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Abstract: Due to the complexity of the oil and gas station system, the operational data, with various
temporal dependencies and inter-metric dependencies, has the characteristics of diverse patterns,
variable working conditions and imbalance, which brings great challenges to multivariate time series
anomaly detection. Moreover, the time-series reconstruction information of data from digital twin
space can be used to identify and interpret anomalies. Therefore, this paper proposes a digital
twin-driven MTAD-GAN (Multivariate Time Series Data Anomaly Detection with GAN) oil and
gas station anomaly detection method. Firstly, the operational framework consisting of digital twin
model, virtual-real synchronization algorithm, anomaly detection strategy and realistic station is
constructed, and an efficient virtual-real mapping is achieved by embedding a stochastic Petri net
(SPN) to describe the station-operating logic of behavior. Secondly, based on the potential correlation
and complementarity among time series variables, we present a MTAD-GAN anomaly detection
method to reconstruct the error of multivariate time series by combining mechanism of knowledge
graph attention and temporal Hawkes attention to judge the abnormal samples by a given threshold.
The experimental results show that the digital twin-driven anomaly detection method can achieve
accurate identification of anomalous data with complex patterns, and the performance of MTAD-
GAN anomaly detection is improved by about 2.6% compared with other methods based on machine
learning and deep learning, which proves the effectiveness of the method.

Keywords: digital twin; GAN; anomaly detection; temporal Hawkes attention; knowledge graph
attention

1. Introduction

The anomaly-detection problem is one of the important research topics for data min-
ing [1], network intrusion [2], structural defects [3], text errors [4], industrial production [5]
and social networks [6], etc. Considering the actual situation in physical industrial produc-
tion, it is very difficult to detect anomalies in the samples due to diverse patterns, variable
working conditions and imbalance data. Even though some progress [7–11] has been made,
the task of multivariate time series anomaly detection is still very challenging.

Traditional anomaly detection methods have been extensively studied, with various
strategies such as density estimation [12], tree based [13], cluster based [14], proximity
based [15], probability based [16] and dimension reduction based [17]. However, faced
with diverse patterns, variable working conditions and imbalance data, those methods
cannot achieve good results. Another kind of anomaly detection methods with multivariate
time series is based on deep learning. Among them, the long short term memory (LSTM)
provide effective methods for analyzing time correlation features of time-series datasets,
i.e., VLSTM [18], AMF-LSTM [19], DBN-LSTM [20], LSTM-AE [21–23], etc. Although these
methods have improved accuracy and scope of application compared with traditional
methods, they still cannot resolve the anomaly detection for the reasons of diverse patterns,
variable working conditions and imbalance samples.
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In this paper, we construct a digital twin framework by giving definitions of consis-
tency, completeness and soundness for digital twin system, and using stochastic Petri net
to realize the virtual and reality mapping. The MTAD-GAN anomaly detection method is
designed to enhance the spatio-temporal correlation of multivatiate time serier by combin-
ing the attention mechanism of knowledge graph and temporal Hawkes. For resolving the
problem of diverse patterns, variable working conditions and imbalance data, we propose
a knowledge-aware transfer learning by using the data from digital twin space.

In Figure 1, we present an overview of this paper. In the knowledge graph section,
we divide the physical parts and the relationships into several components, and use the
knowledge graph for mapping the physical and virtual models. In the Petri net section, we
describe the realistic oil and gas station operation behavior logically and achieve an efficient
virtual-real mapping. In the evolution rules section, different nodes in the knowledge graph
can be set according to different risk factors. In the anomaly detection section, we propose
an MTAD-GAN anomaly detection method that reconstructs multivatiate time-series by
combing knowledge graph attention and temporal Hawkes attention mechanism, and
then uses knowledge transfer learning to detect anomalies in realistic oil and gas stations.
Accordingly, our main contributions can be summarized as follows:

Figure 1. Oil and gas station digital twin framework

• We propose a digital twin operation framework, which is mapped to a virtual station
by decomposing the knowledge graph of the physical station. The stochastic Petri
net is designed to describe the station behavior logic and achieve an efficient virtual
mapping.



Appl. Sci. 2023, 13, 1891 3 of 19

• In order to resolve the problems of of diverse patterns, variable working conditions
and imbalance samples, the method of MTAD-GAN is proposed by using the potential
relationship between time-series variables, which enhances the features of multivatiate
time-series by combining knowledge graph attention and temporal Hawkes attention
mechanism. The ADGS scoring loss function is designed to estimate the probability
distribution of network learning samples to complete the anomaly detection.

• Experiments on accuracy, precision, F1 and AUCROC with different datasets have
shown great improvements with integrating the proposed MTAD-GAN. It demon-
strates that the MTAD-GAN can effectively detect anomalies and outperforms the
state-of-the-art deep learning methods as well as traditional methods.

