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Abstract: The potential of leveraging micro-expression in various areas such as security, health care
and education has intensified interests in this area. Unlike facial expression, micro-expression is
subtle and occurs rapidly, making it imperceptible. Micro-expression recognition (MER) on composite
dataset following Micro-Expression Grand Challenge 2019 protocol is an ongoing research area with
challenges stemming from demographic variety of the samples as well as small and imbalanced
dataset. However, most micro-expression recognition (MER) approaches today are complex and
require computationally expensive pre-processing but result in average performance. This work will
demonstrate how transfer learning from a larger and varied macro-expression database (FER 2013) in
a lightweight deep learning network before fine-tuning on the composite dataset can achieve high
MER performance using only static images as input. The imbalanced dataset problem is redefined
as an algorithm tuning problem instead of data engineering and generation problem to lighten the
pre-processing steps. The proposed MER model is developed from truncated EfficientNet-B0 model
consisting of 15 layers with only 867k parameters. A simple algorithm tuning that manipulates the
loss function to place more importance on minority classes is suggested to deal with the imbalanced
dataset. Experimental results using Leave-One-Subject-Out cross-validation on the composite dataset
show substantial performance increase compared to the state-of-the-art models.

Keywords: micro-expression recognition; composite dataset; EfficientNet; transfer learning; lightweight
deep learning network

1. Introduction

Micro-expressions are subtle, spontaneous and quick facial expressions with duration
less than 0.5 seconds and involving only certain face muscles [1]. They occur when a
person tries to hide or withhold their emotions from being expressed, which suggests
genuine hidden emotions rather than normal facial expressions or verbal signals [2]. Micro-
expression recognition (MER) aims to automatically identify the hidden emotions such
as Happiness, Sadness or Disgust from the micro-expressions. MER has potential usage
in a variety of fields such as security, education and public health. However, the quick
and delicate nature of micro-expressions makes it challenging to recognize them. For
instance, US coast guards who were trained to recognized micro-expressions using the
Micro-Expression Training Tool (METT) pioneered by Ekman achieved no more than 50%
accuracy [3].

Earlier works on Micro-Expression Recognition (MER) were more focused on crafting
features that can best represent the subtle muscle movements in micro-expressions such as
variants of Local Binary Patterns (LBP) [4,5] and Histogram of Gradients (HOG) [6]. To in-
crease MER accuracy, many researchers then turn to optical flow and optical strain features
with the aim of including temporal-based information from the quick facial movements in
micro-expressions [7,8]. However, these features require pre-extraction either manually or
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automatically which increases MER complexity, and as such are not practical for a real-life
recognition system.

Along with the success of deep learning methods’ applications in Facial Expression
Recognition (FER), trends in MER are now geared more towards deep learning approaches,
yet most of the implementation in MER utilizes OF features [9–13] making them more
complex. Similarly, while [14] proposed an end-to-end micro-expression spotting and
recognition system, it requires an additional synthetic OF generation step to augment the
training dataset. Other implementations using Dynamic Images (DI) [15–17] and facial
graph [18] required pre-constructing the input features.

Due to the insufficient samples in the micro-expression databases for deep learning
methods, many have employed the transfer learning technique [19,20], but the effect of
transfer learning has not been explored and explained, while the MER accuracies are
still low.

Additionally, works such as [12,13,17] do not generalize well as they are trained and
validated using one or two micro-expression databases only having similar demographic
and data collection conditions. A better evaluation method proposed in Micro-Expression
Grand Challenge (MEGC) 2019 involves conducting Leave-One-Subject-Out (LOSO) cross-
validation on the composite micro-expression datasets using Unweighted F1 (UF1) score
metric designed to alleviate class imbalance and model generalization problems [21]. MER
using this composite dataset is an ongoing research problem with the best performance
so far by MTM-NET only having attained 0.864 (Unweighted F1) UF1 Score and 0.85
(Unweighted Average Recall) UAR score [15], due to the more challenging dataset with
diverse demography and sample collection methods as well as an imbalanced dataset.

