regarding
sensitivity and 98.2% for specificity of malignant cells, which were higher than those of the CNN
trained with only lung cells or only urinary cells. The evaluation results showed that urinary cells
could be automatically classified with a high accuracy rate. These results suggest the possibility of
building a versatile deep-learning model using cells from different organs.

Keywords: urinary cell; classification; deep learning; convolutional neural network

1. Introduction

Bladder cancer is the 11th most prevalent cancer, and its global incidence is gradually
increasing [1]. Most bladder cancers are urothelial carcinomas, occurring in the urothelium
lining of the bladder. Cystoscopy, urine cytology, and ultrasonography are the gold stan-
dard for diagnosing bladder cancer. Urine cytology examines the presence or absence of
cancer cells in the excreted urine, thereby making it a non-invasive technique that can be
performed repeatedly. The detection rate of this technique for advanced stages of cancer is
higher than that of cystoscopy, making it extremely useful in clinical diagnosis. However,
the detection sensitivity is low for early stages of cancer, and the weak cellular atypia in
highly differentiated cancers makes the identification of malignant cells challenging. There-
fore, in clinical practice, there is a need to develop diagnostic support technologies that
can test urinary cells with high accuracy. This study aimed to develop a computer-aided
diagnosis (CAD) technique [2,3] for this purpose.

This study focuses on deep learning [4,5], an artificial intelligence technology, to
provide diagnostic assistance in urine cytology. Deep learning is based on multi-layer
neural network technology. In particular, convolutional neural networks (CNNs), which
mimic animal vision, have been widely used for image classification, object detection, and
the prediction of future events.
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There are many applications of medical imaging, and there have been many reports
on applications with computed tomography, magnetic resonance imaging [6–8], and patho-
logical images [9–11]. For pathological images, we have developed diagnostic support
technology for lung cytology in which a CNN is used to differentiate between benign and
malignant cells [12–14]. A method to input a finely cut patch image into a CNN to classify
benign and malignant cells and create a malignancy map for the entire microscopic field
of view was proposed [12]. The detection sensitivity and specificity for malignant cells
aggregated per patch image were 94.6% and 63.4%, respectively, and those aggregated
per case were 89.3% and 83.3%, respectively. During the classification of cytology images,
it is important to include a wide variety of images in the training data to improve the
detection efficiency. Therefore, we proposed a method to output benign and malignant
cell images using a generative adversarial network (GAN), which can virtually generate
images and use them as part of the training data for the CNN [13]. We also proposed a
weakly supervised learning method that uses the attention mechanism to classify benign
and malignant cell images on a case-by-case basis without providing correct labels for
individual patch images and showed that the performance is comparable to supervised
learning [14].

Vaickus et al. attempted to automate the Paris System for reporting urinary cytology
by using whole slide images in combination with cell shape analysis and deep learning,
and they obtained an area under the curve (AUC) value of 0.92 for the classification of high-
and low-risk groups [15]. Further, Awan et al. proposed a method for risk stratification of
urinary cytology using a CNN after recognizing urinary cells using image processing [16].

In these studies, the CNN model was trained by collecting the cellular images of
interest. Good classification performance can be achieved when the disease has a high
prevalence and sufficient data are available. However, rare diseases or unbalanced data
sets such as the presence of very few malignant cells compared to benign cells can result in
poor classification performance. In such cases, it would be ideal to train the CNN using cell
images from different sites to enable variation learning, thereby generating a CNN model
with high performance.

Transfer learning and fine-tuning are techniques used for diverting CNNs to other
applications. For instance, a CNN with excellent classification performance, such as the
GoogLeNet [17] or VGGNet [18], which has been trained on a large number of natural
images from the Internet, can be partially modified for the classification of medical images
as the processing target, and high performance can be obtained by fine-tuning the model
with new medical images as the processing target [12,13,19]. In this case, an acceptable
performance may be obtained even if the number of medical images is much smaller than
the number of natural images used to train the original deep learning model. Considering
the fact that the lung and urine cytology images share common cell features, a deep learning
model constructed using lung cells together with the classification of urinary cells may
display a higher performance than a deep learning model trained using urinary cells alone.
Therefore, in this study, we propose an automated classification method for urinary cell
images using a convolutional neural network pre-trained on lung cell images.