We will introduce the related works in Section 2 and digital twin framework in
Section 3.1. We describe the proposed MTAD-GAN in Section 3.2. In Section 4, we present
the experimental results and compare our algorithm with others. In Section 5, we discuss
the reason for the achieved results. Section 6 gives the conclusions of this paper.

2. Related Works
2.1. Digital Twin

With the rapid evolution of digital twins, the application of digital twins in various
industries is becoming more and more widespread. Table 1 shows the key sources from
manufacturing and smart cities based on digital twin. The digital twin serves as a bridge
between the virtual and real worlds and is often used by industry to enhance the processing
and management of information related to virtual and physical entities. Li et al. [24] uses
quantitative green performance evaluation of smart manufacturing (GPEoSM) to quantify
and evaluate green performance. which focuses more on the evaluation of the completed
digital twin for iterative optimization. Priyanka et al. [25] proposes the digital twin frame-
work to detect the failure precursors with the predictive algorithms. Yang et al. [26] uses
process transformation technology to build digital twin framework, which is used to mine
event logs for characterization and then predicts the remaining cycle values of a manu-
facturing process based on subsequent states by using a GRU neural network. Salem and
Dragomir [27] present a framework of digital twins to manage activities and services related
to the operation of buildings and urban structures. Guo et al. [28] introduces an improved
random forest algorithm and maps the trained model to the physical production line for
fault diagnosis by use transfer learning. Tao et al. [29] demonstrates that the framework
of digital twin-driven product design (DTPD) can facilitate the iterative optimisation of
bicycle design.

Table 1. A Comparative Study for Digital Twin in open literature.

References Type Broad Area Specific Area Technology

Tao et al. [29] (2019) Case Study Manufacturing Product Design Big Data

Sacks et al. [30] (2020) Conception Smart City Construction Industry BIM, Construction Planning
and Control

Guo et al. [28] (2021) Case Study Manufacturing Production Line Transfer Learning, IRF

Salem and Dragomir [27] (2022) Conception Smart City Construction Industry BIM, AI, Monitoring

Li et al. [24] (2022) Case Study Manufacturing Smart Manufacturing Analytics, Evaluation

Priyanka et al. [25] (2022) Case Study Manufacturing Oil Pipeline Risk Estimation, SVM

Yang et al. [26] (2022) Case Study Manufacturing Log Data Mining GRU, AI

Ours Case Study Manufacturing Oil and Gas Station Petri Net, Knowledge Graph

2.2. Deep Learning

Deep learning has been the most popular method in recent years. Among them, LSTM
networks and GAN networks, as the basic network models for time series prediction,
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can effectively deal with the problems that cannot be solved by traditional methods. We
find the outcomes and limitations of anomaly detection approaches based on LSTM and
GAN in Table 2. Li et al. [31] combine a stacked autoencoder (SAE) and a long short-
term memory (LSTM) neural network to identify anomalies in a completely unsupervised
manner. The VAE-LSTM hybrid model [32] as an unsupervised method for time series
anomaly detection utilizes VAE modules to form robust local features over short windows
and LSTM modules to estimate long-term correlations in the series on top of the features.
To reduce training bias, the ATR-GAN [33] is used to generate more effective artificial
samples for training supervised learning models. The DAGAN [34] is designed to solve
the sample unevenness problem by using a jump-joint and dual self-encoder architecture,
which shows excellent image reconstruction capability and training stability. Using the
combination of the advantages of LSTM gate structure in processing time series and the
advantages of GAN network in acquiring data depth features, the LSTM-GAN [35] network
is proposed. Wang et al. [36] attempts to cope with highly diverse data distributions and
lack of labelled anomalous data by proposing an improved long short-term memory
(LSTM) based time series anomaly detection scheme. In [37], LSTM-FC uses feature-based
transfer learning to reduce the variance between wind turbine data distributions and has
been validated for feasibility. However, none of the above methods can completely solve
problem of missing data and imbalanced samples in real industrial production. We propose
an anomaly detection method combining digital twin and transfer learning, which can
effectively solve the problem of insufficient data samples as well as better assist industrial
production management.

Table 2. Comparative Analysis of the proposed deep learning scheme with related research.