To understand how to improve MER on the composite dataset [22] has discovered
the importance of lower model and input complexity when utilizing deep learning on the
composite dataset, whereas deeper models are more suitable for single database evaluation.
Model complexity refers to the number of parameters in the model that consists of all
the learnable weights and biases, whereas input complexity is the input resolution [10].
However, research on reducing both the input and model complexity is still lacking so far.

In this work, a MER model is proposed that is based on deep learning with low input
and low model complexity to overcome the small and imbalanced dataset as well as to
learn salient features from the subtle and spontaneous micro-expressions with improved
accuracy on the composite dataset. The contribution of this article is as follows:

• A lightweight and shallow deep learning model based on EfficientNet-B0 model is
developed and proposed to demonstrate the limits of the deep learning model’s depth
to MER accuracy;

• Low input complexity is suggested by using static images of the apex frames without
any pre-extracted features as input combined with transfer learning from FER2013 to
learn generic facial expression features;

• Addressed imbalanced dataset problem from loss function manipulation’s perspective
instead of relying on data engineering or generation techniques resulting in a simpler
end-to-end MER workflow;

• Finally, effectiveness of the proposed method is proven by the superior performance
in MEGC 2019 evaluation protocol.

2. Related Work
2.1. Composite Datase

Currently, there are three widely used spontaneous micro-expression datasets which
are SMIC [23], CASME II [24] and SAMM [25] containing video samples of induced micro-
expressions. All three datasets have different demographic distributions, data collection
methods and micro-expressions labels. In MEGC 2019, a composite database that combines
video samples of the three datasets was proposed to produce a realistic database with a
variety of subjects and samples [21]. It also standardizes the emotion labels by collapsing
them into three classes which are Positive, Negative and Surprise. Samples with class ‘Others’
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are dropped. This composite dataset is more challenging due to the class imbalance
problem with most samples classified into Negative class as shown in Table 1 in addition
to the diverse subjects and video recording conditions. The proposed model in this work
is developed using this composite dataset and evaluated according to MEGC 2019 Leave-
One-Subject-Out (LOSO) cross-validation (CV) protocol to demonstrate its performance on
a diverse dataset with the class imbalanced.

Table 1. Micro-expression datasets.

Dataset Samples Annotations 2 Class Emotion Classes 1

SMIC 164 N/A 3 51 P, 70 N, 43 Su
CASME II 247 On, Apex, Off 5 32 H, 64 D, 25 Su, 27 R, 99 O

SAMM 159 On, Apex, Off 7 57 A, 12 C, 9 D, 8 F, 26 H, 6 S, 15
Su, 26 O

MEGC 2019 442 As per original 3 109 P, 250 N, 83 Su
1 Emotion Classes—P: Positive. N: Negative. O: Others. H: Happiness. D: Disgust. Su: Surprised. R: Repression.
T: Tense. F: Fear. C: Contempt. Sa: Sad. A: Anger. 2 Annotations—On: Onset frame, Off: Offset frame, Apex:
Apex frame, N/A: Not available.

2.2. Apex Frame as Input

The work of [7] was the first to suggest that apex frames—which is the frame when the
facial expression reached its peak in a micro-expression video—are sufficient for MER, but
they encoded the apex frame information in Bi-WOOF feature. The advantages of using
apex frame image only as input are low input complexity and allowing leveraging static
facial image databases that are widely available. The downside is facial motion information
will be lost and apex frame location must be located beforehand. So far, only two works
utilized apex frames as input for MER on the composite dataset, which are [26] that required
significant pre-processing to locate the apex frames, and ICE-GAN that involved additional
data generation steps, cancelling the benefit of low input complexity [27]. In this work, the
apex-locating method used is based on [28] that approximated apex frame positions as the
middle frame in a video sample for its simplicity and proven performance in MEGC 2019.

2.3. Transfer Learning from FER Datasets

Transfer learning approaches are often used in MER to prevent overfitting the deep
learning model [19]. In MER, this is mostly done by pre-training the deep learning model
on facial expression datasets such as CK+ [19], Karolinska Directed Emotional Faces
(KDEF) [29], Oulu-Casia and MMI [15] datasets to learn facial or expression features.
In an extensive cross-evaluation of seven facial expression databases, FER2013 was shown
to have the best generalization and transfers well to other facial expression databases as
compared to CK+, Oulu-Casia and AffectNet, amongst others [30]. FER2013 is a publicly
available dataset consisting of 35887, in-the-wild images of facial expressions labelled into
seven emotion classes [31]. In this work, transfer learning from FER2013 to MER composite
dataset is explored.