2. Materials and Methods
2.1. Outline of the Proposed Scheme

An outline of the proposed method is shown in Figure 1. First, several patch images
were created using lung and urine cytology specimens. Subsequently, a CNN was trained to
classify the lung cell patch images as either benign or malignant. The CNN was then given
a patch image of urinary cells for fine-tuning, and the accuracy of urinary cell classification
was evaluated.
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Figure 1. Outline of the proposed scheme.

2.2. Image Dataset
2.2.1. Lung Cells

Liquid-based cytology specimens (BD SurePath Liquid-based Pap Test; Beckton Dick-
inson, Durham, NC, USA) prepared using lung cells collected from forceps biopsy and
subsequently stained using the Papanicolaou method were obtained from the Fujita Health
University Hospital, Japan. There were 116 benign and 175 malignant cases. Malignant
cases included 122 adenocarcinomas and 53 squamous cell carcinomas.

2.2.2. Urinary Cells

Urothelial cells collected from voided urine samples were processed using the liquid-
based cytology technique, as described above. Initially diagnosed cases were chosen since
recurrent or chemotherapied cases may show irregular morphology. Two categories, includ-
ing “Negative for malignancy” and “Malignant”, from The 2015 Japan Reporting System for
Urinary Cytology, the latter of which consisted of high-grade urothelial cells and urothelial
carcinoma in situ (HGUC/CIS), were selected for this analysis. Intermediate categories
such as “Atypical cells” and “Suspicious for malignancy”, possibly from low-grade urothe-
lial carcinomas (LGUC), were excluded to avoid uncertain diagnosis. All of the cases were
validated by 2 cytotechnologists and a certified cytopathologist at the time of diagnosis.
The samples included 64 benign and 59 malignant cases. A subsequent histopathological
analysis diagnosed the malignant cases as urothelial carcinoma. In all cases, the final
diagnosis was made based on histopathological or immunohistochemical findings.

A microscope (BX53, Olympus, Tokyo, Japan), with a digital camera (DP74, Olympus)
attached at 40× objective lens, produced 1172 images of benign and 842 images of malignant
lung cells and 706 images of benign and 664 images of malignant urinary cells, which
were digitized to 1280 × 960 pixels. Subsequently, they were resized to a patch image of
296 × 296 pixels. Finally, 2249 benign and 888 malignant digital images of lung cells, and
716 benign and 664 malignant digital images of urinary cells, were obtained. A maximum
of five pictures were taken per case. The evaluation of each cell was again performed by
one cytotechnologist and one certified cytopathologist. Those judged to be malignant by
the two evaluators were included.

3. Network Architectures

We introduced VGG-16 [18], proposed by the Vision Geometry Group at Oxford Uni-
versity in 2014, as a network architecture for CNN for the image classification. Our previous
studies [12,13] in which VGG-16 was introduced for benign and malignant classification
of lung cells showed that VGG-16 has a better classification performance than the other
state-of-the-art models. Therefore, in this study, we developed a classification model for
urinary cells by fine-tuning a network that was pre-trained with lung cells using VGG-16.
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The original VGG-16 was a CNN with a simple structure, consisting of 13 convolution
layers, 5 pooling layers, and 3 fully connected layers, as shown in Figure 2. The fully
connected layers of VGG-16, which were pre-trained using 1.2 million images in ImageNet,
a database of natural images, were replaced with 1024, 256, and 2 units of fully connected
layers to enable the classification of benign and malignant lung cells. The activation function
for the fully connected layer was the ReLU, and the softmax function was used to normalize
the categorical output. The network was then fine-tuned using 2249 and 888 patch images
of benign and malignant cases, respectively, as described above. The number of training
epochs was 50, and the learning coefficient was set to 10−5, using Adam as the optimization
algorithm. Further, 20% of the training data were used as validation data.
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Figure 2. CNN architecture introduced to the proposed scheme. Two-class classification model was
built by replacing the fully connected layer of the VGG-16 model.

Next, fine-tuning of the pre-trained VGG-16 was performed using urine cytology
images (716 benign and 664 malignant). The number of training sessions was 50 epochs,
and the learning coefficient was set to 10−6, using Adam as the optimization algorithm.

4. Evaluation Metrics

In this study, we developed a novel method by fine-tuning the CNN model trained on
lung cells with urinary cells, to obtain good classification accuracy with a small number
of urinary cells. To confirm the effectiveness of the proposed method, we evaluated the
classification accuracy of the urinary cells using three different methods:

Method 1: The CNN trained using lung cell images was applied directly to the urinary
cell image classification process. In other words, images of urinary cells were not used in
training the CNN.