References Techniques Outcomes Limitations

LSTM-GAN [35] (2019) LSTM, GAN
Higher accuracy rate

compared to traditional
methods

Relationships between
multidimensional variables

are ignored

SAE-LSTM [31] (2019) Stack AE, LSTM Higher detection rate in
multiple features sequence

Unbalanced data have not
been considered

VAE-LSTM [32] (2020) VAE, LSTM
Higher recall rate and F1 score

compared to standard
methods

The relationship between
multivariates has not been

considered

DAGAN [34]
(2020) Dual AE, GAN

High AUC is maintained even
with a small quantity of

training data

Unbalanced sample
distribution has not been

considered

ART-GAN [33] (2021) Data augmentation, GAN Using data augmentation to
solve data imbalances

Data augmentation only
considers a single sensor

Improved LSTM [36](2022) LSTM
Time series data anomaly

detection for diverse
distributions

Unable to detect anomalies for
small quantity of data

LSTM-FS [37] (2022) LSTM, FS, Transfer learning
Using transfer learning to

reduce the differences
between data distributions

Power status has a large
impact on monitoring data

MTAD-GAN (proposed) LSTM, GAN, Digital twin,
Transfer learning

Using digital twin to solve
problem of data imbalances

and small quantity

Performance can be improved
with exploring relationships
of time series and adjusting

the network structure for
higher anomaly detection rate

2.3. Transfer Learning

Transfer learning [38] refers to the transfer of knowledge learned in a large number
of adjacent data domains to solve similar problems in new data domains faster and more
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effectively. Vercruyssen et al. [39] applies transfer learning to anomaly detection, trans-
ferring labeled examples from the source domain to the target domain with no available
labels. Andrews et al. [40] uses transfer representation learning for anomaly detection
using convolutional neural networks. The MSTLN [41] aggregates and transmits diagnos-
tic knowledge from multiple source machines by combining multiple locally distributed
adaptive subnets (PDA-Subnets) and a multi-source diagnostic knowledge fusion module.
Based on a combination of long and short-term memory, fuzzy synthesis and feature-based
approaches to transfer learning, Zhu et al. [37] use three feature-based transfer learning
methods to reduce the differences between WTG data distributions. In the actual operation
of the oil and gas station, due to the lack of abnormal samples, it is difficult to obtain a
relatively balanced datasets to train a classifier with generalization.

3. Proposed Method
3.1. SSUPS Based Digital Twin Framework

Due to the diversity and complexity of station equipment, it is difficult to construct
a complete oil and gas station digital twin directly at one time. Therefore, we propose a
SSUPS-based approach to the construction of digital twins which includes scenario, system,
unit, part and subpart. The physical entity division can be expressed as follows:

MR = {Scenario, System, Unit, Part, Subpart} (1)

where scenarios are the collection of real systems, such as oil and gas stations, pipelines,
etc. The system is specific to a particular system, e.g., compression system, oil delivery
system, etc. Units are classes of specific equipment, such as pipeline equipment and
compressor equipment. Part is a component of a piece of equipment, such as the body,
midbody, cylinders, crankshaft, connecting rods, etc. Subparts are tiny, non-subdividable
parts such as bearings and screws. We display the knowledge graph as a semantic network
of relationships between physical entities on digital twin framework, as shown in Figure 1.
Based on SSUPS component decomposition, the knowledge graph of oil and gas station
can deduct the industrial accidents, and judge the early warning and anomaly detection.

3.1.1. Virtual and Reality Mapping Based on SPN

Based on the knowledge graph’s classification of the different components and their
relationships, the digital twin (DT) are divided into three classes: entity DT, attribute DT
and relationship DT. Therefore, the digital twin mapping of an oil and gas station can be
represented as a mapping of the various types of TE, we have:

MDT = MEDT ∪MADT ∪MRDT (2)

The mapping between entities is a topology connection relationship. Entities include
equipment, pipeline components, buildings, as well as sensor data collections and business
processes, etc. All digital twins after entity mapping form a finite set. This finite set can be
expressed as:

EDT = {TE|MEDT [n] ∈ SetEDT = {s1, s2, · · · , snEDT}, ∀n ∈ [0, NEDT ]}. (3)

where N is the number of entities class, TE is the twinning entity, EDT is the entity digital
twin, SetEDT is the entity mapping set. The mapping function of the entity digital twin can
be expressed as:

MEDT = { fTE1, fTE2, fTEnETE
| fTEi : DR

Ei
7→ DDT

TEi
,

s.t.
∣∣∣DR

Ei

∣∣∣ = ∣∣∣DDT
TEi

∣∣∣ ∈ SetEDT ,
∀i = 1, 2, · · · , nEDT}.

(4)
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where MEDT is the mapping entity digital twin, f is the mapping function, |D| is a value
operation that ignores data structures, formats, timestamps, etc.

The attribute mapping in the knowledge graph triplet has a unique identifier of the
device with device information and status, which is represented as follows:

ADT = {TA|MADT ∈ SetADT = {ID, State, · · · , ADT}}. (5)

where N is the number of attribute class, TA is the twinning attribute, ADT is the attribute
digital twin, SetEADT is the attribute mapping set. The mapping function of the attribute
digital twin can be expressed as:

MADT = { fTA1, fTA2, fTEnDTA
| fTEi : DR

TEi
7→ DDT

TEi
,

s.t.
∣∣∣DR

TEi

∣∣∣ = ∣∣∣DDT
TEi

∣∣∣ ∈ SetADT ,
∀i = 1, 2, · · · , nADT}.