2.4. Lightweight MER

Several works proposed shallow and lightweight deep learning models to avoid
overfitting [10] or to reduce heavy computation [32]. Ref. [22] compared performances of
shallow model to deeper model and discovered that shallower networks perform better on
the composite MER dataset as they are less sensitive to inter-dataset differences. To produce
a lightweight MER model, [32] utilized Neural Architecture Search (NAS) to build a CNN
model, but their approach used spatiotemporal features. EfficientNet model also utilized
NAS to find the best combination of MBConv blocks— the building blocks for MobileNet
models [33]. EfficientNet pre-trained on ImageNet dataset had achieved superior results on
five out of eight transfer learning tasks on common datasets compared to state-of-the-art
models such as ResNet-152, DenseNet-201 and Inception models despite its smaller size.
Therefore, this work proposed a lightweight MER model based on the EfficientNet model.
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2.5. Loss Functions for Imbalanced Dataset

Several studies utilized loss functions adapted for imbalanced datasets instead of
cross-entropy (CE) loss functions, such as triplet loss function that combined losses from
triplet inputs [15] and balanced multi-class focal loss (FL) function that penalizes dominant
samples based on the sample volume for each class [16]. Ref. [16] has shown excellent
performance on the composite dataset; however, the comparison when using FL compared
to CE loss functions was not discussed. In this article, the approach of [16] is taken by using
balanced focal loss (FL) while elucidating the difference when using CE loss.

3. Methodology

The proposed MER method, as illustrated in Figure 1, consists of data pre-processing
steps to neutralize head movements and remove noises (non-expression related) for the
composite dataset and relabeling samples in FER2013 dataset, followed by the model
pre-training on FER2013, transferring the pre-trained model parameters and fine-tuning
the model on the composite dataset before conducting LOSO CV evaluation. These steps
are outlined in detail in the subsequent subsections.
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Figure 1. Proposed approach for Micro-Expression Recognition.

3.1. Data Pre-Processing
3.1.1. FER 2013 Dataset

Since the composite MER dataset is using 3-class emotion labels (Positive, Negative
and Surprise), samples in FER 2013 are also relabeled accordingly as depicted in Table 2.
Samples with label ‘Neutral’ are dropped as they are unneeded. To discount the effect of
imbalanced dataset in FER2013, the same number of samples (4002 samples) is randomly
chosen from the relabeled classes giving us a total of 12,006 samples. This dataset is then
divided into training and validation sets with 80:20 splits.
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Table 2. Labels and number of samples in FER 2013 database.

Original Class New Class Total

Angry: 4953, Disgust: 547, Fear: 5121, Sad: 6077 Negative 16,698
Happiness: 8989 Positive 8989

Surprise: 4002 Surprise 4002
Neutral: 6198 N/A N/A

3.1.2. Composite Dataset
Get All Apex Frames

Samples from CASME II and SAMM datasets in the composite dataset both include
the annotation for the apex frames. However, SMIC dataset does not. We take the approach
of [28] to approximate the apex frame positions for SMIC dataset as the middle frame in
a video sample. After this, apex frames for all the samples in the composite dataset are
gathered to be the input to the proposed model. The calculation of the apex frame locations
given a frameList, which is an array of sorted frames from onset to offset frames in the
sample video, is shown below.

apexLocation = length(frameList)/2
apexFrame = frameList[apexLocation]

(1)

Face Cropping and Alignment

At first, face detection was performed on the apex frame images with the goal of
retrieving key points that will be used in the face alignment and cropping step. The key
points are the right eye and left eye center points as well as the face boundary locations in
the image extracted using MTCNN [34] as shown in Figure 2.
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detected eyes’ center points.