Method 2: The CNN was trained and evaluated using only the images of urinary cells.
In other words, the images of the lung cells were not used in training the CNN.

Method 3: The CNN pre-trained on lung cell images was fine-tuned using urinary cell
images, and the classification accuracy of the urinary cell images was evaluated. This is the
method proposed in this study.

The classification methods described above produce different results. However, it is
difficult to examine the basis of the classification from the VGG-16 results because it is not
possible to understand the parts of the image that were focused on for the classification.
Therefore, to visualize the basis for classification, we introduced gradient-weighted class
activation mapping (Grad-CAM) [20], which can output the areas that contribute to the
CNN classification in the form of a heat map (activation map).

In addition, as an index for evaluating classification accuracy, we calculated the num-
ber of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
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and created a confusion matrix. Subsequently, the detection sensitivity (Recall), specificity,
precision, accuracy, and F1 score were calculated based on the following equations:

Sensitivity (Recall) =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

Precision =
TP

TP + FP
(3)

Accuracy =
TP + TN

TP + TN + FN + FP
(4)

F1Score = 2
Recall·Precision

Recall + Precision
(5)

To obtain the above results for all the data, CNN was trained and evaluated using the
cross-validation method for Methods 2 and 3 since the urinary data were used for both
training and validation. The cross-validation method divides the data into N datasets,
trains them on N-1 datasets, and evaluates the classification accuracy of the remaining 1
dataset. By replacing the dataset to be excluded for evaluation and resetting the parameters
for training, the classification results were obtained for all the data. In this study, N = 5 was
used. That is, 80% of the data were used for training and 20% for testing. Here, images
of the same case were distributed such that they would not be mixed in the training data
and the data for evaluation. In contrast, single validation was employed since the training
(lung) and the validation (urine) data were different for the Method 1.

The CNN calculations were performed using the software we developed in the Python
programming language with an AMD Ryzen 9 3950X processor (16 CPU cores, 4.7 GHz)
with 128 GB of DDR4 memory. The training processes of the CNNs were accelerated using
an NVIDIA Quadro RTX 8000 GPU (48 GB memory).

5. Results

Figure 3 shows the images that were correctly and incorrectly classified using Methods
1–3. The activation map obtained by Grad-CAM is also shown for each image. The CNN
used in this study tended to classify cells as benign when there were no malignant cells or
when the densest chromatin was noted. Table 1 shows the confusion matrix, outlining the
classification results obtained using the three methods. The numbers shown are the sum
of five consecutive analyses of five-fold cross validation in the Methods 2 and 3, whereas
the figures are drawn by single analysis in the Method 1. Table 2 shows the results of the
calculation of the detection sensitivity, specificity, precision, accuracy, and F1 score based
on the confusion matrix. Averages and standard deviations (Ave ± SD) were obtained via
five analyses of the five-fold cross validation method in Methods 2 and 3, whereas figures
were from single analysis without SD in Method 1. Method 3 was the most accurate among
the three methods.
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Figure 3. Correctly classified and misclassified images and their activation maps. Benign cells
correctly classified (A–C) and misclassified (D–F) images in Methods 1–3, respectively. Same for the
Malignant cells: correctly classified (G–I) and misclassified (J–L) images. Papanicolaou staining (left
panel) and activation map by Grad-CAM (right panel) in each photo.

Table 1. Confusion matrices of the three classification methods.

(a) Method 1

Prediction

Benign Malignant

Actual
Benign 431 285

Malignant 125 539

(b) Method 2

Prediction

Benign Malignant

Actual
Benign 663 53

Malignant 29 635

(c) Method 3

Prediction

Benign Malignant

Actual
Benign 703 13

Malignant 8 656

Table 2. Summary of evaluation index for image classification.