(6)

where MADT is the mapping entity digital twin, f is the mapping function.
Relationships are the bridges for connecting entities in knowledge graph, which can

be expressed as:

MRDT = { fTR1, fTR2, fTRnRDT
| fTEi : DR

TEi
7→ DDT

TRi
,

s.t.
∣∣∣DR

TRi

∣∣∣ = ∣∣∣DDT
TRi

∣∣∣,
∀i = 1, 2, · · · , nRDT}.

(7)

where N is the number of Relationship classes, TA is the twinning attribute, and ADT is
the attribute digital twin.

The division of the above three types for TE conducts to the integration of twin
body data processing, and facilitates the design of simulation behaviors in the digital
twin platform according to the digital twin representation methods of different TEs. In
order to enhance virtual and reality interaction performace, our digital twin framework
integrates SPN and evolution rules to improve better generalization on anomaly detection
task. The SPN is defined as a seven-tuple N = (P, T, F, K, W, M0, L). Based on the recursive
combination of elements such as places and transitions, a logical network model of virtual-
real interaction is constructed, as shown in Figure 2. The meanings of all places and
transitions in the logical Petri net model are shown in Table 3.

P1

P2

P3

P4

P5

P6

P8

P9

P10

P11

P12

P13

P14

P15

P16

P7

Figure 2. The virtual-real interactive Petri net model of oil and gas station.
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Table 3. The meaning of place in Petri net.

Meaning of Place

P1 data collection P2 abnormal data P3 low level warning
P4 normal data P5 advanced warning P6 detection feedback information
P7 On-site monitoring notice P8 Alert information P9 On-site warning information
P10 Historical information data P11 Pre-plan library P12 accident data
P13 Plan confirmed P14 loss estimate P15 Plan optimization
P16 resume operation

3.1.2. Digital Twin Definitions

To provide the virtual-real synchronization of consistency, completeness and sound-
ness for the operating logic of behavior of oil and gas station, we provide precise definitions
for these three aspects.

Definition 1. (Consistency): For ∀s ∈ ER, exist only one m ∈ EDT , such that G(s, r, v) =
G(m, r, v). Where G is the knowledge graph, s is one of the triples in the knowledge graph. This
definition reflects entities in physical space are the same as entities in virtual space.

Definition 2. (Completeness): For ∀s ∈ ER, ∃m ∈ EDT , such that G(s, r, v) = G(m, r, v), and
for s ` ϕ, G(ϕ, r, v) = G(m′, r, v) is also satisfied. Where s′ is the derivation of s through different
relations in the knowledge graph.

Definition 3. (Soundness): If ∃m ∈ EDT , fm : µ → µ′, then G(m) = fm(G(m′)). Where
m′ = s|s `, s ∈ ERW , f is the mapping function.

When the constructed digital twin satisfies the above three confirmatory definitions, it
can be called a qualified digital twin that meets the demand of anomaly detection.

3.2. MTAD-GAN Network
3.2.1. Network Structure

To achieve anomaly detection of multivariate time series data, we designed a multi-
level crossover GAN network (MTAD-GAN), as shown in Figure 3. During the MTAD-GAN
model training phase, we input random noise with the same dimension as the training
sample into the knowledge graph attention and Hawkes attention long short-term memory
(KH-LSTM) to obtain the generated sample. Then the generated samples and real samples
are simultaneously transmitted to the discriminator for iterative training until the network
reaches Nash equilibrium. In the anomaly detection phase, the test samples are mapped to
the random latent space, and the reconstruction samples are generated through iterative
training by calculating the reconstruction loss. In order to strengthen the feature difference
between normal samples and abnormal samples, a scoring network is introduced here
to calculate the score loss of the reconstructed samples. Combining the Gaussian joint
distribution, the adaptive dynamic Gaussian score (ADGS) is constructed by fusing the
scoring loss, reconstruction loss and discrimination loss to detect and judge the anomaly of
the data.
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Figure 3. The structure of GAN for anomaly detection.

3.2.2. KH-LSTM Network Structure

In the anomaly detection task, the knowledge graph attention module is introduced
to enhance the spatial correlation of features. We incorporated the temporal Hawkes at-
tention layer into the LSTM to suppress interference from unrelated features, as shown in
Figure 4. The knowledge graph attention module is used to spatially weight the original
input sequence Xi = {xi

1, xi
2, . . . , xi

T} ∈ RT×D. Based on the hidden layer space state of
LSTM, combined with temporal hawked attention, the temporal correlation character-
istics of the input signal are enhanced and obtain the spatiotemporal feature sequence
Yi = {yi

1, yi
2, . . . , yi

T} ∈ RT×D.