Next, face alignment is performed to minimize bias due to the head movements as
shown in Figure 3. This is done by rotating the image around its center point. The rotation
angle is calculated using the inverse of tangent mathematical formula on the difference
between the x and y coordinates of the eyes’ center locations. The calculation is shown in
Equation (2).

delta_x = right_eye_x − left_eye_x
delta_y = right_eye_y − left_eye_y

rotation_angle = (atan(delta_y/delta_x) ∗ 180)/π
(2)

Afterwards, the image is cropped using the face boundary locations found in the
initial step to eliminate unnecessary details unrelated to facial expression in the image. The
cropped images are then resized to 224 × 224 pixels while ensuring that the image is scaled
appropriately. The image dimension (224 × 224) was selected in accordance with the input
requirement of the proposed model.
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Figure 3. Face alignment and cropping. From left to right: original image, face aligned image,
cropped image.

Data Augmentation

Simple image augmentations are applied to prevent overfitting which are horizontal
flip and random brightness on random samples in the training dataset. The seed used for
the transformation is a randomly generated number between 0 and 10.

3.2. Proposed Model

The proposed model (Figure 4) is based on EfficientNet-B0 model, the lightest variant
of EfficientNet. However, EfficientNet-B0 is still comparatively bigger than the other
shallower networks proposed for MER—bearing in mind that these networks require
pre-extracted OF features [9,10,32]. Therefore, this work proposed a truncated version
of EfficientNet-B0, called Efficient-ME with a balance of model complexity (number of
parameters) and feature extraction capability. The goal is to demonstrate that a lightweight
network under a million parameters with low input complexity can perform better than
the other shallow MER models.
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This network keeps the first 5 blocks of EfficientNet-B0 and drops the last 2 blocks.
After the 5th block of EfficientNet-B0, a global average pooling layer and a dropout layer
is added before being fed to a dense layer with 3 nodes for classification. Global average
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pooling layer was added to generate the output feature map to be used in the dense
classification layer. A dropout rate of 0.5 is utilized to prevent overfitting [16].

The input dimension is maintained at 224 × 224 with 3 channels. The input images
were not transformed to grayscale nor normalized as the first few layers in the Keras’s
implementation of EfficientNet already take care of this. The dense classification layer
uses Softmax activation function together with L1 and L2 kernel regularizers with both
regularizing factors set to 0.01 to reduce the kernel weights and prevent overfitting [35].
With the proposed setup, the total number of parameters in Efficient-ME is 867k which is
under the target of 1 million parameters.

The justification for truncating EfficientNet-B0 until the 5th block stems from the
observation in [36] that a variety of MBConv layers in a network gives better results than
using a single type of layers only. Therefore, truncating up to the 5th block will maintain the
pair of MBConv6 with 3x3 convolution and MBConv6 with 5x5 convolution configuration
(Block 2 and Block 3 pair as well as Block 4 and Block 5 pair, respectively). Another
motivation for choosing Block 5 as the cut-off point is the target model size of under
1 million that is achievable by truncating at the 5th block. It is also important that the last
convolution layer can extract sufficient features for accurate classification. Truncating the
network shallower will result in fewer features and details to be captured by the model.

The optimizer used is Adam optimizer with multi-class focal loss (FL). The parameters’
configuration for the FL loss function is γ = 2 [37] and α that represents the classes’
weights as [0.27, 0.35 and 0.38] for class Negative, Positive and Surprise, respectively.
Adam optimizer and the α values are selected by using grid search cross-validation.

3.3. Feature Learning from FER 2013

The input layer is first adjusted to (48 × 48) as per FER2013 image sizes before
initializing the model’s weights from ImageNet pre-trained weights. The model is then
trained on FER2013 training dataset for 5 iterations of 100 epochs with early stopping after
10 epochs of no improvement to the validation loss. In each iteration, the base layers were
frozen and the network is trained with initial learning rate 0.001 and batch size 16 before
fine-tuning the whole network with lower initial learning rate of 0.0001. After the feature
learning is completed, the model is saved as the pre-trained model.

3.4. Transfer Learning to Composite Dataset

To learn from FER 2013 database, the weight from the pre-trained model is transferred
to the Efficient-ME model. Next, the head of the model is trained by freezing the base
layers for 5 iterations, batch size 16 and 15 epochs with early stopping after 2 epochs of no
improvement to the validation loss. Then, the whole network is fine-tuned by training for
another 5 iterations, batch size 16 and 20 epochs with the same early stopping configuration.
The initial learning rate for head training is 0.001 and 0.0001 for the fine-tuning.