Sensitivity Specificity Precision Accuracy F1 Score

Method 1 0.812 0.602 0.654 0.703 0.724
Method 2 0.956 ± 0.014 0.926 ± 0.058 0.923 ± 0.055 0.941 ± 0.028 0.939 ± 0.027
Method 3 0.988 ± 0.019 0.982 ± 0.034 0.981 ± 0.041 0.985 ± 0.027 0.984 ± 0.030

6. Discussion

This study revealed that the method of training the CNN model with lung cell images
and then fine-tuning with urinary cell images was more accurate than training with urinary
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cell images alone. In clinical practice, urinary cytology is determined based on cellular char-
acteristics such as increased nuclear chromatin, increased nuclear-cytoplasmic ratio (N/C
ratio), and nuclear enlargement [21], which are often applied in lung cytology as well. The
malignant-lung-cell images used in this study contained two histologically different tumor
cells: squamous cell carcinoma and adenocarcinoma. The common characteristics of these
cells are increased nuclear chromatin, increased N/C ratio, and nuclear enlargement. Other
features include nucleolus clarity, flow-like arrangement, and the presence of bright cells in
squamous cell carcinoma; and nucleolus clarity, enlargement, nuclear maldistribution, and
mucus production in adenocarcinoma [21].

In this study, liquid-based cytology specimens stained using Papanicolaou were pre-
pared from urinary cells collected from spontaneous urine. In this process, detached
urothelial cells in the urine are prone to degeneration, forming degenerated normal urothe-
lial cells called reactive urothelial cells. The degeneration is caused by a variety of factors,
including a high degree of inflammation, the presence of stones, drug and radiation therapy,
early morning urine, and mechanical manipulation with catheterized urine. Degenerated
urinary cells are characterized by nuclear enlargement and clear nucleoli compared to
those of normal cells, and it is difficult to distinguish them from malignant cells. In actual
clinical practice, the distinction is made based on the presence or absence of an irregu-
lar nuclear shape and increased nucleochromatin, which requires advanced techniques.
To solve this problem, this study proposed an automated method for the more accurate
classification of urinary cytology. Individual cell-based judgement should further evolve
to case-based diagnosis by using all of the cells, which could collaborate with the actual
diagnostic process.

The results of the evaluation showed that Method 3 was the most accurate among
all methods. Grad-CAM visualizes important pixels by weighting the gradient against
the predicted value. The visualization of the region of interest using Grad-CAM revealed
the characteristics of this region for each method. The Grad-CAM results for Methods 1
through 3 reveal the following three things about the limitations of the model. First, normal
urothelial cells (Figure 3A–C) are judged to be benign by looking at areas other than urinary
cells. This can be inferred from the absence of malignant cells—not by looking at the
urinary cells but by the absence of malignant cells. In the light-colored stained specimens
(Figure 3K,L), the cytoplasm and nucleus appear paler than other malignant cells, and it
can be inferred that the cells themselves could not be recognized. This suggests that it
will be essential to construct a system capable of color correction in the future, especially
when using specimens with reduced stainability. Second, when recognizing cell clusters,
Methods 1 and 3 focused on cells with the highest chromatin volume, whereas Method 2
focused on the edges of the clusters. These points of view seemed similar to those used
in manual cytodiagnosis. Third, some degenerated urothelial cells (Figure 3E,F) tended
to be misclassified as malignant cells, suggesting the need for further training with more
image data.

Previous studies on cytological diagnosis either used only cell images that were to
be processed or used cell images to fine-tune a model that was pre-trained with natural
images. This study attempted to classify urinary cells with different image characteristics
using a deep learning model that was pre-trained with natural images and lung cytology
images and evidently obtained satisfactory results. This suggests that rare diseases, for
which only a limited number of images are available, may be processed in combination
with samples of highly prevalent diseases. This might solve one of the problems of deep
learning, which is the requirement of a large number of training data.

A limitation of this study is that the samples were prepared at a single facility and
images were collected using a single microscope. In the future, the validity of this method
should be confirmed using specimens and images collected from multiple institutions. In
addition, malignant cases in this study comprised high-grade patients. Future studies
should include low-grade and atypical cell cases, which are more difficult to diagnose.
Although the effect of fine tuning was confirmed using a limited number of urinary cells in
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this study, there is a close relationship between data size and fine-tuning performance. In
the future, it is necessary to prepare data from a larger number of urinary cells to clarify
the relationship between the number of training data and classification performance, as
well as to further investigate the methods of fine-tuning.

7. Conclusions

In this study, we propose a new deep learning method for the automated classification
of urinary cells. We observed that pre-training the model with lung cells and fine-tuning
with urinary cells produced more accurate results than training with urinary cells alone.
Using cells from different organs has the potential to develop versatile deep-learning
models. These results are important for establishing a more accurate and automated
method for the cytological diagnosis of rare diseases.
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