Knowledge

Graph

Attention

Layer

Hawkes

Attention

Layer

Entity

Relationship

Knowlegde Graph

Figure 4. The structure KH-LSTM with knowledge graph attention and Hawkes attention.
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3.2.3. Knowledge Graph Attention Module

Set X ∈ RT×D as the input time series data, D is the sensor variable dimension, T is
the time series length. Divide the input X time series data into T D-dimension vectors, the
single-layer knowledge graph attention network update node is expressed as follows:

eij = LeakyRuLU(aT [Wxi‖Wxj]) (8)

αij = so f tmax(eij) =
exp(eij)

∑k∈Nj
exp(eik)

(9)

xi
′ = σ( ∑

j∈Ni

(αijWxi) (10)

where eij is a single-layer feed-forward neural network, a and W are learnable parameters
in the neural network, ||represents the concatenation of vectors, α is the attention weight.
The node feature representation after the update is obtained by Equation (10).

3.2.4. Hawkes Attention Module

Considering that each spatial feature may have noise, temporal Hawkes attention
mechanism is introduced to describe temporal correlation features. Set s(t−1) as LSTM
hidden state at time t, we have:

gk
(t) = Vk

2 tanh(Wk
2 s(t−1) + Uk

2h(t−T+k) + bk
2), 1 ≤ k ≤ M (11)

βk
(t) =

∣∣∣gk
(t)

∣∣∣
∑T

m=1

∣∣∣gm
(t)

∣∣∣ , 1 ≤ k ≤ M (12)

where Vk
2 , Wk

2 , Uk
2 and bk

2 are the training model parameters, g(t)k is the weight of the kth
LSTM hidden state of the sub window at time t, M is the size of sub window.

The Hawkes process[42] is a self-excited point-in-time process that models discrete
sequences of events in continuous time. We compute the temporal features B as:

B = βt + ∑
τ=0,∆tτ≥0

κβte−δ∆tτ (13)

where τ is the time point and δ is the decay parameter. The context vector obtained by
weighted summation of hidden states using attention weight is:

c(t) = ∑T
k=1 h(t−T+k)B (14)

where c(t) is the context vector at time t, βk
(t) is the temporal attention weight.

3.2.5. Knowledge-Aware Transfer Learning

As shown in the Figure 5, transfer learning can map knowledge from the source
domain to the target domain, and the data simulated from our digital twin space may have
different effects on the physical devices. Therefore, we apply an attention mechanism to
better learn the knowledge relation between two domains. When the device correlation of
two domains is low, the shared knowledge will be penalized, and the attention network
will learn more device-specific domain knowledge.The formulas for knowledge-aware
similarity are as follows:

γ∗(K,S) = hT
γ ReLU(Wγkγ + bγ); γ∗(C,S) = hT

γ ReLU(Wγcγ + bγ) (15)

µ∗(K,S) = hT
µ ReLU(Wµkµ + bµ); µ∗(P,S) = hT

µ ReLU(Wµ pµ + bµ) (16)
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where W is the weight matrices, h and bias b are the parameters of the network, γ and
µ are the related to C domain and P domain. The attention scores is normalized with a
softmax function:

γ(K,S) =
exp(γ∗

(K,S))

exp(γ∗
(K,S))+exp(γ∗

(C,S))
= 1− γ(C,S)

µ(K,S) =
exp(µ∗

(K,S))

exp(µ∗
(K,S))+exp(µ∗

(P,S))
= 1− µ(P,S)

(17)

where γ and µ represent common knowledge between two domains. After calculating the
above attention weights, the features of the two domains can be expressed as follows:

uC
s = γ(C,S)cγ + γ(K,S)kγ; uP

s = µ(P,S)cµ + µ(K,S)kµ (18)

Transfer learning computes two types of losses, with marginal distribution loss and
conditional distribution loss, which are the data distribution and prediction distribution,
respectively. The specific losses are as follows:

loss = λ1lossKL + λ2lossMMD

=λ1 ∑ usource
i logut arg et

i + λ2

∥∥∥∥∥ 1
ns

ns

∑
i=1

us
i −

1
nt

nt

∑
i=1

ut
i

∥∥∥∥∥ (19)

where λ1 and λ2 are the hyper-parameters. We use the grid search method to train the
hyper-parameters by the validation set at {0.1, 0.2, 0.3, · · · , 0.9}. The optimal parameter are
both set as 0.5 in our experiments.

Real 

Oil and Gas Station

Physical Space Data

Digital Twin 

Oil and Gas Station

Virtual Space Data

Source MTAD-GAN Target MTAD-GAN

Generator

Discriminator

Generator

Discriminator

Knowledge-aware

Transfer Learning

Knowledge-aware

Transfer Learning

Knowlegde 

Graph

Attention

Hawkes

Attention

Knowlegde 

Graph

Attention

Hawkes

Attention

Knowlegde 

Graph

Attention

Hawkes

Attention

Knowlegde 

Graph

Attention

Hawkes

Attention

Figure 5. Knowledge-aware transfer learning Network structure.