The model is trained and evaluated using MEGC 2019 protocol [21] which means
the training and test process is repeated 68 times (once for each subject in the composite
dataset). At each cross-validation, all samples for a subject are set aside for testing while
the rest are used for training the model. At the end of each LOSO CV cycle, there will be
68 testing results that will be used for evaluating the model’s performance.

3.5. Experiments
3.5.1. Experimental Setup

The experiments were done on Windows 11 (x64) with a single NVIDIA GeForce RTX
3070 GPU having 8GB of dedicated memory. The model was developed using Keras library
on Tensorflow 2.7 framework and Python 3.9 programming language.

3.5.2. Baselines

For consistent comparison, only deep learning methods that adhere to the MEGC 2019
protocol are selected as the baselines. STSTNet [10] which is the lightest MER architecture



Appl. Sci. 2023, 13, 1846 8 of 14

so far is the baseline for lightweight models. RNAS-MER is the benchmark for NAS-based
models and video input [32]. GEME is included to evaluate how using Dynamic Images
as input measures up against the proposed method of using apex frames only [16], while
ICE-GAN [27] is the baseline for the method using apex frames only. MTM-NET [15] which
has attained the highest UF1 score in CDE evaluation is the benchmark for the transfer
learning method.

The UF1 and UAR scores for the baseline studies in Table 3 are per what was published
in the respective publications as all of them use LOSO CV protocol and metrics on the
same composite dataset. The models’ parameter counts are also taken from the publica-
tions for STSTNet and RNAS-MER, calculated using the model parameters’ memory size
for ICE-GAN and from the layers’ configuration in the GEME model. The parameters’
count for MTM-NET could not be deduced as the published work does not specify the
required details.

Table 3. Baseline methods on MEGC 2019 composite dataset. OF: Optical Flow. DI: Dynamic images.

Method Year Input UF1 UAR # Parameters

STSTNet [10] 2019 OF 0.735 0.760 1.67k
ICE-GAN [27] 2020 Apex 0.845 0.841 21.6 mil
MTM-Net [15] 2020 Onset-Apex 0.86 0.85 n/a

GEME [16] 2021 DI 0.7221 0.7303 53 mil
RNAS-MER [32] 2023 Video 0.8302 0.8511 1.91 mil

3.6. Evaluation Metrics

The metrics used to evaluate the model’s performance are UF1 and UAR scores as
outlined in MEGC 2019 [21]. The formulae for UF1 and UAR are presented below.

UF1 =
∑c

i=1 F1i

Nc
(3)

where C is the class labels (‘Positive’, ‘Negative’, ‘Surprise’) and NC is the number of classes (3).

UAR =
1
C

C

∑
i=1

TPi
Ni

(4)

where C is the number of classes, TPi is the True positive count for the class i and Ni is the
number of samples in the class I.

4. Results and Discussions

Three experiments were carried out specifically: determining whether lightweight
deep learning network with low input complexity can achieve high MER performance,
investigating the effect of source database in transfer learning and verifying whether the
imbalanced dataset problem can be addressed solely by manipulating the loss functions
used. The performance metrics used for comparison are UF1 and UAR scores on the
composite dataset as outlined in MEGC 2019.

4.1. Experiment 1: Lightweight Models with Low Input Complexity Can Achieve High
MER Performance

In Table 4, it can be observed that the proposed method, Efficient-ME, achieved
significant results with 14% UF1 score improvement over the highest score so far attained
by MTM-Net. Although STSTNet is still much smaller than Efficient-ME, their method
takes a pre-extracted Optical Flow input that allows their network to be compressed further.
Besides, their UFI and UAR scores are average at best. In contrast, the proposed method
does not need any prior feature extraction, accomplishing low input complexity.
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Table 4. UF1 and UAR scores against baseline methods on composite dataset.