3.3. Abnormal Score

In the anomaly detection phase, the test set Atest is mapped to the potential feature
space and entered into the generator to generate the initial reconstruction sample G(Z1).
The gradient is then updated by calculating the error between the test sample and the
reconstructed sample. The similarity measure between the input sample and the potential
feature space is defined as follows:

min
zm Er(Atest, Grnn(Zm)) = 1− Sim(Atest,Grnn(Zm)) (20)
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where Er(·) is the error measurement function, Sim(·) is the similarity measure function,
and Zm is the mth reconstruction sample. The Equation (20) is obtained by gradient
descent to obtain the optimal solution, then the sample residual function of the moment is
expressed as:

Zm = Grnn(Za), s = S(Za) (21)

The minimize-loss function is used to update the parameters in S, using the recon-
struction error as a self-supervised signal, defining the score loss as:

LS =

{
|s− µ0|, F(Atest

t ) < ε
λa max(0, a− s), F(Atest

t ) ≥ ε
(22)

where a is the threshold and µ0 is the anomaly score.
The MTAD-GAN model is a multi-branch structure, due to the different learning

tasks of different branches, the end-to-end training method is adopted, and the overall loss
function is the sum of the weighting coefficients of multiple loss functions, we have:

L = α(LR + LD) + (1− α)λS
1
N

LS (23)

where LR is the reconstruction loss, LD is the discriminant loss, LS is the score loss. Accord-
ing to the subsequence of multiple test data, we can obtain multiple sets of anomaly loss
functions L = Lj,s, j = 1, 2, . . . , n; s = 1, 2, . . . , Sw ⊆ Rn × Sw. Here, the anomaly detection
loss of multiple groups of subsequences is fitted to a Gaussian distribution, and then the
adaptive dynamic scoring function ADGS is obtained, which is defined as follows:

ADGSi
t = − log(1− ϕ(

Li
t − µ̂i

t
σ̂i

t
)) (24)

µ̂i
t =

i
M ∑M−1

j=0 Li
t−j (25)

(σ̂i
t)

2 =
1

M− 1 ∑M−1
j=0 (Li

t−j − µ̂i
t)

2 (26)

where µ̂i
t is the dynamic mean, σ̂i

t is the dynamic variance, M is the window size.

4. Experiments
4.1. Datasets

Experiments were carried out on the KDD99 [43], SWaT [44], WADI [45], SKAB [46],
DAMADICS [47], MSL [48], SMAP [48], SMD [49] and J10031 datasets. Table 4 shows the
detail of our pre-processed dataset. For each full dataset, it is divided into the ratio of
training data, validation data and test data as 6:2:2 in the process of learning.

Table 4. The details of datasets.

Dataset No. Sensors Normal Data Data with
Attacks Attacks

Attack
Duration

(mins)

KDD99 34 562,387 494021 2 NA
SWAT 51 496,800 449,919 36 2-25
WADI 127 1,048,571 172,801 15 1.5–30
J10031 29 43,194 42,150 5 2–30
SKAB 20 9401 35,600 12 2.4–9.8

DAMADICS 12 8546 9542 5 2.1–5.6
MSL 10 2160 2731 2 11–1141

SMAP 24 2556 8071 4 31–4218
SMD 16 25,300 25,301 3 2–3160



Appl. Sci. 2023, 13, 1891 12 of 19

4.1.1. KDD99

The KDD99 dataset from the Third International Knowlegde Discovery and Data
Mining Tools Competition in 1999 for system evaluation of network security contains
4,898,431 samples with 40 columns of features and 1 column of class labels. In this paper,
562,387 samples for 34 sensors were collected under normal working conditions, and
494,021 samples were collected under various attacked scenario.

4.1.2. SWaT

The Secure Water Treatment (SWaT) dataset is a water treatment testbed, which
contains data from the water treatment plant and water treatment process generated. It
includes 7 days of normal data with 496,800 samples and 4 days of abnormal data with
449,919 samples. The abnormal data contain 36 attacks in total. The number of sensors and
actuators in the testbed for data collection is 51.

4.1.3. WADI

The Water Distribution (WADI) dataset contains data from a water distribution net-
work in a city, which collected by the Singapore Public Utilities Commission. The dataset
collected recordings of 123 sensors for 16 days, which contains 1,048,571 samples under the
normal scenario for the first 14 days and 172,801 samples under the attacked scenario for
the last 2 days. There are 15 attacks in total, generating about 6% abnormal data.

4.1.4. J10031

The J10031 is the measured valve dataset of compressors in an oil and gas station,
which contains 43,194 normal samples for 29 sensors and 42,150 data samples under
abnormal working condition.

4.1.5. SKAB

The Skoltech Anomaly Benchmark (SKAB) dataset is designed for evaluation algo-
rithms for anomaly detection which contains 35 subsets of data from a water circulation
system with the sensors installed on the testbed. The 9401 samples were obtained from the
experiments with normal mode and the 35,600 samples were under abnormal scenario.

4.1.6. DAMADICS

The Development and Application of Methods for Actuator Diagnosis in Industrial
Control Systems (DAMADICS) is a benchmark which includes data from a real water
evaporation process in a boiler of a sugar factory in Poland. In this paper, the DAMADICS
simulated 8546 normal samples and 9542 abnormal samples under the operating condition
of pneumatic control valves in industrial processes.

4.1.7. MSL and SMAP

The Mars Science Laboratory rover (MSL) and the Soil Moisture Active Passive satellite
(SMAP) are real-word datasets acquired from the spacecraft, which were annotated by
experts of NASA. MSL dataset includes the 2160 normal samples and the 2731 samples
under attack and SMAP includes the 2556 normal samples and the 8071 samples under
attack. There are 55 and 27 sensors in SMAP and MSL datasets, respectively.

4.1.8. SMD

The Server Machine Dataset (SMD) is a five-week dataset, which contains data from
28 server machines. To avoid the effect of service change during the data collection period,
we used part of the SMD dataset, containing 25,300 normal samples and 25,301 samples
under attack. The data on each server are monitored by 38 sensors.
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4.2. Evaluation Indicators

To evaluate our method more intuitively and comprehensively, we calculate accuracy
A, precision P, recall R, F1 score and AUC-ROC as measure of experimental results. The
calculation formula is as follows:

P =
TP

TP + FP
(27)

R =
TP

TP + FN
(28)

F1 =
2× P× R
TP + FN

(29)

A =
TP + TN

TP + FP + TN + FN
(30)

where TP is a positive sample predicted by the model as a positive value, TN is a negative
sample with negative value predicted by the model, FP is a negative sample predicted by
the model as a positive value, FN is a positive sample predicted by the model as a negative
value, AUCROC is the offline area of ROC curve.

4.3. Results and Analysis

We compared the performance of MTAD-GAN with six popular anomaly detection
methods, including: PCA: The method is based on Principal Component Analysis [50];
RawSignal: Raw Signal is a trivial model that reconstructs any signal to 0, so that the
error is the same as the normalized signals; UAE: The method is based on Unimodal
Autoencoder [51]; LSTM-ED: The method is based on Long Short Term Memory neural
network and Encoder-Decoder [52]; AE: The method is based on Autoencoder [53]; TcnED:
The method is based on Temporal Convolutional Network and Encoder–Decoder [54].

Figure 6 shows the performance comparison of this method with PCA, RawSignal,
UAE, LSTM-ED, AE and TcnED on SMAP, SMD, DAMADICS, SKAB, MSL and J10031
datasets based on different scoring functions. The experimental results show that the
choice of detection model and scoring function has different effects on anomaly detection.
Compared with other algorithms, the performance of MTAD-GAN is improved by 0.01∼0.4,
while ADGS integrates multiple loss items to better identify abnormal situations. Compared
with other scoring functions, the model performance is improved by 0.16∼0.4.

Table 5 shows the prediction results based on the ADGS scoring function in the J10031
dataset. It can be seen that the accuracy of MTAD-GAN is improved by 2.6% compared
with TcnED algorithm, indicating that the proposed model has good performance. To
compare and analyze the differences between the methods in this paper and TcnED, Table 6
shows the accuracy on SMAP, SMD, DAMADICS, SKAB, MSL, SWAT and WADI datasets.
It can be seen that the accuracy of MTAD-GAN algorithm is improved by 6.42∼15.42%
compared with TcnED algorithm.

Table 5. Performance comparison of the time and accuracy of different baseline methods with
MTAD-GAN.

Prediction Model Train Time /h Predicted Time /s A%

PCA 4.5 2.2 80.23
RS 4.3 3.8 88.25

UAE 4.5 2.3 82.61
LSTM-ED 5.1 4.5 87.52

AutoEncoder 5.6 3.1 88.71
TcnED 4.6 3.9 93.21

LSTM-GAN 5.5 4.6 76.44

MTAD-GAN 4.6 3.4 95.70
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Figure 6. AUCROC comparison of each model method.

Table 6. Performance comparison of the accuracy of different datasets.

Dataset TcnED MTAD-GAN

SMAP 76.64 88.46
SMD 80.46 86.88

DAMADICS 80.28 87.46
SKAB 78.52 86.59
MSL 80.21 88.62

KDD99 85.72 94.57
SWAT 89.44 97.15
WADI 88.35 98.54

To verify the model’s ability for detecting abnormal data, the SWAT, WADI, MSL and
J10031 datasets are evaluated for abnormal scores. It can be seen from Figure 7 that there is
a significant difference between normal and abnormal distribution in the scores, and the
abnormal score is higher than the normal score with the average score difference between
0.01 and 9.21, which proves that the MTAD-GAN model can reflect the characteristic
distribution of data and give more accurate abnormal scores.