Method UF1 Score UAR Score # Parameters

STSTNet [10] 0.735 0.760 1.67k
ICE-GAN [27] 0.845 0.841 21.6 mil
MTM-Net [15] 0.86 0.85 n/a

GEME [16] 0.7221 0.7303 53 mil
RNAS-MER [32] 0.8302 0.8511 1.91 mil

Efficient-ME 0.987 1.178 867 K
Efficient-ME (tr3) 0.76 0.89 68 K

A smaller variant of the proposed model, Efficient-ME (tr3), with only 68k parameters
built by truncating the base EfficientNet-B0 model up to the third block, attained reasonable
performance with UF1 score of 0.76, better than the results reported by [16] that use
Dynamic Images as input and [10] using pre-extracted optical flow. This demonstrates
that complex inputs requiring an involved feature engineering process are not necessary to
improve MER as smaller models like Efficient-ME (tr3) can achieve acceptable performance
by consuming just apex frame images as input. This also proves that apex frame images
contain sufficient and relevant micro-expression information for MER.

However, Efficient-ME (tr3) performs worse than the proposed model despite claims
by [9–11] that a smaller and lighter network is better for the MER task. To understand
this phenomenon, we examine the output feature maps for both models. Efficient-ME (tr3)
generates 40 output features of size 28 × 28 at the last MBConv block (Block 3) as can be
seen in Figure 5. The features extracted are still extremely low-level consisting of edges’
information from the shapes in the image but also from the textures and contours present.
This makes the feature map noisier and harder to classify in the dense layer.
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On the other hand, the proposed model, Efficient-ME, generates 112 features at the last
MBConv block (Block 5) with size 14 × 14. The output feature map consists of higher-level
details aggregated from previous layers like shapes and edges. Figure 6 shows that the
model can tune into the general facial movements such as the pulled up upper lip and
downturned mouth that indicates the emotion ‘Disgust’. Hence, the output feature map
from this deeper network has the advantage of being immune to unnecessary details like
the face texture.
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From the comparison of the output feature maps of Efficient-ME and Efficient-ME
(tr3), it can be inferred that there is a limit to how small a deep learning model can be before
it loses its efficacy in features extractions. Since CNN-based models rely on the stacks of
convolution layers to learn features sequentially and build knowledge from the ground up,
it is important to consider the balance between a smaller number of parameters and the level
of features extraction at the final convolution layer when designing lightweight models.

4.2. Experiment 2: Source Database Used in Transfer Learning Plays a Big Role in MER

MER performances of 2 identical Efficient-ME models were compared: one loaded
with pre-trained ImageNet weights and the other with the pre-trained FER 2013 weights.
The results show a substantial 50% increase in performance on the model pre-trained with
FER 2013 database compared to using ImageNet pre-trained weights. To see whether
increasing the model size can improve the MER performance using transfer learning
from ImageNet, similar validation was also conducted on the original EfficientNet-B0
architecture with pre-trained ImageNet weights. However, based on Table 5, no noticeable
improvements were observed. A further comparative test was conducted by pre-training
Efficient-ME model with CK+ dataset to see if the type of facial expression dataset used for
transfer learning is important. The result showed considerable performance improvement
compared to using ImageNet pre-trained weights but was still inferior to using FER2013
pre-trained weights.

Table 5. Transfer learning evaluation using ImageNet, FER 2013 and CK+ source databases.

Method UF1 Score UAR Score

Efficient-ME with pre-trained ImageNet weights 0.46 0.5376
EfficientNet-B0 with pre-trained ImageNet weights 0.44 0.52

Efficient-ME with pre-trained CK+ weights 0.949 1.12
Efficient-ME with pre-trained FER 2013 weights 0.985 1.178

Therefore, it is prudent to conclude that transfer learning from facial expression
databases, such as FER 2013 and CK+, greatly improves MER. However, the type of facial
expression dataset used is also important. For this instance, FER 2013 performed better
than CK+ due to its diverse and spontaneous samples as well as its larger size.
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4.3. Experiment 3: Imbalanced Dataset Problem Can Be Circumvented by Algorithm Tuning

The effect of using multi-class focal loss (FL) using the proposed class weightage
is compared to using standard cross-entropy loss (CE). Both Efficient-ME models used
were pre-trained using a balanced FER2013 dataset. From the results in Table 6, it can be
noted that using multi-class focal loss with class weightage improves the UF1and UAR
scores on the imbalanced composite dataset by a considerable margin with UFI score of
0.98 when using FL compared to UFI score 0.916 when using CE, respectively. Drilling
into the per-class F1 scores, Efficient-ME with CE performed worst in recognizing class
Surprise, which has the least number of samples in the composite dataset. On the contrary,
the per-class F1 scores for Efficient-ME with FL are more balanced and even. This shows
the efficacy of simple algorithm tuning such as loss function manipulation to deal with an
imbalanced dataset by emphasizing the importance of minority class without requiring
additional samples generation.