We introduce a scoring network to analyze the sensitivity of different weight parame-
ters of MTAD-GAN and optimize the model. The parameters in Equation (22) are divided
into two groups, namely (ε, a) and (λGS, λa). Figure 8 shows the AUCROC indexes used to
measure the sensitivity of the two groups of parameters on the MSL and J10031 data sets
respectively. It can be seen that different data sets have different sensitivity to parameters.
On MSL dataset, when a < 20 and λa > 4, the correlation of parameter is strong. On the
J10031 dataset, when a < 25 and λa > 12, the model performance is relatively stable.
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Figure 7. Performance comparison between scoring distribution map.

Figure 8. Performance comparison between heat map distributions for different datasets.

4.4. Ablation Experiment

Experiments were conducted on SWAT, WADI, KDD99 and J10031 respectively by
verifying the rationality of MTAD-GAN design. Removal of Hawkes temporal attention
module is marked as K-GAN, removal of knowledge graph aware attention module is
marked as H-GAN. As shown in the Table 7, the average accuracy of the MTAD-GAN algo-
rithm has increased by 13.42∼21.31%, the average recall rate has increased by 8.53∼23.45%,
and the average F1 has increased by 9.49∼16.6%.
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To verify the effectiveness of the loss function used in this paper, the scoring loss
network is removed from MTAD-GAN and marked as MTA-GAN, and the scoring loss
(i.e., LSTMS-GAN) is introduced into LSTM-GAN for retraining. The abnormal samples
are randomly deleted from KDD99, SWAT, WADI and J10031 datasets, and the abnormal
rates are adjusted to 5%, 10%, 15%, 20% and 25% respectively. The test results are shown in
Figure 9. It can be seen that the performances of LSTMS-GAN and MTAD-GAN are rela-
tively stable when all loss functions are used; on the other hand, the AUCROC performance
of MTA-GAN and LSTM-GAN has decreased to varying degrees on the four datasets with
an average performance decrease of 15∼87.5%.

Table 7. Performance comparison of the P, R, F1 of ablation experiment.

Dataset KDD99 SWAT WADI J10031

LSTM-GAN
P 0.720 0.712 0.765 0.775
R 0.796 0.720 0.711 0.784
F1 0.844 0.722 0.624 0.753

K-GAN
P 0.780 0.745 0.782 0.842
R 0.842 0.775 0.738 0.826
F1 0.882 0.754 0.652 0.826

H-GAN
P 0.820 0.740 0.794 0.817
R 0.944 0.842 0.810 0.827
F1 0.864 0.833 0.645 0.792

MTAD-GAN
P 0.945 0.932 0.956 0.972
R 0.960 0.955 0.931 0.912
F1 0.965 0.890 0.796 0.904

Figure 9. Comparison plot of the loss function ablation experiment AUC-ROC.

5. Discussion

As shown in Table 7, LSTM combined with the Hawkes process can effectively capture
the cascading correlations among historical records for the inherent temporal self-exciting
characteristic of anomalies. Hence, the output of the LSTM corresponding to self influence
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of the Hawkes process demonstrates the accumulated results which decay exponentially
with time for anomalies during historical intervals for current detection. The knowledge
graph of oil and gas station for multivariate time series data, which enhance the semantic
information of detecting anomalies, is constructed to capture the latent inter-deependencies
between entities and relations. Then, the anomaly information related to the occurrence
of sensors is transformed into the feature vector to mine the potential connections among
multi-sensors. The feature vectors are used for training LSTM model to improves the ability
of high-level feature expression and the accuracy of anomaly detection.

The novel loss functions including reconstruction loss function, discrimination loss
function and score loss function is designed to constrain the hidden variable and accelerate
the gradient descent speed with few iterations during the training process. The highest
results of AUCROC shown in Table 6 demonstrate the efficiency of our MTAD-GAN
method with ADGS to improve the accuracy of detecting anomalies for the imbalanced
and high-dimensional data in oil and gas stations.

6. Conclusions

Anomaly detection of multivariate time series is an important task for intelligent
operation of oil and gas stations. In this paper, an unsupervised multivariate time series
anomaly detection method based on digital twin and MTAD-GAN is proposed, which
constructs a digital twin system matching with the actual oil and gas station operation logic
and realizes an efficient virtual-real mapping through stochastic Petri nets. Based on the
correlation between data samples and using twin space for training, the data of multivariate
time series are modeled simultaneously by combining knowledge graph attention and
temporal Hawkes attention mechanisms, and the probability distribution of the estimated
network learning samples is designed based on knowledge-aware transfer learning model
to complete anomaly detection. In the future work, we intend to further explore the
various implicit relationships of variate time series and adjust the network structure of the
knowledge mapping and Hawkes process modules to adapt to more complex and variable
application contexts by fusing more levels of feature information.
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