Table 6. Loss function evaluation for Efficient-ME pre-trained on balanced FER2013.

Method UF1 Score UAR Score F1-Neg F1-Pos F1-Surp

Efficient-ME with FL 0.98 1.178 0.99 0.98 0.98
Efficient-ME with CE 0.916 1.109 0.94 0.93 0.87

FL: Focal Loss. CE: Cross-entropy Loss. Neg: Class Negative. Pos: Class Positive. Surp: Class Surprise.

Further experiment was done to uncover the effect of FL and CE when the model is
pre-trained on an imbalanced source database. This is done by taking the whole FER2013
samples without re-sampling, supplying 8989 samples for class Positive, 16,698 samples for
class Negative and 4002 samples for class Surprise.

As can be observed in Table 7, the specific loss function used has less effect when the
model is pre-trained on a source database with matching class distribution. The full UFI
score and the per-class scores when using FL do not significantly differ to CE although the
score for CE is slightly higher. This is because the original imbalanced FER2013 also has
the least samples for class Surprise followed by class Positive like the composite dataset.

Table 7. Loss function evaluation for Efficient-ME pre-trained on imbalanced FER2013.

Method UF1 Score UAR Score F1-Neg F1-Pos F1-Surp

Efficient-ME with FL 0.97 1.165 0.98 0.97 0.97
Efficient-ME with CE 0.99 1.191 0.99 0.99 0.99

FL: Focal Loss. CE: Cross-entropy Loss. Neg: Class Negative. Pos: Class Positive. Surp: Class Surprise.

Hence, it can be summarized that manipulating loss functions for an imbalanced
dataset is useful when the class distribution of the source database does not match the
target database during transfer learning. This discovery opens the possibility of exploiting
the deep learning algorithms to solve imbalanced dataset problems during transfer learning.

5. Conclusions and Future Work

MER has huge potential applications in various domains but is challenging due to the
intricate and low-intensity facial movements as well as the small datasets available. In this
work, a novel lightweight deep learning model, Efficient-ME, with just 867k parameters, is
proposed by truncating the baseline EfficientNet-B0 model after the 5th MBConv blocks
pre-trained on a macro-expression database, FER2013, before fine-tuned and evaluated on
the composite dataset.

This work has demonstrated that a lightweight deep learning model is able to achieve
superior MER performance with the consideration that the model must still be able to
extract high-level features. Future comparative study of the lightweight limit of the deep
learning model will reveal the deep learning network constraints for MER. It was also
confirmed that utilizing apex frames as input with no other features’ pre-extraction steps
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is sufficient for capturing details pertaining to micro-expressions. The combination of
the lightweight model with low input complexity utilizing a static apex frame image is
proven to achieve state-of-the-art performance compared to other shallow and lightweight
MER models.

Furthermore, in the transfer learning’s source databases experiment, FER2013 is
revealed to be more effective than by using a massive general image database such as
ImageNet or lab-controlled and smaller facial expression dataset such as CK+. This proves
the importance of selecting a source database that is closely related to the target task as
well as diverse enough from which to learn general features. Future work that evaluates
the different macro-expression databases using the same baseline model and evaluation
protocol will add understanding of the influence of source data of transfer learning for MER.

In dealing with an imbalanced dataset problem, it can be established that using
weighted multi-class focal loss can yield high MER performance when utilizing transfer
learning if the source database’s class distribution does not match the target, rendering
complex data augmentation strategies redundant.

In the future, the proposed MER framework can be extended for evaluating 5-class
MER. This will necessitate a standard emotion class labelling across the different databases
and increase the available micro-expression data.
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